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Hospitals and Insurances

0 Problem: Sick people forget

Syge mister millioner af kroner ) :
to claim compensations from

Af CHARLOTTE BEDER

Offentliggjort 19.02.09 kl. 08:39 .
’ insurance
Danskerne gar arligt glip af 80 mio. kr., fordi de ikke aner, at de er forsikret
ved kritisk sygdom.
Hundredvis af alvorligt syge danskere gar
hvert ar glip af millioner af kroner, fordi de O Soluﬁon: Insurances and
" ikke har overblik over deres . . .
| “’,»} forsikringsdaskning. hospitals could periodically
1 Derfor kontakter de ikke deres pensions- compare their data to find
Brystundersegelse. Foto: Colourbox eller forsikringsselskab, nar de bliver ramt
af kraeft, blodpropper eller anden kritisk and help these people
Relaterede artikler sygdom. Og sa far de aldrig den check pa
Nyt system sikrer syge 80 mio. | typisk mellem 50.000 og 200.000 kr., som
kr. de har ret til, lyder det fra forsikrings- og
e et inne | T ionSbECRE. 0 Privacy Issve: insurance and

medical records are sensitive

. , L datal No other information
»Forudsastningen er, at systemet skrues sammen pa en made, sa selskaberne

ikke far andre oplysninger om kundeme, end de ber fa. For det enkelte individ ma than what is SfriCﬂY necessary
ikke miste kontrollen over egne helbredsoplysninger,« siger jurist Lars Kofod. must be disclosed!




MPC Goes Live (2008)

Bogetoft et al.
“Multiparty Computation Goes Live”

* January 2008

* Problem: determine market price
of sugar beets contracts

e 1200 farmers
* Computation: 30 minutes
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* Estonian study on
student dropout
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Last decade: commercial interest
and social value of MPC
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* Boston women
workforce councile,
study on wage gap
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Figure 1: Illustration of a deployment of the protocol implementation for two participants.




Secure Computation
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Part 1: Correlated Randomness and
Arithmetic Circuits

* Warmup: One-Time Truth Tables

e Arithmetic Black Box and Evaluating Circuits
with Beaver’s trick

* Simple Unconditionally Secure Protocols
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“The simplest 2PC protocol ever”
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“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

1) Write the truth table of the function F
you want to compute
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“The simplest 2PC protocol ever” OTTT

(Preprocessing phase)
2) Pick random (r, s), rotate rows and columns

s=3

. >
0 1 2 3
0 |1 4 4 1
_ 1 |2 2 2 3

r=1
2 |0 0 4 3
3 |0 0 4 1
N 16



“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

3) Secret share the truth table i.e.,

T]

Pick at random, and let
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“The simpl “Privacy™;
inputs masked w/uniform

random values

T

v_

z,=T2[u,v]

Correctness:
by construction

output f(x,y) = T1[u,v] + z,

18



“The simplest 2F
Simulated view, given x and

f(x,y) (but not y)

Uu=x-+r

v (random)

72 = f(x,y) - T1u]

output f(x,y) = T1[u,v] + z,

19



What about active security?

U=X-Tr
vVv=Yy+s
z, = T2[u,v]

output f(x,y) = T1[u,v] + z,

20



What about active security?

21



s this cheating?

*v=y+s+tel =(ytel)+s=y +s

— Input substitution, not cheating according
to the definition!

* M2[u,v] + e2
— Changes output to z’ = f(x,y) + e2
— Example: f(x,y)=1 iff x=y (e.g. pwd check)
—e2=1 the output is 1T whp (login without pwd!)

* Clearly breach of security!



Force Bob to send the right value

* Problem: Bob can send the wrong shares

* Solution: use MACs
— e.g. m=ax+b with (a,b) € F (e.g., F=7, with p>2* prime)

m=ax+b

Abort if mZax’+b



OTTT+MAC

u=x-+r
>
V=Y +s
<€
T2[u,v], M[u,V]

<€

If (M[u,v]=A[u,v]*T2[u,v]+B[u,v]) . :
output £(x,y) = T1{uv] + T2[u,v] Statistical security
else vs. malicious Bob

abort w.p. 1-2




“The simplest 2PC protocol ever” OTTT

* Optimal communication complexity ©
 Storage exponential in input size ®

=» Represent function using circuit
instead of truth table!

