When (touch sensor) \

Back up and turn a little

When (every 10 seconds)

‘ Turn a little

When (always)

Drive forward

sensors

Processes/threads

)

)

)

Real time operating system

actuators

Arbitration

Touch Turn Wander
) N)

~

Real time operating system

actuators

PlaySound

AvoidFront

RandomDrive

Motors

LCD

Ghost control program

—
StayOnWhite | —
—
black/white
sensors
—> | Avoid .
touch

sensor

Motivation Networks — A Biological Model for Autonomous Agent Control

(a) Metabolic consumption Motivation for feeding
100 — - - 1- - - -
w0l coi =]
~ 804 Feedrg 084
£ n $§ 074 A -4
% . 3 2881/ St
o 4 o 4
I e N £ 7 /
204 L ’/ 32!; Feeding
'gj S c;i 1
[s » %5 2 S5 2 (4] S w 15 20 26 2
Time (hours) Time (hours)
— rte &

(c) Predator avoidance

Motivation for resting

Motivation
noo
"
-

014 e

ol —
02468310121416182022
Time (hours)

Motivation for running
[

Motwaon
11
0

popooo
CE LTI

o 1 2 3 4 5 &
Time (minutes)

Environment

Agent

Motivation network

'—"‘ Sensors I
¥

Intemal states

- melabolic budget]
-age

- iredness

- sexual drve
- last food intake ™

Mapping
functions

Motivation variables | Decision-maker

Behaviour
pattems

food searching

=N

(s 14
4 ‘ signal tracking
fn = conflict | breeding I
priority list
Adificial genes J ‘
:l Physical Exchange l Motors |

e

Energy (%)

(a) Metabolic consumption Motivation for feeding
100 1 ——
3 08 = e
B
2\ T~ g o N
50 \,—\ | 2 o0sd. S
] SN 29
zgq ’/ 024 Feeding
104 — = ! 0.1
0 T T T - - o Y Y Y :J*‘l
0 S W 5 D 5 0 § W s 20 26
Time (hours) Time (hours)
[— Wieter m]
(b) Circadian clock Motivation for resting
1
09+
08
0.7
%oo-
$ o0s
g 04
03 |
024
014 l
°' L 3 13 T L3] 1]
0246830124 16182022
Time (hours)
(c) Predator avoidance Motivation for running
' ———
ODJ i
08]
074 !
054
05 |
044 !
034
02 i
014 |
0 ¥ 1
0 1 2 3 4 5)

Environment

Agent
Motivation network
» Sensors Mapping | Motivation variables | Decision-maker | Behaviour
functions pattems
* y |~ {eeding — feeding
Intemal states
I, j=t9| food searching food searching
- melabolic budget™ / / .
-age |3 // chirrup i | IT&X chirrup
- iredness) ﬁ—’ signal tracking = ‘ signal tracking
- sexual dnve
- last lood intake =T~ fv |=t"| breeding =t conilfct breeding
prionty list
Adificial genes ‘ I
i Physical Exchange Motors

v

........... —_,

.

- Sensors & internal - Behavioral genes
: states | : (n,,,_,p‘) :
) motivation
E "’,// network
P
o
- agent

..

: Abti@rs

* ENVIRONMENT

The ALIVE System:

Wireless, Full-body Interaction with Autonomous
Agents

Pattie Maes, Trevor Darrell, Bruce Blumberg, Alex Pentland

Figure I: The ALIVE “Magic-Mirror™ a user sees himself in a virtual world.

Figure 3: Image of user is composited with computer graphics. Here the Dog responds Figure 5: Dog shakes hands with user. Dog respods to hand gestures differently
to pointing gesture by sitting. depending on stance of user.

Figure 4: Another example of a recognized gesture. Dog walks in direction indicated

by user Figure 6: Image of Dog standing on hind legs to mimic user’s gesture.

