

Beauty and the Beast
Toward a Measurement Framework for

Example Program Quality

Jürgen Börstler, Micheal E. Caspersen, Marie Nordström

UMINF-07.23
ISSN-0348-0542

UMEÅ UNIVERSITY
Department of Computing Science

SE-901 87 UMEÅ
SWEDEN

Beauty and the Beast
Toward a Measurement Framework for Example Program Quality

Jürgen Börstler

Department of Computing Science, Umeå University, SE-90187 Umeå, Sweden
jubo@cs.umu.se

Michael E. Caspersen

Department of Computer Science, University of Aarhus, DK-8200 Aarhus N, Denmark
mec@daimi.au.dk

Marie Nordström

Department of Computing Science, Umeå University, SE-90187 Umeå, Sweden
marie@cs.umu.se

ABSTRACT
Examples are important tools for programming education. In this paper, we investi-
gate desirable properties of programming examples from a cognitive and a measure-
ment point of view. We argue that some cognitive aspects of example programs are
“caught” by common software measures, but they are not sufficient to capture all im-
portant aspects of understandability. We propose a framework for measuring the un-
derstandability of example programs that also considers factors related to the usage
context of examples.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information Science Education - Computer Science Education.

General Terms
Design, Measurement.

Keywords
CS1, Programming Examples, Measurement, Understandability.

mailto:jubo@cs.umu.se

1. INTRODUCTION
Example isn’t another way to teach. It is the only way
to teach. [A. Einstein]

Examples are important teaching tools. Research in cog-
nitive science confirms that “examples appear to play a
central role in the early phases of cognitive skill acquisi-
tion” [35]. More specifically, research in cognitive load
theory has shown that alternation of worked examples
and problems increase the learning outcome compared to
just solving more problems [31, 32].

Students use examples as templates for their own work.
Examples must therefore be easy to generalize. They
must be consistent with the principles and rules of the
topics we are teaching and free of any undesirable prop-
erties or behaviour. If not, students will have a difficult
time recognizing patterns and telling an example’s super-
ficial surface properties from those that are structurally
important and of general importance.

Perpetually exposing students to “exemplary” examples,
desirable properties are reinforced many times. Students
will eventually recognize patterns of “good” design and
gain experience in telling desirable from undesirable
properties. Trafton and Reiser [32] note that in complex
problem spaces, “[l]earners may learn more by solving
problems with the guidance of some examples than solv-
ing more problems without the guidance of examples”.

With carefully developed examples, we can minimize the
risk of misinterpretations and erroneous conclusions,
which otherwise can lead to misconceptions. Once estab-
lished, misconceptions can be difficult to resolve and
hinder students in their further learning [8, 27].

But how can we tell “good” from “bad” examples? Can
we measure the quality of an example?

2. PROPERTIES OF GOOD EXAM-
PLES

Any fool can write code that a computer can under-
stand. Good programmers write code that humans can
understand. [M. Fowler]

Programming is a human activity, often done in teams.
About 40-70% of the total software lifecycle costs can be
attributed to maintenance and the single most important
cost factor of maintenance is program understanding
[33]. That said, Fowler makes an important point in the
quote above. In an educational context, this statement is
even more important. In the beginning of their first pro-
gramming course, students can’t even write a simple pro-
gram that a computer can understand.

A good example must obviously be understandable by a
computer. Otherwise it cannot be used on a computer and
would therefore be no real programming example.

A good example must also be understandable by stu-
dents. Otherwise they cannot construct an effective men-
tal model of the program. Without “understanding”,
knowledge retrieval works on an example’s surface prop-
erties only, instead of on its more general underlying
structural properties [10, 32, 35].

A good example must also effectively communicate the
concept(s) to be taught. There should be no doubt about
what exactly is exemplified. To minimize cognitive load
[25], an example should furthermore only exemplify one
(or very few) new concept at a time.