25



Part 1: Correlated Randomness and
Arithmetic Circuits

* Arithmetic Black Box and Evaluating Circuits
with Beaver’s trick

* Simple Unconditionally Secure Protocols



Circuit based computation




What kind of circuit?

* Boolean
— Addition & Multiplication modulo 2 (XOR, AND)

* Arithmetic: which modulo?
—In a field (Z,, GF(2¥))?
— Determined by Public Key (e.g., Paillier, LWE, ...)
— Arbitrary? (e.g., modulo 232)



The Arithmetic Black Box (ABB)

* A reactive functionality which allows to
manipulate secret values

e Often a good abstraction:

— if you want to implement some algorithm in MPC,
you might not care too much about how
operation are implemented, just what the
“interface” is.



ABB: Basic Commands

[X] € Input(P;, x)

— Party P, inputs a secret value x, all other parties get a
"handle/pointer” to [x]

x < Open(P;, [x])

— If all parties agree, party P, learns the secret value
contained in [X]

[z] <Add([x],[y]) // or [z]=[x]+[y]

— If all parties agree, a new handle [z] is created such that
Z=X+Y

— [z]<Add(c,[x]), [zZ]<Mul(c,[x]) easy from Add
[zZ]€Mul([x],[y]) // or [z]=[x]*[y]

 If all parties agree, a new handle is created such that z=x*y



ABB: Advanced (Efficient) Commands

[r] € Rand()
— Generate a random handle for r

— Could have been implemented by [r,]< Input(P,r;) and
[r] < [ri]+...+[r,]

b < IsZero([x])

— Could be implemented by [z]=[x]*[r] for random r, then open z and
check if = 0.

[X],...,[x,] € BitsOf([x])
— Useful and typically expensive

Exercise: how would you implement these?
— [b] € IsZero([x]) // b=1 iff x=0

— b €< Equality([x],[y]) // b=1 iff x=y

— b €< IsBit([x]) // b=1 iff x€{0,1}



B

) Beaver’s random
triples trick

=
[z] €Mul([x],[y]):
1. ([al,[bl,[c])<RandMul()

Creates random tuple such that c=a*b

2. e=Open([a]+[x]) — :
3. d=Open([b]+[y]) 4{ e,d are “one-time-pad” encryptions J

of xand yusingaandb

4. Compute [z] = [c] + e[y] + d[x] - ed
ab + (ay+xy) + (bx+xy) - (ab+ay+bx+xy)



Beaver and Preprocessing
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Implementing the Arithmetic Black Box

* How to implement the basic commands?
— Input, Add, Mul/RandMul

* [n the remaining time:

— Additive Secret Sharing
* Passive Security
* Active Security

— Replicated Secret Sharing
— Shamir Secret Sharing



Invariant

* For each wire x in the circuit we have
— [x] := (x4, X5) // read “xin a box”
— Where Alice holds x;
— Bob holds x,
— Such that x;+x,=x

* Notation overload:
— xis both the r-value and the |-value of x
— use n(x) for name of x and v(x) for value of x when in doubit.
— Then [n(x)] = (x1,%5) such that x;+x,=v(x)



M

Circuit Evaluation

1) [x] € Input(A,x):
— chooses random x, and send it to Bob
—  set x;=x+x, mod M

Il(

Alice only sends a random value! “Clearly” secure

2) z € Open(A,[z]):

— Bobsends z,
— Alice outputs z=z,+z7,

Ill

Alice should learn z anyway! “Clearly” secure



e Circuit Evaluation

2) [z]< Add([x],[y])
— Alice computes z,=x; +Vy,
— Bob computes Z,= Xy Y,

No interaction! “Clearly” secure

“for free” : only a local addition!



B

Circuit Evaluation

=

2a) [z] €< Mul(c,[x])
— Alice computes  z,=c*x,
— Bob computes Z,=C*X,

2¢c) [z]€ Add(c,[x])
— Alice computes  z,=c+x,

— Bob computes Z5 = X,



-
‘.“ (Online phase)

3) Multiplication?
How to compute [z]=[xy] ?

Circuit Evaluation

How do we compute this?

