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Motivation Networks — A Biological Model for Autonomous Agent Control

Content Areas: cognitive modelling, multiagent systems, simulation

Abstract

In this paper, we introduce a biologically inspired
model for reasoning in autonomous agents that we
call motivation networks. The main idea of this
approach is to imitate fundamental mechanisms of
animal behaviour. When animals interact with their
environment, they constantly have to make a
choice between different behavioural patterns that
they could perform (such as feeding or resting).
Their decisions are based on temporary priorities
regarding different behavioural drives, which are
determined by functional relationships with inputs
from sensors and internal states. The resulting
feedback interaction between decision-making,
internal states, and stimuli creates behaviour in
respect to time and space, which is adapted to the
demands of an ecological niche. For this
mechanism, we designed a formal model, which we
used as an agent controller for an adaptive
multiagent system. In the present investigation, we
tested the use of motivation networks in a
biological context by a simulation of group feeding
behaviour in house sparrows. The results indicated
a great potential of this approach for controlling
autonomous agents and verification of biological
_hypotheses.

1 Introduction

Effective decision-making and problem solving are complex
mechanisms that are very difficult to accomplish with
machines when in a real world context. In traditional Al,
one has to face problems such as uncertainty and
incompleteness of the symbolic knowledge representation,
which violates the closed-world assumption [Rich & Knight
19917. In 'new' AI, this problem is avoided by a
subsymbolic, adaptive representation based on biologically
motivated models such as artificial neural networks (ANN)
or evolutionary algorithms (EA). Indeed, ANNs and EAs
turned out to be of great use for a variety of problems such
as pattern classification or low-level motor-sensory control
of robots. However, the use of neural network models for
high-level planning and temporal reasoning is rather

controversial [Rich & Knight 1991], though several recent
advances are promising [Cox Hayslip et al. 1990], [Chappell
& Taylor 1993], [Briscoe & Caelli 1997]. Interestingly, in
nature, even plants and bacteria are able to behave in a non-
trivial way without a central nervous system, and to evolve
sophisticated mechanisms for processes like reproduction,
feeding, respiration and migration. In this investigation, we
have tried to improve machine reasoning by simulating
mechanisms of animal decision-making.

The behaviour of animals is based on motivation and
decision-making in respect to their genetic background and
individual life history. Constantly shifting priorities lead the
animal to 'decide’ how to act in a particular situation. In fact,
it has to weigh up all sorts of internal (e.g. metabolism) and
external (e.g. predator avoidance, food availability) stimuli,
through a decision-making process and give priority to one
behaviour over another. The internal state of the animal,
which is the net result of stimuli arising both inside and
outside its body, constitutes its 'motivation' [Manning &
Dawkins 1998].

Thus, animal behaviour is not solely determined by neural
networks, but made of feedback interactions between
network, organism and environment.

Typically, the motivational state decides about the

selection and execution of entire action sequence patterns as
for instance nest building, digging, feeding, and others. For
instance, the internal stimulus of a decreasing metabolic
budget over time is mapped to an increase of hunger - the
motivation for feeding (figure 1a). However, foraging
behaviour will not be performed until its assigned
motivation dominates all other needs. Successful food intake
lowers the hunger stimulus, thus lowering the motivation for
further foraging until the agent stops feeding (dashed lines
in figure 1a). Hence, this feedback mechanism regulates the
energy budget of the animal. However, other needs can
interfere with this process when they get urgent, such as
daily resting routines (figure 1b) or short-term escape
behaviour when an animal gets threatened by a predator
(figure 1c).
In this context, time is a very important factor, because (i)
behaviour is composed by sequences of subactions
[Manning & Dawkins 1998], (ii) internal states and
environmental conditions change, and (iii) various




KRINK, T. in prep. for Journal of Theoretical Biology

(a) Metabolic consumption Motivation for feeding

80 ‘ Feeding

EAN N

w0l ST {
. . l

|

1

30

Energy (%)
Motivation
o
P
7

Feeding

T T T i
0 5 10 15 20 25 a0

Time (hours) Time (hours)

(b) Circadian clock Motivation for resting

Motivation
o
b

=}
o
.
o
® -
o
5
2]
.
a4
[N
S
ny
N
n
5

Time (hours}

(c) Predator avoidance

Motivation for running

Motivation
o
o

;
|
|
_i

Y 2“"7'.““] T T T T
o 1 2 3
Time (minutes)

Figure 1: Decision-making by shifting-priorities

This figure shows internal and external variables which
simultaneously act on motivation levels for specific
sequences of action. (a) Regulation of the metabolic
consumption: Mapping from the energy budget to the
motivation for feeding. The dashed line indicates the effect
of feeding; the light grey line shows how these curves vary
due to seasonal changes; (b) periodic triggering of resting
periods by circadian clocks; (c) immediate predator
avoidance, which causes a shift in priorities within seconds.

proesses require synchronisation [Campbell et al. 1997],
[Hewitt & Butlin 1997].