The “goodness” of an example also depends on “exter-
nal” factors, like the pedagogical approach taken. E.g.,
when our main learning goal is proficiency in object-
oriented programming (in terms of concepts, not specific
syntax), our examples should always be truthfully object-
oriented and “exemplary”, i.e. they should adhere to ac-
cepted design principles and rules and not show any
signs of “code smells” [12, 22, 28]. If examples are not
consistently truthfully object-oriented, students will have
difficulties picking up the underlying concepts, princi-
ples, and rules.

These three properties might seem obvious. However, the
recurring discussions about the harmfulness or not of cer-
tain common examples show that there is quite some dis-
agreement about the meaning of these properties [1, 38].

3. SOFTWARE MEASUREMENT
When you can measure what you are speaking about,
and express it in numbers, you know something about
it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meagre
and unsatisfactory kind. [Lord Kelvin]

From our discussion in the previous sections, it would be
desirable to find some way of determining the under-
standability of a programming example. A suitable meas-
ure could help us choose between existing examples and
guide the development of new ones.

According to SEI’s quality measures taxonomy, under-
standability is composed of complexity, simplicity, struc-
turedness, and readability [29]. Bansiya and Davis [3]
describe understandability as “[t]he properties of the de-
sign that enable it to be easily learned and compre-
hended. This directly relates to the complexity of the de-
sign structure”.

There are large bodies of literature on software meas-
urement [4, 14, 26] and program comprehension [5, 6,
13, 21]. However, the work on software measurement fo-
cuses mainly on the structural complexity of software.
There is only little work on measuring the cognitive as-
pects of complexity [7, 30]. The work on program com-
prehension focuses on the cognitive aspects, but is

mainly concerned with the comprehension process and
not with software measurement.

4. ONE PROBLEM, TWO SOLU-
TIONS

Technical skill is mastery of complexity, while creativ-
ity is mastery of simplicity. [C. Zeeman]

Let us forget for a moment about actual software meas-
ures and look at two example programs for implementing
a class Date, which could be part of some calendar appli-
cation: the Beauty and the Beast.

Please note that we do not claim that these examples are
either best or worse. They just exemplify a spectrum of
design choices for object-oriented example programs tar-
geted at novices, who are a few weeks into an introduc-
tory object-oriented programming course. Our examples
could be easily criticized for exhibiting undesirable prop-
erties, like for example the possibility of creating invalid
dates, insufficient commenting, or their lack of methods
for doing this and that. Solving all these “shortcomings”
might very well lead to better example programs, but
definitely not to ones more easily understood by novices.
Size actually matters. Adding more information and/or
properties, even well-meant tips, will increase cognitive
load, and will therefore very likely decrease understand-
ability [35].

4.1 The Beauty
The Beauty (Figure 4-1) is developed according to sound
principles of decomposition; we could call it extreme de-
composition. The Beauty consists of four classes: Date
with components Day, Month, and Year. A Date object
knows its Day, Month, and Year. The three classes Day,
Month, and Year are encapsulated as inner classes of the
Date class, since they are not relevant to the surround-
ings. Their existence is a result of our choice of represen-
tation for class Date (see Figure 4-2).

The Beauty is beautiful for several reasons. First, there is
an explicit representation of each of the key concepts in
the problem domain. These can work as clues (so-called
beacons) aiding in code comprehension [13]. Second, the
interfaces and implementations of all classes are very
simple and correspond closely to units in the problem
domain. The solution therefore constitutes an easily rec-
ognizable distribution of responsibilities. Third, carefully
chosen identifiers, matching problem domain concepts,
enhance the readability of the code. Fourth, extreme de-
composition reduces cognitive load by supporting inde-
pendent and incremental comprehension, development,
and test of each of the four component classes, as well as
each of the methods in the classes.

