
Efficient MPC
Oblivious Transfer and

Oblivious Linear Evaluation
aka ”How to Multiply”

Claudio Orlandi, Aarhus University

CIS 2018

Circuit Evaluation

3) Multiplication?
How to compute [z]=[xy] ?

Alice, Bob should compute
z1 + z2 = (x1+x2)(y1+y2)

= x1y1 + x2y1 + x1y2 + x2y2

Alice can compute
this Bob can compute this

How do we compute this?

On the use of computational
assumptions

• How much can we ask users to trust crypto?
1. Necessary (one way functions are needed for symmetric

crypto, public key crypto is probably needed for 2PC)
2. We must believe that some problems are hard (e.g.,

breaking RSA or breaking AES). But we should not ask for
more trust than needed!

3. Construct complex systems based on well studied
assumptions. Then prove (via reduction), that any adv
that can break property X of system S can be used to
solve computational problem P.

4. If we believe problem P to be hard, then we conclude
that system S has property X.

3

More efficient Less efficient

OTP >> SKE >> PKE >> FHE >> Obfuscation

The Crypto Toolbox

4

Weaker assumption Stronger assumption

Reduction Proof

5

• If: an adversary can break
the security (e.g., learn the
secret input x)

• Then: use this adversary as
a subroutine to break the
security of some hard
problem (e.g., RSA)

• But: the problem is hard
• So: the protocol must

be secure

x

x

E(m)

m

Part 2: How to multiply

• Warmup: Useful OT Properties
• OT Extension
• Multiplication Protocols
– OT-based
– Pailler Encryption
– Noisy Encodings

1-2 OT

1-2 OT
b

mb

m0,m1

Receiver Sender

• Receiver does not learn m1-b

• Sender does not learn b

1-2 OT

1-2 OT
b

mb

m0,m1

Receiver Sender

• mb = (1-b) m0 + b m1

• mb = m0 + b (m1 - m0)

k-n OT

k-n OT
i1,…,in

mi1,…,min

m1,…,mn

Receiver Sender

2PC via 1-n OT

1-n OT
x

f(x,y)

f(1,y),…,f(n,y)

Receiver Sender

Oblivious Transfer
=

bit multiplication
Receiver Sender

1-2 OT
b

ab + c

(c,a+c)

Short OT à Long OT
Receiver Sender

1-2 OT
b

kb

k0,k1

u0 = prg(k0)⊕m0,
u1 = prg(k1)⊕m1mb=prg(kb)⊕ub

b

poly(k)-bit
strings

m0,m1

k-bit strings

Random OT = OT

ROTc,rc r0,r1

x0 = r0 ⊕ m0,
x1 = r1 ⊕ m1

mb=rc ⊕ xb

b m0,m1

if b=c

Random OT = OT

ROTc,rc r0,r1
b m0,m1

x0 = r0⊕d⊕ m0,
x1 = r1⊕d ⊕ m1

d = b ⊕ c

Exercise: check that it works!

mb=rc ⊕ xb

(R)OT is symmetric
Sender

bits

ROTs0,s1 b,y=sb

c, z=rc r0,r1

c = s0 ⊕ s1
z = s0

No communication!

r0 = y
r1 = b ⊕ r0

Exercise: check that it
works

Part 2: How to multiply

• Warmup: Useful OT Properties
• OT Extension
• Multiplication Protocols
– OT-based
– Pailler Encryption
– Noisy Encodings

Efficiency

• Problem: OT requires public key primitives,
inherently inefficient

More efficient Less efficient

OTP >> SKE >> PKE >> FHE >> Obfuscation

The Crypto Toolbox

18

Weaker assumption Stronger assumption

Efficiency

• Problem: OT requires public key primitives,
inherently inefficient

• Solution: OT extension
– Like hybrid encryption!
– Start with few (expensive) OT based on PKE
– Get many (inexpensive) OT using only SKE

X0

X1
bU

OT Extension, Pictorially

20

k
1-2 OTs

k

k k

n n=poly(k)

Remember:
OT stretching

(see “Short OT à Long OT”
slide earlier)

Xb1,1

X0,1

X1,1
b1

Starting point:
k “seed” OTs

Input or output?
Remember that ROT = OT, it

doesn’t really make a
difference!

Condition for OT extension

21

X1

X0

⊕

c
…
c

=

Problem for active security!

X
bU

OT Extension, Pictorially

22

k
1-2

COTs
k

k

n n=poly(k)

“Correlated OTs”

c

X1 ⊕ b1˙c
X1

b1

OT Extension, Pictorially

U

⊕

X

b

=

c

" ⊗ c %& = "% ⋅ c&

OT Extension, Turn your head!

U

⊕

X

=

X U

=⊕

b c

b
c

X
bU

OT Extension, Pictorially

25

k
1-2

COTs
k

k

n n=poly(k)

c

X

b
U

OT Extension, Pictorially

26

n
1-2

COTs

n

k

n

k

c

Break the correlation!

