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Motivation Networks — A Biological Model for Autonomous Agent Control
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The ALIVE System:

Wireless, Full-body Interaction with Autonomous
Agents

Pattie Maes, Trevor Darrell, Bruce Blumberg, Alex Pentland

Figure I: The ALIVE “Magic-Mirror™ a user sees himself in a virtual world.



Figure 3: Image of user is composited with computer graphics. Here the Dog responds  Figure 5: Dog shakes hands with user. Dog respods to hand gestures differently
to pointing gesture by sitting. depending on stance of user.

Figure 4: Another example of a recognized gesture. Dog walks in direction indicated

by user Figure 6: Image of Dog standing on hind legs to mimic user’s gesture.
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A bumper activates a touch sensor.

PR T
There are four touch sensors
connected to one port. ¢ LA
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A magnetic speaker is e

connected to an output port.
: I
Carefully timed sequences of
on/off commands produce Ton asciator poer
square waves with different periods
and duty cycles. This is [

used to make musical/signal
sounds through the speaker.
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Package lejos.robotics.subsumption

Support for subsumption architecture.

See:
Description

Interface Summary

Behavior The Behavior interface represents an object embodying a specific behavior belonging to a robot.

Class Summary

Arbitrator Arbitrator controls which behavior should become active in a behavior control system.




lejos.roboticssubsumption
Interface Behavior

public interface Behavior

The Behavior interface represents an object embodying a specific behavior belonging to a robot. Each behavior must define three things:
1) The circumstances to make this behavior seize control of the robot. e.g. When the touch sensor determines the robot has collided with
an object.

2) The action to perform when this behavior takes control. e.g. Back up and turn.

3) A way to quickly exit from the action when the Arbitrator selects a higher priority behavior to take control. These are represented by
defining the methods takeControl(), action(), and suppress() respectively.

A behavior control system has one or more Behavior objects. When you have defined these objects, create an array of them and use that
array to initialize an Arbitrator object.

Version:
0.9 May 2011
See Also:

Arbitrator

Method Summary

void|action()
The code in action() represents the tasks the robot performs when this behavior becomes active.

void|guppress()
The code in suppress() should cause the current behavior to exit.

boolean|takeControl ()
The boolean return indicates if this behavior should seize control of the robot.




lejos.robotics subsumption

Class Arbitrator

ava.lang.Object
L—lejos.robotics.subsumption.hrbitrator

public class Arbitrator
extends Object

Arbitrator controls which Behavior object will become active in a behavior control system. Make sure to call start() after
the Arbitrator is instantiated.

This class has three major responsibilities:

1. Determine the highest priority behavior that returns true to takeControl()

2. Suppress the active behavior if its priority is less than highest priority.

3. When the action() method exits, call action() on the Behavior of highest priority.
The Arbitrator assumes that a Behavior is no longer active when action() exits,
therefore it will only call suppress() on the Behavior whose action() method is running.
It can make consecutive calls of action() on the same Behavior.

Requirements for a Behavior:

When suppress() is called, terminate action() immediately.

When action() exits, the robot is in a safe state (e.g. motors stopped)



--------------------

Demonstration of the Behavior subsumption classes.

*
¥
* Requires a wheeled vehicle with two independently controlled
* motors connected to motor ports A and C, and

* a touch sensor connected to sensor port 1 and

*¥ an ultrasonic sensor connected to port 3;

¥

*

*

public class BumperCar

d

public static void main(String[] args)
d
Motor.A.setSpeed(408);
Motor.C.setSpeed({408);
Behavior bl = new DriveForward();
Behavior b2 = new DetectWall{);
Behavior[] behaviorList =
1
bl, b2
¥
Arbitrator arbitrator = new Arbitrator(behaviorList);
LCD .drawString{"Bumper Car",8,1);
Button.waitForPress();
arbitrator.start();



class DriveForward implements Behavior

d

private boolean _suppressed = false;

public boolean takeControl{)

1
return true; // this behavior always wants control.
¥
public void suppress{)
1

_suppressed = true;// standard practice for suppress methods

¥

public void action()

d
_suppressed = false;
Motor.A.forward();
Motor.C.forward();
while {!_suppressed)

1
Thread.yield{); //don't exit till suppressed

¥

Motor.A.stop(); // not strictly necessary, but good programming practice
Motor.C.stop();



class DetectWall implements Behavior

1
public DetectWall{)
d
touch = new TouchSensor{SensorPort.51);
sonar = new UltrasonicSensor{SensorPort.53);
¥
public boolean takeControl()
d
sonar .ping();
/#5ound .pause{28);
return touch.isPressed{) || sonar.getDistance() < 25;
¥
public void suppress()
1
J/31ince  this is highest priority behavior, suppress will never be called.
¥
public void action{)
d
Motor.A.rotate{-188, true);// start Motor.A rotating backward
Motor.C.rotate{-36@8); // rotate C farther to make the turn
¥

private TouchSensor touch;
private UltrasonicSensor sonar;

¥



private class Monitor extends Thread

1

boolean more = true;
int maxPriority = _behavior.length - 1;

public void run()

{
while {more)
1
J/FIND HIGHEST PRIORITY BEHAVIOR THAT WANTS CONTROL
synchronized (this)
1
_highestPriority = NONE;
for (int i = maxPriority; i == @; i--)
1
if {_behavior[i].takeControl{))
1
_highestPriority = 1i;
break;
¥
¥
int active = _active;// local copy: avoid out of bounds error in 134
if {active != NONE && _highestPriority = active)
1
_behavior [active].suppress{);
¥
¥/ end synchronize block - main thread can run now
Thread.yield{);
¥
¥

¥



public void start()

1

monitor.start();
while {_highestPriority == NONE)

¥
while {true)

d

synchronized (monitor)

1
if {_highestPriority != NONE)
1

_active = _highestPriority;

T else if {_returnWhenInactive)

{// no behavior wants to run
monitor.more = false;//9 shut down monitor thread
return;

¥

d

_behavior [_active].action();
_active = NONE; // no active behavior at the moment

¥
Thread.yield();

¥