public class Date_Beauty {
 private Day day;
 private Month month;
 private Year year;

 public Date_Beauty(int y, int m, int d) {
 this.year = new Year(y);
 this.month = new Month(m);
 this.day = new Day(d);
 }
 public void setToNextDay() {
 day.next();
 }

 private class Day {
 private int d; // 1 <= d <= month.days()

 public Day(int d) {
 this.d = d;
 }
 public void next() {
 d = d + 1;
 checkOverflow();
 }
 private void checkOverflow() {
 if (d > month.days()) {
 d = 1;
 month.next();
 }
 }
 } // Day

 private class Month {
 private int m; // 1 <= m <= 12
 private final int[] daysInMonth=
 {0,31,28,31,30,31,30,31,31,30,31,30,31};
 /* 1 2 3 4 5 6 7 8 9 10 11 12 */

 public Month(int m) {
 this.m = m;
 }
 public int days() {
 int result= daysInMonth[m];
 if (m == 2 && year.isLeapYear()) {
 result = result + 1;
 }
 return result;
 }
 public void next() {
 m = m + 1;
 checkOverflow();
 }
 private void checkOverflow() {
 if (m > 12) {
 m = 1;
 year.next();
 }
 }
 } // Month

 private class Year {
 private int y;

 public Year(int y) {
 this.y = y;
 }
 public void next() {
 y = y + 1;
 }
 public boolean isLeapYear() {
 return
 (isMultipleOf(4) && !isMultipleOf(100))
 || isMultipleOf(400);
 }
 private boolean isMultipleOf(int a) {
 return (y % a) == 0;
 }
 } // Year
} // Date_Beauty

Figure 4-1: The Beauty

From the process point of view, The Beauty gives clues
of how one could compose a complex program from sim-
ple units (methods and classes), focusing on one unit at a
time.

A drawback of The Beauty is that one has to look into
several classes to get the full picture of the solution. This
problem can, however, be easily solved by providing a
class diagram, like the one in Figure 4-2.

Figure 4-2: UML diagram for the Beauty

4.2 The Beast
The Beast (Figure 4-3) is structured as one monolithic
method. We could say it was developed according the
principle of no decomposition.

class Date_Beast {
 private int day; // 1 <= day <= days in month
 private int month; // 1 <= month <= 12
 private int year;

 public Date_Beast(int y, int m, int d) {
 day = d;
 month = m;
 year = y;
 }
 public void setToNextDay() {
 int daysInMonth;
 if (month == 1 || month == 3 ||
 month == 5 || month == 7 ||
 month == 8 || month == 10 ||
 month == 12) {
 daysInMonth = 31;
 } else {
 if (month == 4 || month == 6 ||
 month == 9 || month == 11) {
 daysInMonth = 30;
 } else {
 if ((year%4 == 0 && year%100 != 0)
 || (year%400 == 0)) {
 daysInMonth = 29;
 } else {
 daysInMonth = 28;
 }
 }
 }
 day = day + 1;
 if (day > daysInMonth) {
 day = 1;
 month = month + 1;
 if (month > 12) {
 month = 1;
 year = year + 1;
 }
 }
 } // setToNextDay()
} // Date_Beast

Figure 4-3: The Beast

The Beast has the advantage of collecting everything in
one place. This leads to much less code in total. All nec-
essary information is contained in a single statement se-
quence. The drawbacks are however numerous.

First, there is no explicit representation of the key con-
cepts in the problem domain. Although this solution is
much smaller than The Beauty, it is nevertheless difficult
to get the full picture. It is not even possible to provide a
high-level diagram to resolve that problem, since all
processing is contained in a single method. Second, there
is mainly one long statement sequence where everything
is happening. Such an approach makes it impossible to
introduce meaningful identifiers as clues (beacons) aid-
ing in code comprehension. Third, the Beast shows no
signs of “work units” or “chunks” of information. That
makes it difficult to deconstruct the program and find ap-
propriate starting points for a code comprehension effort.
Fourth, The Beast is highly nested. Students have to keep
track of many conditions at the same time, which in-
creases cognitive load [25].