Alice, Bob should compute
29+ 2, = (X%, (y1+Y5)

Alice can compute
this

Bob can compute this




RandMul() with Trusted Dealer

2 Pick random
a1,3,,b,,0,,¢
R
and

¢, = (a;+a,)(by+b,)- ¢

a,by,cy a,,b,,c,




Implementing the Arithmetic Black Box

* How to implement the basic commands?
— Input, Add, Mul/RandMul

* [n the remaining time:

— Additive Secret Sharing
* Passive Security
* Active Security

— Replicated Secret Sharing
— Shamir Secret Sharing



Secure Computation
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Active Security?

* “Privacy?”

— even a malicious Bob does not learn anything ©

* “Correctness?”

— a corrupted Bob can change his share during any
“Open” (both final result or during multiplication)
leading the final output to be incorrect ®



Problem
2) z € Open(A,[z]):

— Bobsends z,
— Alice outputs z=z,+7,



Authenticated Shares

* Passive share: [x] means

— Alice has x,, Bob has x,,

X1 +X5 = X
* MAC on Share [x] (BeDOZa, TinyOT, ...):
— [x] plus:
— Bob has a MAC key (A,,<,), Alice has a MAC M, :
Mi=A, x4+

— (Symmetric for Bob)



Authenticated Shares

* Is the representation [x] still linear?
Yes, if A, A, are “global” keys

[x] = .XI,(Al, M (x)), (A, M, (x)))
Tyl = ([v], (A, M(y)), (B, M, (y)))
[z] =([x+y]

(A4, M, (x) + My(y)),

(,, , M, (x) + M,(y)))



Better MACs for MPC

SPDZ:

— Problem: with MAC on Share you need to store a MAC for every
other party!

— Solution: MAC value directly instead

— [x] = ([x], IM(x)], [A]) with M(x) = Ax (A is global)

MiniMAC:

— Problem: MAC must be large for unpredictability. If working in
small field, need to have multiple MACs per value.

— Solution: Compute MAC on vector of bits instead

SPDZ2K:
— Problem: MACs don’t work modulo power of 2’s (not a field).
— Solution: compute MAC modulo 2**



Implementing the Arithmetic Black Box

* How to implement the basic commands?
— Input, Add, Mul/RandMul

* [n the remaining time:

— Additive Secret Sharing
* Passive Security
* Active Security

— Replicated Secret Sharing
— Shamir Secret Sharing



Implementing the Arithmetic Black Box

* How to implement the basic commands?
— Input, Add, Mul/RandMul

* [n the remaining time:

— Additive Secret Sharing
* Passive Security
* Active Security

— Replicated Secret Sharing
— Shamir Secret Sharing



n=3 parties

t<1 corruptions RepllcatEd SECFEt Sharlng

* [x] means: * [x] € Input(P;x)

— X = X;+X,+%; where — P, picks random shares

— P, knows (x4,%,) and distributes them.

— P, knows (x,,x5) * x € Open(P;[x])

— P3 knows (x3,x) — Everyone sends their
shares to P; who
reconstructs.

* [x] < Add([x],[y])
No party alone can — Everyone locally adds

reconstruct the secret their shares.




n=3 parties

t<1 corruptions RepllcatEd Secret Sharlng

* [z]=Mul([x],ly])

Goal, compute random such that

Z = (X H64Hx) Y1+, 4X5)




n=3 parties

t<1 corruptions Repllcated SecrEt Sharlng

* [z]=Mul([x],[y])
— P, computes z; = x,y; + X,y + X1V,
* Symmetric for P,, P, ...
—[z,]€ Input(P,,z,)

* Symmetric for P,, P, ...

—[z]=[z,]+[2,]+]z;]



Implementing the Arithmetic Black Box

* How to implement the basic commands?
— Input, Add, Mul/RandMul

* [n the remaining time:

— Additive Secret Sharing
* Passive Security
* Active Security

— Replicated Secret Sharing
— Shamir Secret Sharing



Shamir vs. Replicated Secret Sharing

e Share size:
— Shamir is optimal (size of share = size of secret)

— RSS scales horribly with the number of parties

* Generality:
— Shamir works only in fields
— RSS works in any ring



n=3 parties

t<1 corruptions Sham|r Secret Sha rlng

Computations in field

e [x] means: 4
— x=p(0) where
— p(a) = x5+ x,&
— P, knows p(1)
— P, knows p(2)
— P5 knows p(3)




n=3 parties

t<1 corruptions Shamir SeCFEt Sharlng

Computations in field

* [x] means: 4
— x=p(0) where
— pla) = xg+ X,
— P, knows p(1)
— P, knows p(2)
— P knows p(3)

