Embedded Systems - Embodied Agents,
Digital Control in a Physical World (Q3+4) (10 ECTS)

Obijectives of the course

The participants will after the course have a basis for
understanding embedded systems, especially robots,
and practical experience with physical construction and
programming of embedded systems, especially robots

Lectures (2 h/week), lab sessions (3 h/week)

Lectures
Time: Thurdays at 12.15-14.00,
Location: Store Aud, it-Huset

Lab Sessions

Location: Zuse, Abogade 40.
Class A:
Time: Thurdays at 14.15-17
Class B:
Time: Fridays at 10.15-13

Course homepage
https://bb.au.dk/webapps/portal/frameset.jsp?

tab tab group_id= 2 1&url=%2Fwebapps
%2Fblackboard%2Fexecute%2Flauncher%3Ftype
%3DCourse%26id%3D 33635 1%26url%3D

Assessment methods: Lab notebooks and oral exam
7/-scale, internal examiner

A lab notebook from each labsession is handed in
each week (before the next week's labsession) in order
to fulfill the compulsory programme of the course.

At the end of the course each group do an end course project.
Your grade for the course will be based on selected

lab notebooks, your lab notebook for the end course project and
the oral presentation at the end of the course.

In the lab sessions you will work in groups of 4. After each
lab session the group should hand in a labnotebook.

During the first two lab sessions each group should enrool
as groups on the course webpage.

To perform the activities in the lab sessions each group
need LEGO Mindstorms Material.

The material can be borrowed during the course.

At the first two lab sessions material will be available
for handout.

#9797 LEGO Mindstorms Education NXT Base Set.

UB22S USB Bluetooth Dongle
9833 LEGO Mindstorms transformer

An embedded system is a special-purpose computer
system designed to perform one or a few dedicated
functions.

'r,-'{.

i,
M U
Syl u"u
]

'
‘l

]
|"J‘Ph
RO

!

'e's too short
for the wrong job!

Jobsintown de

Vo
i i

Fred Martin, Chapter 5

HandyBug

i e ORI bend sensor

u}v" P
two wheels driven b#
two mdependent u 7».4

wall

bend sensor value:
high value - close to wall

low value - away from wall

void main()

{

i Y
A 2‘\'\‘q

calibrate(); AEIITR R
il AAGTRRRTIR e 1 forward

ix= 0;

while (1) {

int walle analog(LEFT_WALL);
printf("goal is %d; wall is %d\n", goal, wall);

if (wall < goal) left{); /* too far from wall -- turn in */
else right();, /* turn away from wall */
data[ix++])= wall; /* take data sample */

msleep (100L); /* 10 iterations per second */

/t

wallfoll.c: simple threshold-based wall

with data collection

*/

/* motor and sensor ports
int LEFT MOTOR= 0;
int RIGHT_MOTOR= 3;
int LEFT_WALL= 0;

/* wall conditions */
persistent int |goal;

/* data capture */
persistent int data(1000];
persistent int ix;

void calibrate()

while (1) {

*/

int wall= analog(LEFT_WALL);

printf ("goal is %d; wall is %¥d\n", goal, wall);

if (start_button()) {
goal= wall; beep();

)

if (stop button()) ({

printf("Set goal to %d\n", goal);
beep(); sleep(0.5); break;

)

msleep(S0L); /* give a pause for the display */

follower

Wall

goal

=

void left ()
{

motor (RIGHT MOTOR, 100);
motor (LEFT _MOTOR, 0);

}

void right ()
{

motor (LEFT_MOTOR, 100);
motox (RIGHT _MOTOR, 0);

)

180 T

goal = 150
170'“' = .
Close to wall e
Q
% 160 +
>
bt
2 1504
L
v
o
2 140 +
M
Away from wall 15!
120 +—tttt 44—t
OHNMVV}\O[\OOO\O!—(NMVW\OI\OOO\
e B T T e T e R SRt

Time (sec)

Bend Sensor Value

180 -

170 -

T

160 +

inner_goal = 154
outer_goal = 147

average = 151.6
std dev = 3.09

150 +
140 +
130 J
120 ~— 1
= — o™ v O ~ oo =) S i o o - e O
| i — - i 4 o)

Time (sec)

wall

TN

v

iInner

outer

void left ()

{ 180 -
motor (RIGHT_MOTOR, 100) ; [goal = 150
motor (LEFT _MOTOR, 50) ; 170 1
} average = 149.0
o std dev=1.72
Z 160 +
void right () >
{ Z 150 |
motor (LEFT_MOTOR, 100); 3
motor (RIGHT MOTOR, 50); T 140 4
} =
130 +
12() { 4 4 4 4 4 G 1

+
— T y 1 1
N

- - O r~ 0 (=)

10 L
11 4
12 +
13 4
14 |
5

16 1

Time (sec)

SUM AMPLIFY CONTROL

the
input sign error energy
(desired state) ® slgnal mput 02';:;;:"::"
feedback signal

(measured or actual state)

Mm< WS OO -

reference value

error

controller

output from controller to control P
plant, controlled system

state of P

feedback to controller

LEGO® MINDSTORMS ™ NXT

LEJOS pos ,
® © Java for LEGO Mindstorms .m|nd5an‘m5

Home
NXT Brick
leJOS NXJ
API
PC API
Tutorial
Downloads
RCX Brick
leJOS RCX
API
Tutorial
Downloads
FAQ
Forum
Books
Links
Contact

SOURCER. RGE™
Jnet nxr

o
o
v
-~
i~
o

4. java.net

pva —MEMBDER —

JVM NXT Brick, lcommand JVM RCX Brick
technology, ... (60> (60

LEUOSwas:

February 06, 2012 11:30 PM
leJOS NXJ 0.9.1 is available for download. Big thanks to all eJOS developer who made that happen.