From the process point of view, The Beast does not lend
itself as a pattern for incremental development and test-
ing. Students might furthermore conclude that such a
program is constructed as a large monolithic unit

4.3 Conclusion
Large, monolithic units of code are difficult to under-
stand. To support code understanding a program should
therefore be decomposed into suitable units1. Such de-
composition will lead to a more complex design. One
could say that in The Beauty the complexity (and think-
ing) went into the design. As a result, the units of code
became simple. In The Beast the design is trivial, but the
code is quite complex. In fact, there are very few simple
units at all.

From an instructional design point of view, The Beauty
has a big advantage over The Beast. In The Beauty, we
are providing the difficult part (i.e. the design) and leave
the simpler part to the students. In The Beast, on the
other hand, the design is trivial, which leaves the more
difficult part to the students. If we, as the educators,
don’t consistently provide students with good role mod-
els for design, they will never be able to recognize pat-
terns of “good” design. But with bad designs, they will
always be left with unnecessarily difficult coding.

There is no doubt that solutions like the Beauty should be
preferred. The Beauty is not only superior in structure, it
is also superior from a learning theoretic point of view.

1 These units can be declarative, functional, or object-oriented.

The Beast could for example be improved significantly with-
out introducing further classes.

Date

+setToNextDay()

Day
Month

+next()
+days()
-checkOverflow()

Year
-daysInMonth[]

+next()
-checkOverflow()

+next()
+isLeapYear(): Boolean
-multipleOf(): Boolean

Small units reduce cognitive load [9, 25], structural simi-
larities support the recognition of programming plans or
patterns [6, 32, 35], and the frequent appearance of mne-
monic names help to give meaning to program elements
[10, 13].

The essence of developing programming examples is
finding an appropriate structure that supports understand-
ing, and hence learning. But when is one structure better
than another? And how much better is it? Can we pro-
vide a yardstick for measuring the potential understand-
ability of programs?

5. READABILITY AND UNDER-
STANDABILITY
A basic prerequisite for understandability is readability.
The basic syntactical elements must be easy to spot and
easy to recognize. Only then, one can establish relation-
ships between the elements. And only when meaningful
relationships can be established, one can make sense of a
program. Although readability is a component of under-
standability in SEI’s quality measures taxonomy [29] and
there is a large body of literature on software measure-
ment, we couldn’t find a single publication on measures
for software readability.

5.1 The Flesch Reading Ease Score
The Flesch Reading Ease Score (FRES) is a measure of
readability of ordinary text [11, 36]. Based on the aver-
age sentence length (words/sentences) and the average
word length (syllables/words) a formula is constructed to
indicate the grade level of a text. Lower values of the ra-
tios indicate easy to read text and higher values indicate
more difficult to read text. I.e. the shorter the sentences
and words in a text, the easier it is to read.

Please note that FRES does not say anything about un-
derstandability. The FRES is just concerned with “pars-
ing” a text. Its understanding depends on further factors,
like for example familiarity of the actual words, sentence
structure, or reader interest in the text’s subject.

Flesch’s work was quite influential and has been applied
successfully to many kinds of texts. There are also meas-
ures for other languages than English.

5.2 A Reading Ease Score for Soft-
ware
Following the idea of Flesch, we propose a Software
Readability Ease Score (SRES) by interpreting the lex-
emes of a programming language as syllables, its state-
ments as words, and its units of abstraction as sentences.
We could then argue that the smaller the average word
length and the average sentence length, the easier it is to

recognize relevant units of understanding (so-called
“chunks” [9, 15, 24, 25]).

A chunk is a grouping or organization of information, a
unit of understanding. Chunking is the process of reor-
ganizing information from many low level “bits” of in-
formation into fewer chunks with many “bits” of infor-
mation [24]. Chunking is an abstraction process that
helps us to manage complexity. Since abstraction is a key
computing/programming concept [2, 16, 19], proper
chunking is highly relevant for the understanding of pro-
gramming examples.

Clearly, there are other factors influencing program read-
ability, like for example control flow, naming, and how
much the students have learned already. We will come
back to these factors in our discussion section. For a
good overview over code readability issues, see [10].