Jungle Kuben

Blue path Weak Bug home

M
i ﬂ.,;‘, Wz
W7

A

)

Sitrong Bug home Yellow path

Soundscape Lighting

) @)

20— e
=0—IT
Bug LORCX(., }:(]]—[
Eight speakels))> | : ; , ;ﬁﬂr o mex
)
Rl)}) l—.—_ RCX
Bug RCX | . = E(]]—IV:(U
Inflated messages
RCX /l/ RCX

Coordinator Straw Controller

front bumpsr

/

Right bumpsr

S e

._‘_,_a—'—‘_'—

Anfennas

Left whes! W

Left bumpsr

Back bumpsr

[N

Tone osciator

FEl__.

Gakng osciator

Speaker

Antennas

T T
Two bend sensors connected Ll
tO the Same pOrt Tone osciator
Speaker
Raw value interpreted as]
NoBend or Bend
Gakng osciator

Rpht bumpsr

L

front bumpsr Back bumpsr

/ — |
Left whes! W
Anfennas .

Left bumpsr

A bumper activates a touch sensor.

PR T
There are four touch sensors
connected to one port. ¢ LA
The touch sensors are modified Fone oecratr

to have different resistance when

pressed so that it is possible to [y
|dentify the bumper that is
activated.

Speaker

Gakng osciator

Rpht bumpsr

~J &

front bumpsr Back bumpsr

._'__4—'—'—"_

Anfennas
Left bumpsr

A magnetic speaker is e

connected to an output port.
: I
Carefully timed sequences of
on/off commands produce Ton asciator poer
square waves with different periods
and duty cycles. This is [

used to make musical/signal
sounds through the speaker.

Gakng osciator

Rpht bumpsr

Qm whest frosso

front bumpsr Back bumpsr

._'__4—'—'—"_

Anfennas

Left bumpsr

Environment

Agent
Motivation network
» Sensors Mapping | Motivation variables | Decision-maker | Behaviour
functions pattems
* y |~ {eeding — feeding
Intemal states
I, j=t9| food searching food searching
- melabolic budget™ / / .
-age |3 // chirrup i | IT&X chirrup
- iredness) ﬁ—’ signal tracking = ‘ signal tracking
- sexual dnve
- last lood intake =T~ fv |=t"| breeding =t conilfct breeding
prionty list
Adificial genes ‘ I
i Physical Exchange Motors

v

Bug

Infamal
stare

Wander

Stasp

Stmufi ————

Sensors

Bshaviour
sefaction

Avoioteft

Actuators

——= Ragponss

Rast

locomotion By

N
behavior
main control — ey
N N N
’ ~ D
N N N
sound

real time scheduler

Level triggered S

I cond cond l cond

Edge triggered

cond & ! active cond ! cond & active

Priority triggered S

cond & ! active cond ! cond & active

Lesson 9 leJOS Behavior API

¥

(:Tou¢h Senacy

Collicion Behaviqg

takelontrol

= Ly

b

(:Battcry Level

Drive to Slart;tl;

Ll/

(f' Tiner

Point
takeContrel = falpe

Time Up
takeContrel = falpke

Drive Forward

takeControl

- Cxy

suppressed

—0® —{

Behavior Programming
Programming Behavior
with 1leJOS NXJ

The Behavior API
Behavior class
Arbitrator class

Coding behaviors

Recommended design
Summary

Q
(ad
0
A
o

Package lejos.robotics.subsumption

Support for subsumption architecture.

See:
Description

Interface Summary

Behavior The Behavior interface represents an object embodying a specific behavior belonging to a robot.

Class Summary

Arbitrator Arbitrator controls which behavior should become active in a behavior control system.

lejos.roboticssubsumption
Interface Behavior

public interface Behavior

The Behavior interface represents an object embodying a specific behavior belonging to a robot. Each behavior must define three things:
1) The circumstances to make this behavior seize control of the robot. e.g. When the touch sensor determines the robot has collided with
an object.

2) The action to perform when this behavior takes control. e.g. Back up and turn.

3) A way to quickly exit from the action when the Arbitrator selects a higher priority behavior to take control. These are represented by
defining the methods takeControl(), action(), and suppress() respectively.

A behavior control system has one or more Behavior objects. When you have defined these objects, create an array of them and use that
array to initialize an Arbitrator object.