Many environmental factors such as temperature and light
conditions change in a periodic manner and often serve as
external clocks, which trigger behaviour in combination
with internal periodic processes [Campbell et al. 1997].
Moreover, these clocks act on different scales such as
lifetime (maturation), seasons (mating), hours (resting,
feeding), minutes (foraging), seconds (motor control).

The idea for motivation networks is based on these
considerations regarding high-level decision-making and
motivation in animals.

2 Concepts of motivation networks

A motivation network is a functional unit that controls the
behaviour of an autonomous agent based on the dynamic

input from the agent's sensors and internal states. Its task is
to take high-level decisions by selection and activation of
behaviour patterns, which consist of entire action sequences.

In a biological context, the repertoire of optional
behaviour patterns would include feeding, breeding, resting,
etc. Each pattern is assigned to a continuous motivation
variable that represents the agent's will for its execution.

The entire motivation network (figure 2) consists of (i) a
set of mapping functions, (ii) motivation variables, (iii) a
decision-maker, and (iv) behaviour patterns. The reasoning
process is subdivided into three steps:

Firstly, the network receives information from the input
variables, i.e. stimuli from sensors and internal states,
which is mapped to motivation variables. The value of each
variable ranges from 0.0 (no motivation) to 1.0 (maximum
motivation) and is determined by one or more mapping
functions, which are specified by artificial genes of the
agent (see below). Multiple function values are combined by
one of four standard operators min (acting as AND), max
(acting as OR), multiplication and mean.

Secondly, the decision-maker determines and schedules a
behaviour pattern according to the motivation variable with
the presently highest value. Conflicts in cases of equally
high priorities are resolved by a conflict priority list, which
defines a hierarchy of the behaviour patterns. For instance,
collision avoidance could be ranked higher than collecting
objects in a robotics scenario.

Thirdly, the behaviour pattern is executed by activation of
physical exchange (e.g. feeding) and motors (e.g. forward
movement), which affects the agent's environment and its
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Figure 2: Conceptual model of a motivation network
Arrows indicate the information flow between the different
functional units.

The repeated feedback between actions and stimuli
occurring on different time scales and in varying contexts
creates emergent agent behaviour.
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It is important to note, that the assignment, shape and
combination of the mapping functions between input and
motivation variables crucially determine the behaviour of
the agent. Currently, we are using a selection of standard
function types (linear, logarithmic, cubic, etc.), which are
fine-tuned by a set of parameters defining their slope and
translation.

These parameters are encoded as artificial genes and
transferred between generations by (currently asexual)
reproduction and mutation, whereas the remaining mapping
specifications are predefined and considered as a fixed part
of the model. This set-up allows a rough design of the
agent's control mechanisms, which is fine-tuned by
adaptation. In addition, biological hypotheses can be
falsified regarding their evolutionary plausibility by testing
if agents would evolve certain motivational demands.

However, additional flexibility could be accomplished by
encoding of the entire mapping specification using genetic
programming, which we currently implement. Alternatively,
mapping between inputs and motivation variables could be
learned by ANNs. However, in this case functional
relationships could not be directly implemented if required
and the model would lose its transparency.

We have tested the potential of the introduced motivation
network model by a simulation of the foraging behaviour of
house sparrows as a biological example of decision-making
in multiagent societies.

3 Simulations

3.1 Background and model specifications

An example which greatly illustrates motivation and
decision-making are house sparrows (Passer domesticus)
'deciding' whether or not to approach a patch of food. When
a sparrow discovers food, it will often not approach
immediately but instead sit on a nearby perch close to cover
and recruit other sparrows by a characteristic call to come
and join it on the perch [Elgar 1986a]. All birds fly down to
the food together, which has the advantage that they cover
each other.

We modelled this biological scenario with our adaptive
multiagent system SociallLab. The scenario was designed as
a biotope containing autonomous agents (sparrows and
predators) and passive resources (renewable food items and
breeding space).

Space was represented as a 2-d grid world with a local
carrier capacity, limiting the maximum number of
individuals per grid cell. The goal of this design was to
model direct and local interactions explicitly, and to control
the effects of local spatial density on the number of
concurrent local events.

Concurrency was simulated in a two step process: first,
agents made decisions and scheduled actions; second, the
simulation shell executed the scheduled actions and resolved
temporal conflicts. For instance, when two agents decided to
feed at the same location, their feeding actions were first

scheduled, but not immediately executed. Depending on the
local food availability and the demand of the agents, food
resources were split and shares were provided for both
agents instead of fulfilling their demands sequentially.

Sparrows were model as organisms with various
properties (e.g. metabolic budget, minimal metabolic
consumption, maximum food intake per time unit, limited
lifespan, etc.), physical capabilities (movement, feeding,
reproduction, attraction of other sparrows by chirruping),
and simplified sensors for detection of other individuals,
food items, and attraction signals. Each sparrow was
controlled by a motivation network and competed for food
and breeding space in order to propagate its genetic
information to future generations. A sparrow was capable to
reproduce when its metabolic budget exceeded a specified
threshold. Its metabolic budget was increased by successful
food intake and decreased due to regular metabolic
maintenance costs and extra energy loss due to movement.
According to their current motivation priorities, sparrows
selected and executed one out of five different behaviour
patterns at each time step: feeding, searching, chirruping
(attracting), signal tracking, and breeding.