5.3 Documentation
Documentation can be in the form of comments in the
software itself and/or auxiliary information, like design
descriptions. From a software engineering point of view,
documentation is a key factor for software understand-
ability. However, with respect to instructional design, we
get a different picture. Research on worked examples and
cognitive load suggests that programming examples need
to be documented very carefully to avoid negative effects
on learning [34]. For example, when integrating multiple
sources of information cognitive load can usually be de-
creased, since the learners can more easily focus on the
important part(s) of an example. However, when redun-
dant information is integrated cognitive load can actually
increase. For novices, it seems difficult to just ignore in-
tegrated redundant information [34].

6. MEASURING UNDERSTAND-
ABILITY
As mentioned above, SRES only measures the readability
of a program, i.e. how easy a program is parsed by a hu-
man. Readability is necessary but not sufficient for un-
derstanding a program. Other factors such as the struc-
tural and cognitive complexity also influence understand-
ing. If we use cyclomatic
complexity (CC) [23] as a
measure of structural complex-
ity and Halstead’s difficulty
(D) [17] as a measure of cog-
nitive complexity, and calcu-
late these measures for the
Beauty and the Beast, we get the figures as shown in the
embedded table.

As indicated by the figures, the SRES measure is in fa-
vour of the Beauty. Even more so are the standard meas-

Program
Measure Beauty Beast
SRES 10.3 16.2
CC 3.0 17.0
D 7.9 43.2
Total (Σ) 21.2 76.4

ures of cyclomatic complexity and difficulty. This indi-
cates that understandability indeed could be measured (if
we accept that the Beast actually is more difficult to un-
derstand than the Beauty).

Of course, this is just an example; the programs we meas-
ure as well as the measures we apply are more or less
randomly chosen among countless options (see for ex-
ample [4, 14, 26]). To expand our investigation a bit, we
have investigated a number of other standard measures,
and we have extended the suite of program examples.

The measures we have investigated have been selected
for their reported significance in the literature; the se-
lected measures are presented in Table 1.

Selected measures
Acronym Description
LoC Total lines of code.

SRES The software reading ease score as described
in section 5.2.

CCmax(m)

Maximum cyclomatic complexity (CC) of
methods (m); the number of (statically) dis-
tinct paths through a method; should be <10
[23].

D The difficulty of a program, based on its
number of operators and operands [17].

avgV(c),
avgCC(c),
avgLOC(c)

Factors of the Maintainability Index, a meas-
ure with high predictive value for software
maintainability [37]. The measures report av-
erage values for Volume, V (size in terms of
the numbers operators and operands [17]),
CC, and LoC per class (c).

CC/LoC
Average CC per LoC, where CC is the sum
of the cyclomatic complexities of all meth-
ods; should be ≤0.16 [20].

LoC/m Average LoC per method, where m is the
number of methods; should be ≤7 [20].

m/c
Average number of methods per class, where
m and c are the number of methods and
classes, respectively; should be ≤4 [20].

WMC Weighted Method Count, the product of the
three previous measures; should be ≤5 [20].

Table 1: Selected candidate measures for understand-
ability.

The suite of program examples is extended from two to
five representing a continuum of programs solving the
Date problem: Beauty (E1), Good (E2), Bad (E3), Ugly
(E4), Beast (E5). E2 is the same as E1 except that daysIn-
Month is handled by nested if’s. E3 is the same as E2 ex-
cept that the classes are not nested. E4 is the same as E5
except that setToNextDay is decomposed into helper
methods.

The result of our investigation is captured in Table 2. For
all measures, lower values are considered better. Thresh-
old values suggested in the literature are given in column
T.

