Fred Martin

Sequential strategies
Reactive strategies

Maja Mataric

Deliberative approach
Reactive approach
Behavior-Based approach

Figure 6: The family of four IS Robotics mo-
bile robots used in the group behavior ex-

periments. The robots are equipped with
IRs, contact sensors, grippers, position sen-
sors, and radio communication.

Where am 1? Localization

Where have | been? Map making

Where am | going? Mission planning
What's the best way there? Path planning

Integration of Representation Into
Goal-Driven Behavior-Based Robots

Maja J. Mataric

Perceptual zones
for sonic range finders

/safo zone 0.6m

alpha =30 degrees
* = |ateral soners

* = rear-lateral sonars

e ————E A A

Correct

Align

o General Bounagary

Avoid

Strol!}

|

S ey

" Collision-Free
Forward Motion

Following

Convex Boundary
Following

Collision-Free
wandering

(defbehavior stroll
(cond
((and (< = (min (sonars 1 2 3 4)
danger-zone))
(not stopped))

(stop))
((and (< = (min (sonars 1 2 3 4)

danger-zone))
(stopped))
(move backward))
(t
(move forward))))

(defbehavior avoid
(cond
((and (<
zone)

(sonar 1 or 2) safe-

(< = (sonar 3 or 4) safe-

zone))
(turn left)) 10r27?
((< = (sonar 3 or 4) safe-zone)

(turn right))))

Figure 5.4: The performance of the combined stroll and avoid behav-
iors. Stroll produces straight-line path segments shown with dashed lines.
Path segments generated by avoid are shown with continuous lines.

(defbehavior align
(cond
((and (< (sonar 7 or 8) edging-
distance)
(> (sonar 5 or 6) edging-
distance))
(turn right))
((and (< (sonar 9 or 10) edging-
distance) .
- (> (sonar 11 or 0) edging-
distance))
(turn left))))

(defbehavior correct

(cond

((and (< (sonar 11) edging-

distance) :
(> (sonar 0) edging-
distance))

(turn left))

((and (< (sonar 6) edging-distance)

(> (sonar 5) edging-

distance)) turn right

Correct

s General Bounaary

Align Following
Avoid Convex Boundary
Following

. Collision-Free
Strol! — wandering

Collision-fFree

Forward Motion

— Correct
heading
—————— Avoid
e — Stroll stop, go
backup

Figure 5.8: A schematic illustrating the implicit arbitration among the
low-level navigation behaviors. Since the conditions triggering each of the
four low-level behaviors are mutually exclusive, no explicit arbitration is

needed.

SaA|ays _

i

- o®*
R a1 it T
o*” .
- LY
(%)

‘Map-Learning and
Goal-Directed Navigation

'Landma'rkﬁ _OetecttOn. '

Sensors

. Boundary Tracing Base

Landmark detection

Landmarks are walls either on one side or on
both sides: LW, RW, C.

Wall detection: average compass bearing stable
and repeatedly short readings on its
side then confidence counter
iIncremented

confidence counter > threshold

Landmark descriptor
<T,C,L,P>

T. LW, RW,C, I

C. compass bearing
L: length

P: position (x,y)

ggggg

ooooooo

table

Map building

Lwa

Lwo
Ca
Lws8
LWé6
co
LWI0
Start C12

Path planning

lisp
| machi 0

1 .'.:.:.":.:.
LW12 F’; 1 1 5 % 4 2 2
s active goal
a
¢
e topological length: 4 3
—— physical length: > 8
\ - 0

Representation of space

Topological map

Cartesian map

v

o

Lesson 10, Localization 1 : :

Where am 1?|Localization
Where have | been? Map making

Where am | going? Mission planning
What's the best way there? Path planning

lejos.robotics.navigation
Class DifferentialPilot

java.lang.Object
L—lejos.robotics.navigation.Differentialpilot

NN

non-driven whee

Example of use of come common methods:

DifferentialPilot pilot = new DifferentialPilot(2.1f, 4.4f, Motor.A, Motor.C, true); // parameters in inches
pilot.setRobotSpeed(10); // inches per second
pilot.travel(12); // inches

pilot.rotate(-90); // degree clockwise
pilot.travel(-12,true);

while(pilot.isMoving())Thread.yield();

pilot.rotate(-90);

pilot.rotateTo(270);

pilot.steer(-50,180,true); // turn 180 degrees to the right
while(pilot.isMoving())Thread.yield();

pilot.steer(100); // turns with left wheel stationary
Delay.msDelay(1000;

pilot.stop();

lejos.roboticslocalization

Class OdometryPoseProvider

ava.lang.Object
L lejos.robotics.localization.OdometryPoseProvider

All Implemented Interfaces:
PoseProvider, MoveListener

public class OdometryPoseProvider
extends Object
implements PoseProvider, MoveListener

A PoseProvider keeps track of the robot pose. It does this using odometry (dead reckoning) data contained in a Move, which is supplied by a MoveProvider. When the
PoseProivder is constructed, it registers as listener with its MoveProvider,

public class OdometryPoseProvider implements PoseProvider, Movelistener

{

private float x = @, y = @, heading = 9;

public class OdometryPoseProvider implements PoseProvider, Movelistener

{

private float x = @, y = @, heading = 9;

VAL,

* called by a MoveProvider when movement starts
* @param move - the event that just started
* @param mp the MoveProvider that called this method

*/
public void moveStarted(Move move, MoveProvider mp)
{

angled - 9;

distanced® - 0;
current = false;
this.mp = mp;

S¥*

* called by a MoveProvider when movement ends
* @param move - the event that just started
* @param mp
*/
public void moveStopped(Move move, MoveProvider mp)

{
}

updatePose(move);

PilotSquare

double wheelDiameter = 5.5, trackWidth = 16.0;
double travelSpeed = 5, rotateSpeed = 45;
NXTRegulatedMotor left = Motor.B;
NXTRegulatedMotor right = Motor.C;

DifferentialPilot pilot = new DifferentialPilot(wheelDiameter, trackWidth, left, right);
OdometryPoseProvider poseProvider = new OdometryPoseProvider(pilot);

Pose initialPose = new Pose(0,0,0);

RConsole.open();

pilot.setTravelSpeed(travelSpeed);

pilot.setRotateSpeed(rotateSpeed);

poseProvider.setPose(initialPose);

LCD.clear();
LCD.drawString("Pilot sguare”, 0, 0);
Button.waitForAnyPress();

for(int i = 0; i < 4; i++)

{
pilot.travel(20);
show(poseProvider.getPose());
Delay.msDelay(1000);

pilot.rotate(90);
show(poseProvider.getPose());
Delay.msDelay(1000);

PilotSquare

double wheelDiameter = 5.5, trackWidth = 16.0;
double travelSpeed = 5, rotateSpeed = 45;
NXTRegulatedMotor left = Motor.B;
NXTRegulatedMotor right = Motor.C;

DifferentialPilot pilot = new DifferentialPilot(wheelDiameter, trackWidth, left, right);
OdometryPoseProvider poseProvider = new OdometryPoseProvider(pilot);

Pose initialPose = new Pose(0,0,0);
RConsole.open();
pilot.setTravelSpeed(travelSpeed);
pilot.setRotateSpeed(rotateSpeed);
poseProvider.setPose(initialPose);

LCD.clear();
LCD.drawString("Pilot sguare”, 0, 0);
Button.waitForAnyPress();

for(int i = 0; i < 4; i++)

{
pilot.travel(20);
show(poseProvider.getPose());
Delay.msDelay(1000);

pilot.rotate(90);
show(poseProvider.getPose());
Delay.msDelay(1000);

PilotSquare Systematic odometry errors

double wheelDiameter = 5.5, trackWidth = 16.0; .