B This release includes many bug fixes, new sensor drivers, and even new |eJOS tools such as
nxjchartinglogger and nxjmapcommand. Consult the release notes included with any release for a detailed

list of changes.

Getting Started with leJOS NXJ

First of all you should go to NXJ downloads to find the version

When downloaded and unpacked you are ready to install leJOS
README file contained in the 1eJOS download. This is the co

In the 1leJOS Tutorial there is a more readable description of the

¢ In Getting started select the operating system to be used. .

NXT Programming

Lesson 1
In this lesson we build a LEGO car to be controlled by the LEGO Mindstorms NXT. Then we install the leJOS Java

system. [1]. and use this to compile and upload a Java program to the NXT. The program will make the car follow a black
line on a white surface.

The 9797 LEGO car

In the LEGO Mindstorms Education NXT Base Set 9797 there is a building instruction for a car, page 8 to page 22. Page 32
to page 34 shows how a light sensor can be added to the car. Build this car with a light sensor added.

Figure 1 The 9797 LEGO car with two motors.

A Java Control Program: LineFollower

The first Java program that we are going to execute on the NXT is the following Java program that makes the LEGO car
follow a black line on a white surface: (LineFollower.java):

Date:
Duration of activity:
Group members participating:

Furthermore, each activity should be described by:

> a goal (or goals) for this activity, maybe with a list of subgoals,
> a plan for the activity including a description of methods that lead to fulfillment of the goal(s),

> results obtained including descriptions of

> experiments together with a description that other groups can use to reproduce your experiments,
> programming attemts with program segments and links to programs,

> output from programs,

> measurements,

> pictures of LEGO models,

> problems encountered.

> a conclusion with a status and suggestions for what to do next.

> references to papers, web pages or copied material.

R2MeeToo

import lejos.nxt.*;
import lejos.navigation.*;

F
pa

Maximum LEGO NXT: Building Robots with Java Brains
ISEN-13: 9788973864915
Variant Press (C) 2087
1st Edition - Chapter 2
R2MeToo robot
Flatform: ledJ0S NXJ
Rauthor Brian Bagnall
j@version Sept-4-20@7
*
public class R2MeToo 4

* R X E E X X ¥

static final float WHEEL_DIAM = S.6F;
static final float TRACK_W = 13F;
static final int INTERVAL = 45;
static final int SWEEP = 368 - 98;

static UltrasonicSensor us = new UltrasonicSensor{SensorPort.S1);
static LightSensor ls = new LightSensor{SensorPort.S3, true);
static Pilot sc = new Pilot{WHEEL_DIAM, TRACK_W, Motor.C, Motor.B, true);

public static void main{String [] args} throws Exception 4
Motor .A.setSpeed(85@); // Head speed
sc.setSpeed(700); // Movement speed
sc. forward(};

whi le{!'Button.ESCAPE. isPressed{)} 4

if{us.getDistance{) < 45) {
sc.stop();
Sound . twoBeeps{);
sc.rotate{getBestDir{));
sc. forward(};

¥
Thread.sleep{208);

¥

/{ Rotate head and find longest direction
public static int getBestDir{) {
ls.setFloodlight{true);
int bestDir = 85
int bestDist = 85
for{int i=—SWEEP/2;i<SWEEP/2;i = i + INTERYAL) {
Motor.A.rotateTo{i * 9); // 9 = gear ratio
int curDist = us.getDistance(};
if{curDist > bestDist) bestDir = i;
if{curDist > 208) break;

¥

Motor .A.rotateTo{@};
ls.setFloodlight{false);
return bestDir;

1mport lejos.nxt.*;
1mport lejos.navigation.*;

static final float WHEEL_DIAM = 5.6F;
static final float TRACK_W = 13F;

static UltrasonicSensor us = new UltrasonicSensor(SensorPort.S1);
static LightSensor ls = new LightSensor(SensorPort.S3, true);
static Pilot sc = new Pilot(WHEEL_DIAM, TRACK_W, Motor.(C, Motor.B, true);

‘while(!Button.ESCAPE.1isPressed()) {

1f(us.getDistance() < 45) {
sc.stop();
Sound.twoBeeps();
sc.rotate(getBestDir());
sc.forward();

}
Thread.sleep(200);

/¢ Rotate head and find longest direction
public static int getBestDir{) 4
ls.setFloodlight{ true);
int bestDir = 83
int bestDist = 63
for{int i=—SWEEP/2;i<SWEEP/2;i = i + INTERVAL) {
Motor.A.rotateToli * 9); // 9 = gear ratio
int curDist = us.getDistance();
i f{curDist > bestDist) bestDir = i;
if{curDist > 208) break;

b

Motor .A.rotateTo(d);
ls.setFloodlight{false);
return bestDirg

¥

Lab session projects

PID controller

Plant /
Process

Plan for Q3

Week 5 + 6 Introduction and
installation of leJOS

Week 7 to 10 Lectures and lab sessions

Week 11 Lecture and graded lab session

