

Fun with Java™ Technology on Lego® Mindstorms®

Roger Glassey University of California, Berkeley

Andy Shaw Sun Microsystems

Lego Mindstorms – A little history

- > Originally launched 1998
 - The Lego Mindstorms Robot Invention System (RCX "Brick")
 - Simple visual programming system
 - Reverse engineered
- > Major update 2006
 - Lego Mindstorms NXT
 - Open source hardware & firmware
 - Lego Mindstorms NXT V2.0 Aug 2009

Lego NXT

- > Atmel Arm7TDMI + Atmel ATMega 48
 - 64Kb Ram
 - 256Kb Flash
- > 3 Motor ports, PWM + Tachometers
- > 4 Sensor ports
 - Analogue/Digital I2C
 - Standard: Ultrasonic, Touch, Light, Sound
 - Additional: Lots!
- > Bluetooth, USB, RS485
- > LCD 100x64 display/PDM sound output

Java on the NXT - leJOS

- > Evolved from TinyVM/leJOS for the RCX: 10Kb JVM!
- > Firmware 53Kb
 - Threads: pre-emptive, priority based, 2ms time slice
 - Interpreter: Fast table based dispatch
 - GC: concurrent, very low pause time
 - Native methods: I2C, Bluetooth, USB, Motor, LCD, Sound, Flash, RS485
- > Language
 - Most 1.5+ features iterators, generics, enums, nested classes, etc.
 - longs, floats, doubles, arrays, strings etc.

Java on the NXT - leJOS NXJ

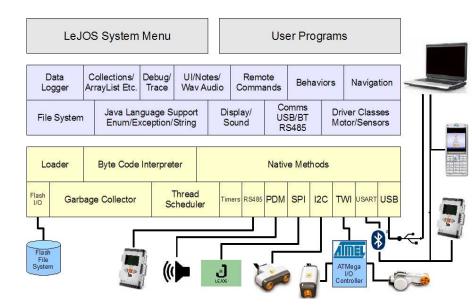
> Classes

- classes.jar: 300+ classes
- Support for more than 36 sensor types.
- Unified communications for Bluetooth/USB/RS485
- Sophisticated motor control
- Robotics: Subsumption, navigation, localization
- Flash based file system
- Data logging
- Remote control Lego command protocol
- Remote console, basic debugging

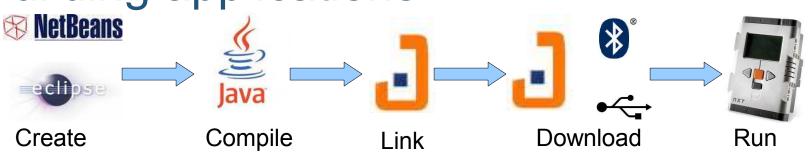
Java on the NXT – Host tools/classes

- > Support for Windows/Linux/Mac
- > Tools
 - Firmware upload, program upload, linker
 - Browsers: files, data logging, remote console
- > Plugins for NetBeans/Eclipse
- > Classes
 - Communications: Bluetooth, USB
 - Remote control: Lego Control Protocol
 - Over 100 classes
- > Mobile devices, Java ME

LeJOS Architecture


LeJOS System Menu						User Programs							1	
		Collections/ rrayList Etc.	Debug/ Trace	UI/No Wav A		Remo Comma		Behavi		s I	Navigation		V	- The second
File System		Java Language Support Enum/Exception/String				isplay/ Sound	omms SB/BT S485		Driver Classes Motor/Sensors				• • • 2 • •	
Loade	er	Byte Code Interpreter				Native Methods								
Flash I/O	Garbage Collector			Thread Scheduler		mers RS485	PDM	SPI	I2C	тwi	USART	USB		
Flash File System	un.				LEJOS	E	0]_	ATMe I/O Contro		(°		T T

Architecture


> Firmware v Java

- Java whenever possible
- Easier to change
- More team members
- > Enabled by firmware
 - Priority based threading
 - GC low pause time (< 1ms)
 - Allows many real time functions in Java
 - Motor control PID tasks
 - Sensor processing
 - Communications

Building applications

- > Standard tools to create and compile
 - NetBeans, Eclipse, vi, emacs!
 - Javac
- > Linker
 - No class loader
 - Combines application classes with classes.jar
 - Eliminates unused code (50%-60% reduction)
 - Creates image that can be executed from flash

Alpha Rex

- > The Mindstorms "poster robot"
- Rex is "helping out" by greeting delegates at JavaOne
 - Waits looking around
 - Pays attention when approached
 - Walks forwards to meet
 - Reads the badge
 - Greets the delegate

Demonstration

- > Let's see Rex in action...
 - View a video by clicking <u>here</u>

Java<mark>One</mark>

Main Components

Head

- Ultrasonic sensor "eyes": Distance
 Body
 - Single motor moves head/arms
 - Right Arm RFID Sensor
- Left Arm Light Sensor "torch"
 Legs
 - Hip Motor rocks side to side
 - Leg Motor moves legs