Program
Measure T E1 E2 E3 E4 E5
LoC 50 59 57 31 32
SRES 7±2 10.3 8.9 9.3 11.9 16.2
CCmax(m) 10 3 7 7 7 17
D 7.92 7.15 9.71 22.4 43.2
avgV(c) 387 412 363 752 798
avgCC(c) 10 4.8 6.25 5.25 14.0 18.0
avgLoC(c) 12.5 14.8 14.3 31.0 32.0
CC/LoC 0.16 0.4 0.42 0.37 0.45 0.56
LoC/m 7 2.9 3.27 4.09 6.75 14.0
m/c 4 3.3 3.75 2.75 4.0 2.0
WMC 5 3.6 5.2 4.1 12.2 15.8
 T E1 E2 E3 E4 E5

Table 2: Values of selected measures for sample pro-
grams.

7. DISCUSSION
Although the measures focus on different aspects of a
program, it can be noted that they “favour” programs
with high degrees of decomposition (E1−E4). This is not
surprising, since all research in software design and
measurement proposes decomposition as a tool to man-
age complexity. In relation to education it is important to
note that a high degree of decomposition also is an ad-
vantage from a cognitive point of view.

However, there are many important aspects of under-
standability not covered by any measure, like for exam-
ple the choice of names, commenting rate, etc. Any ex-
ample must furthermore take into account the educational
context, i.e. what the students already (are supposed to)
know.

8. A MEASUREMENT FRAME-
WORK
From the literature and our discussion above, we con-
clude that understandability is a complex concept that
cannot be captured by a single measure. It would there-
fore be useful to define simpler basic measures to capture
as many aspects as possible of understandability.

Since our context here is teaching and learning, we also
need to emphasize instructional design. We therefore also
have to consider factors related to the context of example
use.

Such a factorization would make it much easier to argue
about the many facets of understandability. A perfectly
structured program can very well be difficult to under-
stand, when all identifiers are chosen badly. Furthermore,
perfect values for all example factors are no guarantee
for an understandable program, when students have not
yet been introduced to the concepts used in the example.

Group 1 measures. These measures are all objective
program measures independent of the educational con-
text.

• Readability: Captures how easy a programming text
is to read, based on SRES or similar measures (see
section 5.2).

• Structural complexity: Captures the structural prop-
erties of an example program, based on measures
for control flow complexity, coupling, cohesion,
etc. (see for example [4, 14, 23, 26]).

• Cognitive complexity: Captures the effects of cogni-
tive load caused by the amount of information con-
tained in the “chunks” of an example program. Cog-
nitive complexity is only partly covered by existing
measures (see for example [7, 17, 18, 30]).

• Commenting: Captures how well an example pro-
gram is commented.

• Size: Captures the size of an example program,
based on a common size measure, like for example
LoC or the number of executable statements.

Group 2 measures. These measures are still objective
program measures, but they depend on the educational
context. Guidelines and rules are for example not univer-
sally accepted. Measurement can therefore only be rela-
tive to guidelines and rules used/taught in a particular
educational context.

• Consistency: Captures how well an example pro-
gram follows accepted design principles and rules.

• Presentation: Captures the degree of conformance
to a style guide or standard or the similarity of style
with other examples.

Measures for consistency and presentation could for ex-
ample be based on the number of “smells” with respect to
violations of guidelines, rules or styles. To capture fac-
tors related to instructional design, one could define spe-
cific “educational smells” in accordance with Fowler’s
“code smells” [12]. There is a range of tools that could be
used to evaluate such violations, like for example PMD2
or Checkstyle3.

Group 3 measures. These measures depend on a pro-
grams context. They take into account how an example is
used.

• Vocabulary: Captures the familiarity of the names
occurring in an example. Identifiers are important
beacons during program comprehension [13]. Con-
cepts should be named unambiguously to avoid con-
fusion. It seems therefore advisable to “reuse” terms
from the problem or example description in the

2 http://sourceforge.net/projects/pmd
3 http://checkstyle.sourceforge.net/index.html

code. Suitable measures could for example consider
the size of the vocabulary and “reuse factor” of
identifiers.