No party alone can

reconstruct the secret




n=3 parties

t<1 corruptions Shamir SeCFEt Sharlng

Computations in field

* [x] means: 4
— x=p(0) where
— pla) = xg+ X,
— P, knows p(1)
— P, knows p(2)

— P knows p(3)

Any two parties can ’ ’ —
reconstruct x 1 2 3




Reconstruction - Details

* Given p(1), p(2) one can * |nour case
reconstruct p(x) as &,(a)= (o -2)(1-2)*
6,(a)= (a -1)(2-1)*
p(at)=0,(a)p(1)+6,(ax)p(2)
* §(a)is apolys.t. * To reconstruct secret
- enough to compute
6,(i)=1 p(0)=06,(0)p(1)+5,(0)p(2)
5,(j)=0 for all j in the _
. reconstruction set * (Generalizes to any other

(except i) degree)



n=3 parties

t<1 corruptions Sham|r Secret Sha rlng

Computations in field

e [z]=Add([x],[y]) means: 4

— x=p(0), y=q(0)
— p(a) = Xo+ X1

— qla) =yg+ v, ‘\.\.\.\

— P, computes p(1)+q(1)
— P, computes p(2)+q(2)
— P; computes p(3)+q(3) X




n=3 parties

t<1 corruptions Sham|r Secret Sha rlng

Computations in field

[z]=Mul([x],[y]) (part 1): 4
— x=p(0), y=q(0) ‘
— p(a) = x5+ X,
— g(a) =yt y,«

— P, computes t(1)=p(1)*q(1) \
— P, computes t(2)=p(2)*q(2) y
— P, computes t(3)=p(3)*q(3)

t(0)=xy (as desired) y
But t has the wrong degree!

t(a) =ty + tyo + t,a2



n=3 parties

t<1 corruptions Sham|r Secret Sha rlng

Computations in field

* [z]=Mul([x],ly]) (part 2):
— [z,]€ Input(P,t(1))
— Symmetric for P,, P,

— Then reconstructi.e.

[£(0)]=06,[t(1)]+6,[t(2)]+ &,[t(3)] \

— But t(0)=z, so we’re done! \

Exercise: find the the values 6,,56,,05 >
(Hint, the degree is different this time!) 1 5 3




Recap

* Simple protocols with Coming up next:
trusted dealer * How to get rid of the
— OTTT trusted dealer?
— Circuit evaluation with _ Protocols for secure
random triples multiplication
— Active security via — OT and OT extension

information theoretic MACs
e Simple protocols for 3
parties, 1 corruption

— Replicated Secret Sharing
— Shamir Secret Sharing

e Efficiency of 2PC based on
garbled circuits
— Garbling techniques
— Techniques for Active Security

e If time (and patience) allows
— Anonymity in
Cryptocurrencies



Primary References

Cryptographic Computing, lecture notes,
http://orlandi.dk/crycom (with theory and programming
exercises)

On the Power of Correlated Randomness in Secure
Computation (Ishai et al.)

Semi-homomorphic Encryption and Multiparty
Computation (Bendlin et al.)

Secure multi-party computation made simple (Maurer)

A Full Proof of the BGW Protocol for Perfectly-Secure
Multiparty Computation (Asharov et al.)

A Framework for Constructing Fast MPC over Arithmetic
Circuits with Malicious Adversaries and an Honest-Majority
(Lindell et al.)



http://orlandi.dk/crycom

Other References

A New Approach to Practical Active-Secure Two-Party Computation (Nielsen et al.)

Web-based Multi-Party Computation with Application to Anonymous Aggregate
Compensation Analytics (Lapets et al.)

Multiparty Computation Goes Live (Bogetoft et al.)

Students and Taxes: a Privacy-Preserving Social Study Using Secure Computation
(Bogdanov et al.)

Efficient Multiparty Protocols Using Circuit Randomization (Beaver)
How to Share a Secret (Shamir)

Chaum et al. (Multiparty Unconditionally Secure Protocols)

SPDZ2k: Efficient MPC mod 2k for Dishonest Majority (Cramer et al.)

Constant-Overhead Secure Computation of Boolean Circuits using Preprocessing
(Damgard et al.)

Multiparty Computation from Somewhat Homomorphic Encryption (Damgard et
al.)

Primitives and applications for multi-party computation (Toft)

Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation (Ben-Or et al.)