Java<mark>One</mark>

Additional Components

On/Off button

- Touch sensor starts/stops Rex
 Sound
- Plays wav files greeting
 LCD
 - Displays status

Bluetooth

- Connects to remote console
 - Displays detailed status
 - Shows LCD screen

Behavior model

Java<mark>One</mark>

Let's look a little deeper

- > So what is actually happening...
 - Look at the Remote Console
 - See a video by clicking <u>here</u>
 - Look at the code
 - The code is available here

LejosNXJ

in Engineering Education Roger Glassey Professor, IE & OR

IEOR140: Introduction to mobile robots

- Course Objectives: Develop engineering skills

 Analysis and design of moderately complex
 systems
 - interactions between the hardware and software design.
 - Effective project team membership
 - Report writing

Course structure

- > Teams of 2 or 3
- > Weekly project
- Translate performance specifications into hardware and software design.
- Project based learning plus interactive web based individual Java instruction.
- > Class size: 20 30
- > 3rd or 4th year engineering students

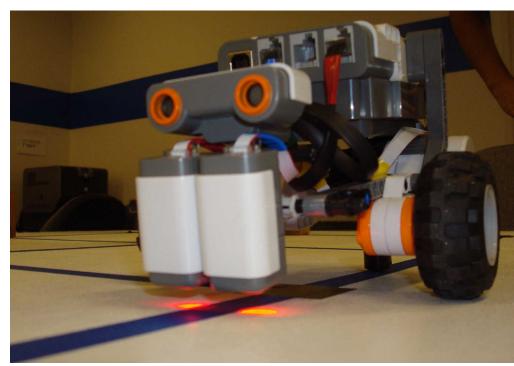
() Java

JavaOne Projects

- > Start simply
- Build a robot to trace a simple shape
- Hardware: robot with 2 wheels, independently controlled
- > Square:
 - Repeat 4 times:
 - travel in straight line
 - 90 degree turn


```
import lejos.nxt.*;
public class SquareBot
{
    private void square(int length)
    {
        for (int i = 0; i < 4; i++)
        {
            Motor.A.rotate(degPerDistance * length, true);
            Motor.C.rotate(degPerDistance * length);
            Motor.A.rotate(-90 * turnRatio, true);
            Motor.C.rotate(90 * turnRatio);
        }
}</pre>
```


Demonstration

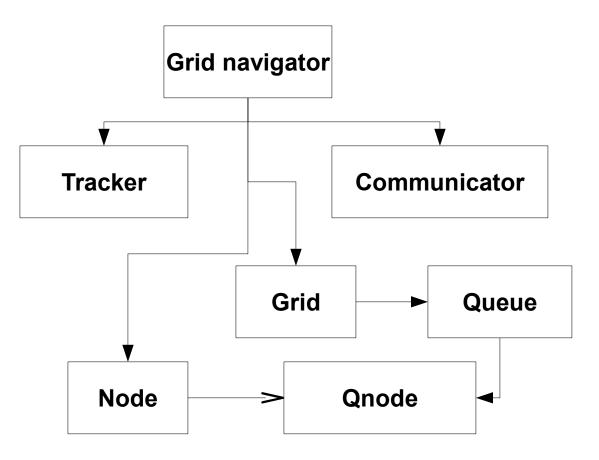

- > Let's see the the robot in action
 - Sorry we don't have a video of this part of the demo. But I'm sure you can work it out!

Grid Navigation

- Prototype of materials handling robot
- Navigate a rectangular grid
 - Line follower
- Detect obstacles adaptive path planning
- Remote control and mapping via Bluetooth
- > Sensors:
 - 2 Light sensors
 - Ultrasonic sensor

Java<mark>One</mark>

Grid navigation tasks


- Accept destination
 - Go to destination 1.Detect obstacle
 - 2.Decide on direction of turn - Dijkstra's algorithm
 - 3.Execute turn
 - 4.Travel to next intersection
 - 5.Repeat 1 4 until at destination

JavaOne[®]

Grid Navigation Class Dependencies

Demonstration

- > Let's see the Grid Navigator in action
 - You can view a video by clicking <u>here</u>

Java<mark>One</mark>

Follow me + Voice control

- Simple co-operation between robots.
- > First robot has sensors
 - Obstacle detection
 - Audio Input
- > Linked to second via Bluetooth
- > Second robot follows commands from first

Demonstration

- > Let's see the two robots in action
 - See a video by clicking <u>here</u>

Conclusions

- Decomposing robot performance specifications into tasks and sub-tasks can result in a clean, modular design of classes and methods.
- Many students report that this course, while requiring more work than most, is also more fun than most.

More information

- > http://lejos.sourceforge.net/
- > http://mindstorms.lego.com/

JavaOne[®] Thank You