double travelSpeed = 5, rotateSpeed = 45; NOH-SyStematIC errors
NXTRegulatedMotor left = Motor.B;

NXTRegulatedMotor right = Motor.C;

DifferentialPilot pilot = new DifferentialPilot(wheelDiameter, trackWidth, left, right);
OdometryPoseProvider poseProvider = new OdometryPoseProvider(pilot);

Pose initialPose = new Pose(0,0,0);
RConsole.open();
pilot.setTravelSpeed(travelSpeed);
pilot.setRotateSpeed(rotateSpeed);
poseProvider.setPose(initialPose);

LCD.clear();
LCD.drawString("Pilot sguare”, 0, 0);
Button.waitForAnyPress();

for(int i = 0; i < 4; i++)

{
pilot.travel(20);
show(poseProvider.getPose());
Delay.msDelay(1000);

pilot.rotate(90);
show(poseProvider.getPose());
Delay.msDelay(1000);

et Move in a straight line

—_— travel(20)

Rotate on-the-spot

L 4 rotate(90)

¢, = nD,/nC, (1.2)
where

¢m = conversion factor that translates encoder pulses mnto linear wheel displacement

D, = nominal wheel diameter (in mm)

C. = encoder resolution (in pulses per revolution)

n = gear ratio of the reduction gear between the motor (where the encoder 1s attached) and the

drive wheel.

We can compute the mncremental travel distance for the left and right wheel, AU, ; and AUg;,
according to

AUpg, i = CuNug,; (1.3)

For completeness, we rewrite the well-known equations for odometry below (also, see [Klarer,
1988: Crowley and Reignier, 1992]). Suppose that at sampling interval [the left and right wheel
encoders show a pulse increment of Ny and N, respectively. Suppose further that

¢, = nD,/nC, (1.2)
where

¢m = conversion factor that translates encoder pulses into linear wheel displacement

D, = nominal wheel diameter (in mm)

encoder resolution (in pulses per revolution)

gear ratio of the reduction gear between the motor (where the encoder 1s attached) and the
drive wheel.

S 0
1l

We can compute the incremental travel distance for the left and right wheel, AU, ; and AUy,
accordmg to

AUpg i=cnNpg ; (1.3)
and the incremental linear displacement of the robot's centerpoint C, denoted AU, , according to
AU, = (AU, + AUD/2. (14)
Next, we compute the robot's incremental change of orientation

AD;=(AUR-AUL/b (1.5)

where b 1s the wheelbase of the vehicle, ideally measured as the distance between the two contact
points between the wheels and the floor.

For completeness, we rewrite the well-known equations for odometry below (also, see [Klarer,
1988: Crowley and Reignier, 1992]). Suppose that at sampling interval [the left and right wheel
encoders show a pulse increment of Ny and N, respectively. Suppose further that

¢, =nD,/nC, (1.2)
where

¢m = conversion factor that translate 4

D, = nominal wheel diameter (in mm

C. = encoder resolution (in pulses pe

n = gear ratio of the reduction gear bx

drive wheel.

We can compute the incremental tra
accordmg to

AUpg i=cnNpg ;

and the mcremental linear displacement
AU, = (AU, + AUD/2.

Next, we compute the robot's increment;

AD;=(AUz-AUY/b

where b 1s the wheelbase of the vehicle, :
points between the wheels and the floor.

Calibrate the wheel diameter and the track width

e Start with wheelDiameter. Make the vehicle travel e.g. 50 cm and adjust the wheel diameter until the vehicle travels as close to 50 cm as
possible. If the vehicle will not run in a straight line on a smooth surface, there may be a small difference in the diameters of the two
wheels. Then the constructor with different diameters for the left and right wheels should be used.

e After having adjusted the wheel diameters then make the vehicle rotate a given angle e.g. 180 degrees and adjust the trackwidth until the
vehicle rotates as close to the given angle as possible.