27
U

b
b

b

⊕

= H

b

Y
0

U= H

Y
1

V X= H

Breaking the correlation

• Using a correlation robust hash function H s.t.
1. {a0, …, an, H(a0+ r), …, H(an+ r)} // (ai’s, r random)
2. {a0, …, an, b0, …, bn} // (ai’s,bi’s random)

are computationally indistinguishable

28

OT Extension, Pictorially

29

V
k

Y
0

k

n

n=
poly(k)c

n

1-2 ROTs

Y
1

Yc1,1

Y
0,1

Y
1,1

c1

Recap
0. Strech k OTs from k- to poly(k)=n-bitlong strings

1. Send correction for each pair of messages xi
0,xi

1

s.t., xi
0 ⊕ xi

1 = c

2. Turn your head (S/R swap roles)

3. The bits of c are the new choice bits

4. Break the correlation: yj
0=H(uj), yj

1=H(uj⊕ b)

• Not secure against active adversaries
30

Recent Results in OT Extension
(see references at the end)

• Active secure OT
extension ”essentially” as
efficient as passive OT.
– Asharov et al.
– Keller et al.

• The columns of the matrix

• Can be seen as a simple
replica encoding of a bit.
Better encodings can be
used for better efficiency,
see e.g.,
– Kolesnikov et al.
– Cascudo et al.

c
…
c

0

0

0

1

1

1

Part 2: How to multiply

• Warmup: Useful OT Properties
• OT Extension
• Multiplication Protocols
– OT-based
– Pailler Encryption
– Noisy Encodings

Oblivious
Linear Evaluation

Receiver Sender

OLE
b

ab + c

(a,c)

Not bits anymore!
Could be values in a

ring or a field

Arithmetic equivalent
of OT

n OTs = OLE
(Gilboa)

1-2 OT

bi

di=a(2ibi) + ci

(ci,a2i+ci)

Receiver Sender
b=(b0,b1,…,bn-1) a (n bit number)

c0+…+cn-1=c

d0+…+dn-1=a(b0+2b1+…+2n-1bn-1)+(c0+…+cn-1)=ab+c

Part 2: How to multiply

• Warmup: Useful OT Properties
• OT Extension
• Multiplication Protocols
– OT-based
– Pailler Encryption
– Noisy Encodings

Additive (or Linear)
Homomorphic Encryption

• Pailler is a AHE whose
security is related to the
hardness of factoring

• Still an important tool in the
protocol designer toolbox!

(Simplified) Pailler

• Public key:
– N = pq, with |p|=|q|

• Secret key:
– Φ(N)=(p-1)(q-1)

• Note that due to choice of
parameters gcd(Φ(N),N)=1

• Pailler works mod N2

ℤ*N^2 =ℤN⨉ ℤ*N

(Simplified) Pailler

• (c ∈ ℤN^2) ß Encrypt(m ∈ ℤN; r ∈ ℤ*
N)

– Output c = α(m) · β(r) mod N2

• Where:
– α(m) takes care of the homomorphism
– β(r) takes care of security

α(m) – For homomorphism

• α(m ∈ ℤN) = (1+mN) mod N2

• For decryption:
– α(m) efficiently invertible
– α-1(y ∈ ℤN2) = y-1 / N // Integer division

• For homomorphism:
– α(m1) · α(m2) = α(m1 + m2 mod N)
– Exercise: check this!

β(r) – For security

• β(r ∈ ℤN
*) = rN mod N2

• For decryption:
– β(r)Φ(N)=1 mod N2

• Assumption for security
– {β(r) | rßℤN

*} ≈ {sßℤN^2
*}

• For homomorphism
– β(r1) · β(r2) = β(r1 · r2)

Φ(N2)=N · Φ(N)
and

xΦ(N^2)=1 mod N2

for all x in ℤ N2*

Putting Things Together

• Security:
– Encpk(m;r) = α(m) · β(r) // r unif. in ℤN

*

≈ α(m) · s // s unif. in ℤN2
*

≡ t // t unif. in ℤN2
*

comp.ind. from

distributed
identically to

Putting Things Together

• Homomorphism:
– Encpk(m1;r1) · Encpk(m2;r2)

= α(m1) · β(r1) · α(m2) · β(r2)

= α(m1 + m2 mod N) · β(r1 · r2)

= Encpk(m1 + m2 mod N; r1 · r2)

Putting Things Together - Decryption

• Dec(sk,c):
1. t1 = cΦ(N) mod N2

2. t2 = α-1(t1) mod N

3. t3 = t2 · Φ(N)-1 mod N

4. Output m=t3

• Correctness
1. t1 = α(m)Φ(N) · β(r)Φ(N) =

= α(m · Φ(N)) · 1
2. t2 = α-1(α(m · Φ(N))) =

= m · Φ(N)
3. t3 = m · Φ(N) · Φ(N)-1 =

= m

How to Multiply with
Pailler

Receiver Sender

pk, B = Encpk(b;r)