• Progression: Captures how well an example “fits”
with what the students (are supposed to) know. This
factor is most difficult to measure, because it de-
pends on the short term learning goals for a particu-
lar example program. However, there are also gen-
eral educational aspects, like the number of new
concepts introduced, that could be considered.

For the group 3 measures, more research into the learning
sciences is necessary to define suitable and more con-
crete actual measures.

9. CONCLUSION AND FUTURE
WORK
In this paper, we have discussed understandability of ex-
ample programs from a cognitive and a measurement
point of view. We argue that common software measures
are not sufficient to capture all relevant aspects of under-
standability of example programs. To be useful in an
educational context such measures should emphasize fac-
tors like cognitive load and instructional design to a
higher degree.

We also propose and discuss a new measure for software
readability (SRES). We conclude that all these measure,
although useful, lack in their disregard of factors related
to the usage of examples. Based on our discussion, we
propose a framework for measuring the understandability
of programming examples that aims to take such factors
into account.

In future research we aim at fine-tuning and empirically
validating our measurement framework by studying a
wide variety of example programs from introductory pro-
gramming textbooks and course materials.

10. REFERENCES
[1] ACM Forum “`Hello, World' Gets Mixed Greet-

ings”, Communications of the ACM, Vol 45(2),
2002, 11-15.

[2] Armstrong, D. “The Quarks of Object-Oriented De-
velopment”, Communications of the ACM, Vol
49(2), 2006, 123-128.

[3] Bansiya, J., Davis, C. G. “A Hierarchical Model for
Object-Oriented Design Quality Assessment”, IEEE
Transactions on Software Engineering, Vol 28(1),
2002, 4-17.

[4] Briand, L., Wüst, J. “Empirical Studies of Quality
Models in Object-Oriented Systems”. In M. Zelk-
ovitz (ed.) Advances in Computers, Academic Press,
Vol 56, 2002, 1-46.

[5] Brooks, R. “Towards a Theory of the Comprehen-
sion of Computer Programs”, Intl. J. Man-Machine
Studies, Vol 18(6), 1983, 543-554.

[6] Burkhardt, J.-M., Détienne, F., Wiedenbeck, S. “Ob-
ject-oriented Program Comprehension: Effect of Ex-
pertise, Task and Phase”, Empirical Software Engi-
neering, Vol 7, 2002, 115-156.

[7] Cant, S. N., Henderson-Sellers, B., Jeffery, D. R.
“Application of cognitive complexity metrics to ob-
ject-oriented programs”, Journal of Object-Oriented
Programming, Vol 7(4), 1994, 52-63.

[8] Clancy, M. “Misconceptions and attitudes that infere
with learning to program”. In S. Fincher and M.
Petre (eds.) Computer Science Education Research.
Taylor & Francis, 2004, 85–100.

[9] Clarck, R, Nguyen, F and Sweller, J. Efficiency in
Learning: Evidence-Based Guidelines to Manage
Cognitive Load, Pfeiffer, John Wiley & Sons, 2006.

[10] Deimel, L. E., Naveda, J. F. “Reading Computer
Programs: Instructor’s Guide and Exercises”,
CMU/SEI-90-EM-3, Software Engineering Institute,
1990.

[11] Flesch, R. “A new readability yardstick”, Journal of
Applied Psychology, Vol 32, 1948, 221-233.

[12] Fowler, M. Refactoring: Improving the Design of
Existing Code, Addison-Wesley, 2000.

[13] Gellenbeck, E. M., Cook, C. R. “An Investigation of
Procedure and Variable Names as Beacons During
Program Comprehension”, Proc. 4th Workshop on
Empirical Studies of Programmers, 1991, 65-81.

[14] Genero, M., Piattini, M., Calero, C. “A Survey of
Metrics for UML Class Diagrams”, Journal of Ob-
ject Technology, Vol 4(9), 2005, 59-92.

[15] Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C.
H., Jones, G., Oliver, I., & Pine, J.M. “Chunking
Mechanisms in Human Learning” Trends in Cogni-
tive Sciences, Vol 5, 2001, 236-243.