AUpg i=cm Npg ; (1.3)
and the mcremental linear displacement of the robot's centerpoint C, denoted AU, , according to
AU, = (AU, + AUD/2. (14)
Next, we compute the robot's ncremental change of orientation

AD;=(AUR-AUL/b (1.5)

Position tracking by means of particle filters

Position tracking by means of particle filters

move (200, 0);
move (200, 0);
move (200, 0); . - - '
move (200, PI/2);

move (200, 0); §
move (200, 0); 1
move (200, PI/2); 0
move (200, 0);
move (200, 0);
move (200, 0);
move (200, 0);
move (200, 0);

Position tracking by means of particle filters

ANGLE_NOISE = 0.04,

ANGLE_P_NOISE = 0.0002,

ANGLE_R_NOISE = 0.02, |
R_NOISE - 3, . - ' - . -
R_P NOISE = 0.008,

4 e hoduerl R TSR
void move(long double r, long double t) {
gwer.theta += t;
gwer.x += r*cos(qwer.theta);
qwer.y += r*sin(qwer.theta);
for(int i=0; i<M; i++) {
z[i].theta += t + r*ANGLE_P_NOISE*noise() + ANGLE_NOISE*noise() + t*ANGLE R NOISE*noise();
z[i].x += r*cos(z[i].theta) + R_NOISE*noise() + r*R_P NOISE*noise();
z[i].y += r*sin(z[i].theta) + R_NOISE*noise() + r*R_P NOISE*noise();

Position tracking by means of particle filters

ANGLE_NOISE = 0.04,
ANGLE P _NOISE = 0.0002,

ANGLE_R NOISE = 0.02, _
R_NOISE = 3, . - ' - . -
R_P NOISE = 0.008, LA ML TR T ML I ML ML B '
104 : : - ! } }
H=0, 0202, =— !
H=0, 0°=10, ==— - L
a8 |p=0, 07=50,—]
H=-2, 0°=05, =

a2

a0

! 4 'F.’,(’::L' ' . f .ﬁ"“(\’. Qo e VNI LT
void move(long double r, long double t) {
qwer.theta += t;
gwer.x += r*cos(qgwer.theta);
qwer.y += r*sin(gwer.theta);
for(int i=0; i<M; i++) {
z[i]).theta += t + r*ANGLE_P_NOISE*noise() + ANGLE_NOISE*noise() + t*ANGLE R NOISE*noise();
z[i].x += r*cos(z[i].theta) + R_NOISE*noise() + r*R_P NOISE*noise();
z[i]).y += r*sin(z[i].theta) + R_NOISE*noise() + r*R P NOISE*noise();

Position tracking by means of particle filters

Figure 5 The distribution of likely positions for a non-sensing vehicle after the route
travel(100), rotate(90), travel(100), rotate(-90) and travel(100).

Position tracking by means of particle filters

PilotMonitor PilotRoute

Position tracking by means of particle filters

/**
* Apply the robot's move to the particle with a bit of random noise.
* Only works for rotate or travel movements.
*

* @param move the robot's move
*/
public void applyMove(Move move, float distanceNoiseFactor, float angleNoiseFactor)

{

float ym = (move.getDistanceTraveled() * ((float) Math.sin(Math.toRadians(pose.getHeading()))));
float xm = (move.getDistanceTraveled() * ((float) Math.cos(Math.toRadians(pose.getHeading()))));

pose.setLocation(new Point(
(float) (pose.getX() + xm + (distanceNoiseFactor * xm * rand.nextGaussian(
(float) (pose.get¥() + ym + (distanceNoiseFactor * ym * rand.nextGaussian(
pose.setHeading(
(float) (pose.getHeading() + move.getAngleTurned() + (angleNoiseFactor * rand.nextGaussian()))):;
pose.setHeading((float) ((int) (pose.getHeading() + 0.5f) % 360));

))).
)))));

Monte Carlo localization