D = ca · Encpk(c;s)

d=Decsk (D)=ab+c mod N

How to Multiply with
Pailler

Receiver Sender

pk, B = Encpk(b;r)

D = ca · Encpk(c;s)

d=Decsk (D)=ab+c mod N

Privacy for Alice:
B ≈ Encpk(0;r)

due to IND-CPA of Pailler

Privacy for Bob?
Alice knows the secret key! But due

to homomorphism of Pailler
{sk,D}≈{sk,Encpk(ab+c;t)}

Part 2: How to multiply

• Warmup: Useful OT Properties
• OT Extension
• Multiplication Protocols
– OT-based
– Pailler Encryption
– Noisy Encodings

OLE from Noisy Encodings
(Ishai et al. [IPS09], generalizing [NP06])

Noisy Encodings
• Encode:
Takes ! ∈ #$, outputs a set % and encoding & ∈ #'

• Eval:
Takes (, * ∈ #$ and the encoding &, outputs an encoding +
• Decode:
Takes an encoding + and the set %, outputs , = !(+ *

Slide by Satrajit Gosh

0

" 1 " 2 … … " &… …'(

Encode(a)
1. Pick a polynomial " of degree) − 1 with " 0 = (,

evaluate at & = 4) positions 1…n

0 -. -/ 0 -0-

A 1 -′. … … " &… …2

2. Pick a random error vector - with 3 = 2) + 1
non-zero elements, 5 = 6 76 = 8

3. Add the two together

0

+

Assumption - Pseudorandomness
9 ← ;<=>?7 @ ≡ B<

Slide by Satrajit Gosh

OLE from Noisy Encodings
m=1 for simplicity

! 1 #$ … … ! &… …

'(1) '(2) … … '(2)… …+,

Eval(v,b,r)
1. Pick a polynomial ' of degree - − 1

with ' 0 = ,, evaluate at & = 4- positions 1…&

2

3 1 4#$ … … 3 &… …5

3. +++

×

8̃

2. Pick a polynomial 9 of degree 2- − 2 with : 0 = 8,
evaluate at & = 4- positions 1…n

+
: 1 : 2 … … : &… …

Slide by Satrajit Gosh

OLE from Noisy Encodings

! 1#

Decode(w,L)
1. Ignore all $ ∉ &

'() … … ! +… …

2. Interpolate the polynomial !(-) and
output ! 0 = 12 + 4

'() … …

! 1 ! 2 … … ! +… …6

Slide by Satrajit Gosh

OLE from Noisy Encodings

!
" -OT

#
$|&

$

',) ∈ +

$ ← -./0(., ',))

/ ∈ +

., # ← -3)456(/)

7 ← 86)456 $|& , # (= /' +))

Slide by Satrajit Gosh

Constant overhead per multiplication!*
*using packed secret sharing

OLE from Noisy Encodings

Summary

• OT properties
– Symmetric
– ROT and OT equivalence
– OT can be stretched

• OT extension
– Passive security

• Multiplication protocols
– Gilboa (OT-based)

• #OTs = #bits
• (works on any ring)

– AHE (Pailler)

– Noisy Encoding
• (works for fields)
• #OTs independent on

bitlength

Primary References
• Cryptographic Computing, lecture notes,

http://orlandi.dk/crycom (with theory and programming
exercises)

• Extending Oblivious Transfers Efficiently (Ishai et al.)
• A Generalisation, a Simplification and Some Applications of

Paillier's Probabilistic Public-Key System (Damgård et al.)
• Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes (Paillier)
• Secure Arithmetic Computation with No Honest Majority

(Ishai et al.)
• Two Party RSA Key Generation (Gilboa)
• Extending Oblivious Transfers Efficiently - How to get

Robustness Almost for Free (Nielsen)

http://orlandi.dk/crycom

Other References
• Oblivious Polynomial Evaluation (Naor et al.)
• More Efficient Oblivious Transfer Extensions with Security for Malicious

Adversaries (Asharov et al.)
• Actively Secure OT Extension with Optimal Overhead (Keller et al.)
• Improved OT Extension for Transferring Short Secrets (Kolesnikov et al.)
• Efficient Batched Oblivious PRF with Applications to Private Set

Intersection (Kolesnikov et al.)
• Actively Secure OT-Extension from q-ary Linear Codes (Cascudo et al.)
• Maliciously Secure Oblivious Linear Function Evaluation with Constant

Overhead (Ghosh et al.)
• MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious

Transfer (Keller et al.)
• A New Approach to Practical Active-Secure Two-Party Computation

(Nielsen et al.)