[16] Görz, G.: “Abstraction as a Fundamental Concept in
Teaching Computer Science”, Les langages applica-
tifs dans l'enseignement de l'informatique, Specif no.
special 93, Rennes/Paris, 1993, 168-178.

[17] Halstead, M. H. “Toward a theoretical basis for es-
timating programming effort”, Proc of the Annual
ACM Conference (ACM/CSC-ER), 1975, 222-224.

[18] Khoshgoftaar, T. M., Allen, E. B. “Empirical As-
sessment of a Software Metric: The Information
Content of Operators”, Software Quality Journal,
Vol 9, 2001, 99-112.

[19] Kramer, J. “Abstraction—the key to Computing?”
Communications of the ACM, to appear.

[20] Lanza, M., Marinesu, R. Object-Oriented Metrics in
Practice, Springer, 2006.

[21] Li, Y., Yang, H. “Simplicity: A Key Engineering
Concept for Program Understanding”, Proc. 9th In-
ternat. Workshop on Program Comprehension,
2001.

[22] Martin, J. Principles of Object-Oriented Analysis
and Design, Prentice Hall, 1993.

[23] McCabe, T. J. “A complexity measure”, IEEE
Transactions on Software Engineering, Vol 2(4),
1976, 308–320.

[24] Miller, G.A. “The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capacity for Proc-
essing Information”, The Psychological Review, Vol
63, 1956, 81-97.

[25] Paas, F., Renkl, A. and Sweller, J. “Special Issue on
Cognitive Load Theory”, Educational Psychologist,
Vol 38 (1), 2003.

[26] Purao, S., Vaishnavi, V. “Product Metrics for Ob-
ject-Oriented Systems”, Computing Surveys, Vol
35(2), 2003, 191-221.

[27] Ragonis, N., Ben Ari, M, “A long-term investigation
of the comprehension of OOP concepts by novices”,
Computer Science Education, Vol 15(3), 2005, 203-
221.

[28] Riel, A. Object-Oriented Design Heuristics, Addi-
son-Wesley, 1996.

[29] SEI (Software Engineering Institute) “Quality Meas-
ures Taxonomy”,
http://www.sei.cmu.edu/str/taxonomies/view_
qm.html, Dec 2006, accessed Jan 11, 2007.

[30] Shao, J., Wang, Y. “A new measure of software
complexity based on cognitive weights”, Can. J.
Elect. Comput. Eng., Vol 28(2), 2003, 1-6.

[31] Sweller, J. and Cooper, G.A. “The Use of Worked
Examples as a Substitute for Problem Solving in
Learning Algebra”, Cognition and Instruction, Vol.
2, 1985, 59-89.

[32] Trafton, J. G., Reiser, B. J. “Studying Examples and
Solving Problems: Contributions to Skill Acquisi-
tion”, Naval HCI Research Lab, Washington, DC,
1992.

[33] Tryggeseth, E. “Support for Understanding in Soft-
ware Maintenance”, PhD thesis, Norwegian Univer-
sity of Science and Technology, Trondheim, Nor-
way, 1997.

[34] van Gog, T., Paas, F., van Merriënboer, J.J.G.: Proc-
ess-Oriented Worked Examples: Improving Transfer
Performance Through Enhanced Understanding. In-
structional Science, Vol 32(1-2), 2004, 83-98.

[35] VanLehn, K. “Cognitive Skill Acquisition”, Annual
Review of Psychology, Vol 47, 1996, 513-539.

[36] Wikipedia “Flesch-Kincaid Readability Test”,
http://en.wikipedia.org/wiki/Flesch-
Kincaid_Readability_ Test, Jan 8, 2007, accessed
Jan 12, 2007.

[37] Welker, K. D. “The Software Maintainability Index
Revisited”, CrossTalk, Aug 2001.

[38] Westfall, R. “`Hello, World´ Considered Harmful”,
Communications of the ACM, Vol 44(10), 2001,
129-130.