Input factors were given by their sensory stimuli: number
of detected predators, distance to nearest predator, number
of sparrows in the local neighbourhood, estimated food
quality; and internal states: metabolic budget and last food
intake. In the current model, most functional relationships
between inputs and motivation variables were prespecified
according to the biological context.

Predators tried to catch sparrows only when in range and

feeding. By this constraint, we aimed to model a flightless
predator and sparrows that safely sit on trees unless they fly
to the ground to reach for food items.
Moreover, the population of predators neither evolved nor
changed population size by birth or death. Successful
catching of prey items was followed by short feeding and
resting periods. Food was presented in one large food patch
of renewable food resources.

3.2 Simulation results

In model 1, sparrows sent attracting signals if they were
holding patches with high food availability and predators
were visible, and followed attracting signals if signals were
recent and their local food availability was low. Predators
tried to attack sparrows if in reach.

Surprisingly, signalling and grouping lead to rapid
extinction of the sparrow population. This was due to two
reasons: firstly, predators did not pause after catching
sparrows, but immediately continued to hunt more prey;
second, attracted sparrows became signal senders when in
reach of the predator while the original sender already got
killed. These two effects worked like maelstroms feeding
the predators with sparrows.

Conclusively, the predator must be tightly constrained in
his catching abilities. In fact, safe group feeding apparently
requires that (i) the mortality due to predator attacks gets
significantly reduced, (ii) predators are relatively low in
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number compared to the number of prey items, and (iii)
predators pause after successful hunting. Moreover,
sparrows should only attract mates if in safe distance from
the predator. These conditions are fulfilled in many similar
prey-predator relationships in biology such as in hunting
lions and wolves.

The motivation network turned out to be an appropriate
tool for the control of an agent in this behavioural scenario
and generated interesting emergent behaviour sequences.
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Figure 3 shows the shift of priorities over time in a
motivation network of a single sparrow.

Figure 3: Shifting priorities of an agent's motivation
variables

Actions were taken by the agent according to the motivation
variable with the temporarily highest value. Note the sudden
and clear spikes in the motivation level for sending
attraction calls at simulation time t=444 and t=448 after the
agent repeatedly took actions to follow an attracting signal
(indicated by the two solid line).

In model 2, we changed sparrow and predator behaviour due
to the conclusions from the previous model. This model
resulted in flocks of straying and "grazing" sparrows where
single individuals were keeping the group together by
attraction signals (figure 4). These sparrow populations
remained relatively stable in size. The group size of these
flocks turned out to be spatially constrained by the density
of predators.

However, sparrow populations always evolved genes that
suppressed the sending and receiving of attraction signals.
Non-signalling sparrow populations turned out to be more
equally spread over the available food resource space.
Though attraction calls lowered a sparrow's risk to get killed

while feeding, increased food competition reduced the
benefits of high food availability significantly. Moreover,
attracted sparrows were taking a risk when approaching a
sender and were facing poor food resources on arrival due to
high local population densities caused by other attracted
Sparrows.

(1)

©) (4)

Figure 4: Flocking behaviour of group feeding agents
Snapshot sequences from an arena section.

(1)-(3): attraction of several agents towards the bottom of
the scence with high local population density around the
sender in (3). (4)-(6) distraction and new orientation of the
flock to another location.

From model 2, we can conclude that group feeding only
pays when food resources are very little constrained in
respect to the feeding motivation of the sparrows. Otherwise
the disadvantages for signal senders (increased competition)
and receivers (competition by the time when they arrive and
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predation risk when they approach the sender) cannot
counterbalance the advantage of reduced predation risk.

4 Discussion and conclusions

In this investigation, we introduced motivation networks as
a formal model for animal decision-making, which we
designed as a high-level controller for autonomous agents.
The application of motivation networks to the biological
scenario of sparrow group feeding behaviour revealed some
interesting new insights into environmental and behavioural
mechanisms in respect to their evolutionary plausibility.
Interestingly, group feeding could be easily modelled,
though the behaviour did not turn out to be competitive with
non-grouping strategies, in contrast to the biological
predictions.

This simulation example demonstrates that a combination
of multiagent systems and motivation networks can serve as
a useful falsification tool for biological research. One great
advantage is the structural similarity between motivation
networks and biological theory on decision-making, which
provides an easy way to model and verify hypotheses.
Further, the repeated local interactions of the agents with
their environment allow to mimic the dynamic impacts of
individual behaviour on behavioural ecology. Another
example for this potential is our recent investigation on the
effect of interaction strategies on population dynamics in
lizards, which uncovered a misleading result of a game
theoretical model [Krink & Mayoh subm.].

Moreover, our investigation shows that the introduced
motivation networks are capable to control the behaviour of
autonomous agents in space and time. Regarding temporal
reasoning, we are currently testing the effect of periodically
varying environmental parameters which act as
synchronising clocks in multiagent coordination. In this
context, we will apply motivational networks to control
tasks in robot coordination.
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