Version:
0.9 May 2011
See Also:

Arbitrator

Method Summary

void|action()
The code in action() represents the tasks the robot performs when this behavior becomes active.

void|guppress()
The code in suppress() should cause the current behavior to exit.

boolean|takeControl ()
The boolean return indicates if this behavior should seize control of the robot.

lejos.robotics subsumption

Class Arbitrator

ava.lang.Object
L—lejos.robotics.subsumption.hrbitrator

public class Arbitrator
extends Object

Arbitrator controls which Behavior object will become active in a behavior control system. Make sure to call start() after
the Arbitrator is instantiated.

This class has three major responsibilities:

1. Determine the highest priority behavior that returns true to takeControl()

2. Suppress the active behavior if its priority is less than highest priority.

3. When the action() method exits, call action() on the Behavior of highest priority.
The Arbitrator assumes that a Behavior is no longer active when action() exits,
therefore it will only call suppress() on the Behavior whose action() method is running.
It can make consecutive calls of action() on the same Behavior.

Requirements for a Behavior:

When suppress() is called, terminate action() immediately.

When action() exits, the robot is in a safe state (e.g. motors stopped)

Demonstration of the Behavior subsumption classes.

*
¥
* Requires a wheeled vehicle with two independently controlled
* motors connected to motor ports A and C, and

* a touch sensor connected to sensor port 1 and

*¥ an ultrasonic sensor connected to port 3;

¥

*

*

public class BumperCar

d

public static void main(String[] args)
d
Motor.A.setSpeed(408);
Motor.C.setSpeed({408);
Behavior bl = new DriveForward();
Behavior b2 = new DetectWall{);
Behavior[] behaviorList =
1
bl, b2
¥
Arbitrator arbitrator = new Arbitrator(behaviorList);
LCD .drawString{"Bumper Car",8,1);
Button.waitForPress();
arbitrator.start();

class DriveForward implements Behavior

d

private boolean _suppressed = false;

public boolean takeControl{)

1
return true; // this behavior always wants control.
¥
public void suppress{)
1

_suppressed = true;// standard practice for suppress methods

¥

public void action()

d
_suppressed = false;
Motor.A.forward();
Motor.C.forward();
while {!_suppressed)

1
Thread.yield{); //don't exit till suppressed

¥

Motor.A.stop(); // not strictly necessary, but good programming practice
Motor.C.stop();

class DetectWall implements Behavior

1
public DetectWall{)
d
touch = new TouchSensor{SensorPort.51);
sonar = new UltrasonicSensor{SensorPort.53);
¥
public boolean takeControl()
d
sonar .ping();
/#5ound .pause{28);
return touch.isPressed{) || sonar.getDistance() < 25;
¥
public void suppress()
1
J/31ince this is highest priority behavior, suppress will never be called.
¥
public void action{)
d
Motor.A.rotate{-188, true);// start Motor.A rotating backward
Motor.C.rotate{-36@8); // rotate C farther to make the turn
¥

private TouchSensor touch;
private UltrasonicSensor sonar;

¥

private class Monitor extends Thread

1

boolean more = true;
int maxPriority = _behavior.length - 1;

public void run()

{
while {more)
1
J/FIND HIGHEST PRIORITY BEHAVIOR THAT WANTS CONTROL
synchronized (this)
1
_highestPriority = NONE;
for (int i = maxPriority; i == @; i--)
1
if {_behavior[i].takeControl{))
1
_highestPriority = 1i;
break;
¥
¥
int active = _active;// local copy: avoid out of bounds error in 134
if {active != NONE && _highestPriority = active)
1
_behavior [active].suppress{);
¥
¥/ end synchronize block - main thread can run now
Thread.yield{);
¥
¥

¥

public void start()

1

monitor.start();
while {_highestPriority == NONE)

¥
while {true)

d

synchronized (monitor)

1
if {_highestPriority != NONE)
1

_active = _highestPriority;

T else if {_returnWhenInactive)

{// no behavior wants to run
monitor.more = false;//9 shut down monitor thread
return;

¥

d

_behavior [_active].action();
_active = NONE; // no active behavior at the moment

¥
Thread.yield();

¥

