
A Template for Teaching Computational Modelling in High School
Line Have Musaeus∗

lh@cs.au.dk
Center for Computational Thinking &

Design, Aarhus University
Aarhus, Denmark

Michael E. Caspersen
Center for Computational Thinking &

Design, Aarhus University
Aarhus, Denmark

Peter Musaeus
Centre for Educational Development,

Aarhus University
Aarhus, Denmark

ABSTRACT
Computing education is becoming increasingly important in high
schools. Computational modelling is important in computing and
many sciences, but there is a lack of research on how teachers
should teach computational modelling in high schools. This study
was a design-based research study with 86 teachers teaching 12
different subjects at 44 Danish high schools. The study aimed to
develop a template to help design and classify didactical ques-
tions on computational modelling. Teachers participated in one of
two courses on computational modelling. The intervention group
(Prog+) included an introduction to agent-based modelling and
programming in NetLogo. The comparison group (Prog-) included
a general introduction to agent-based modelling. A template con-
sisting of 16 modelling parameters was developed with teachers.
Results showed that the template was helpful for teachers to design
didactical questions and for the research team to classify the taxo-
nomical levels of these questions. A total of 51 teaching activities
were developed by teachers and didactical questions were derived.
The strength of this design based research study was that it in-
cluded a control group and inspired teachers to design and evaluate
didactical questions in computational modelling in a wide range
of high school subjects. Future studies are needed to evaluate the
validity of the template.

CCS CONCEPTS
• Social and professional topics → Computational thinking;
K-12 education.

KEYWORDS
Computational modelling, Computational thinking, High school
education, K-12 education, Professional development, Design-based
research

ACM Reference Format:
Line Have Musaeus, Michael E. Caspersen, and Peter Musaeus. 2023. A
Template for Teaching Computational Modelling in High School. In The
18th WiPSCE Conference on Primary and Secondary Computing Education

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0851-0/23/09. . . $15.00
https://doi.org/10.1145/3605468.3609754

Research (WiPSCE ’23), September 27–29, 2023, Cambridge, United Kingdom.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3605468.3609754

1 INTRODUCTION
Computational modelling is an important scientific activity that
allows scientists to make educated guesses such as forecasting the
weather, predicting elections, or tracking contagious diseases. Not
only scientists, but also science educators use computational models
to build abstractions and visualize scientific phenomena [34, 44, 54].
Teachers need to be introduced to computational modelling as an
educational and scientific activity. Further training is necessary for
teachers to acquire the skills needed to design teaching activities
that stimulate students’ learning of computational modelling.

Computationalmodelling is associatedwith computational think-
ing [22, 32, 64]. Computational thinking can be defined as a person’s
thought processes in formulating and preparing a problem for a
computational solution [14, 15, 21]. Research is emerging on K-12
students’ learning of computational thinking in different subjects is
emerging [14, 15, 21], including computer science [6, 50], physics
[25], biology [28, 55], and the liberal arts [16, 29]. Arguably, educa-
tional researchers have focused more on computational thinking
than computational modelling [63].

There are two challenges in teaching computational modelling in
high school. First, there is no consensus on how computational mod-
elling should be taught [32]. However, Sengupta and Wilensky [51]
showed that agent-based models can foster students’ computational
thinking and modelling [51]. They noted the lack of consensus in
science education on how teachers should use agent-based com-
puter models in their classrooms. Second, high-school teachers
might not be well-trained in computing. However, researchers have
found agent-based modelling environments helpful for teaching
students who are not familiar with computing [2, 66]. Specifically,
agent-based modelling environments have been shown to support
students’ learning of subject matter [7].

The present study was a design based research study exploring
teaching activities. We developed a template to classify and stimu-
late teachers’ design of didactical questions. A template is a rubric
that can help in the design and evaluation of teaching activities. It
is generic in the sense that it uses a summarized format to guide
teaching not only in specific subjects, but in general. The template
was developed in collaboration with 86 teachers in 12 different high
school subjects including the natural and social sciences, and the
humanities. The participants came from 44 Danish high schools.
Given the lack of research on teaching resources, we deemed it
relevant to develop a template using a design based research design.
Further studies will need to evaluate the validity and effectiveness
of the template.

https://orcid.org/0000-0002-2915-2767
https://doi.org/10.1145/3605468.3609754
https://doi.org/10.1145/3605468.3609754

WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom Line Have Musaeus, Michael E. Caspersen, and Peter Musaeus

The study was guided by two research questions. First, what
parameters should be included in a template aimed to help teachers
design teaching activities about computational modelling? Second,
can the developed template classify teachers’ didactical questions
about computational modelling?

In the paper, we begin by presenting the methodology and design
of the template. Subsequently, we discuss how the parameters in
the template were operationalized. Next, we evaluate the template.
Finally, we discuss how it can be used to evaluate and guide the
design of new teaching activities.

Figure 1: Computational modelling of a subject and a com-
puting domain.

2 BACKGROUND
Researchers have made major contributions to different levels of un-
derstanding models and modeling in science [18, 40]. Also, there is
important research on students’ understanding of models including
work on mental models [17, 60]. As pointed out by Krell, Upmeier
zu Belzen, and Krüger [30] some studies suggest the existence of
global levels of understanding models [20], others propose aspect-
dependent levels [12]. According to Krell, Upmeier zu Belzen, and
Krüger [30], research supports the idea of considering different
aspects of models and modeling and propose the model of model
competence as a theoretical framework. Inspired by Crawford and
Culling [12], Krell et al. [30] derive at five aspects: nature of models,
multiple models, purpose of models, testing models, and changing
models, with three levels of understanding for each aspect. This re-
search on complexity in understanding can be used in the classroom
as part of an action cycle where students and teachers generate,
evaluate and then modify models [9, 30]. At every step of this cycle,
the science teacher can ask students for clarifications.

Clement [9] used the term discrepant question to refer to a
thought-provoking question or problem that challenges students’
existing scientific beliefs. Questions can be posed by the teacher
in order to create a cognitive conflict between students’ precon-
ceptions versus the scientific models being taught by the teacher.
Questions are important in teaching and doing science. Lehrer and
Schauble [35] found in the context of teaching mathematics and
science in K12 that data modeling can be taught through a chain of
inquiry fueled by posing questions. Questions help the student and

teacher deliberately selecting and amplifying particular attributes
for further study. Passmore and Svoboda [45] argue that modelling
in science is inherently an argumentative act. They formulate a
model where inquiry-based science teaching evolves around what
in a scientific community are worthwhile questions. Furthermore,
in the field of computing education, Li et al. [36] argue that CT is
more about thinking than computing and involves incrementally
improving strategies for searching for ways of processing informa-
tion. This involves asking questions about what achieves the most
elaborate or efficient abstraction or computational model.

The research on models in education is interdisciplinary, and
there is no easy way of informing teachers on the basis of the above
literature on how to teach computational modelling. Empirical and
theoretical research is needed to bridge these areas. Collaborative
work is needed to help teachers in formulating an overview of
questions that might lead to student inquiry into computational
modelling. In summary, with this study, we aimed to design a tem-
plate that served two purposes. First, for high school teachers to see
examples of didactic questions that they could use in lessons and
second for researchers to have a tool to classify teachers’ questions.

Teachers might find computational thinking to be an important
set of competences for students to gain. Sentance and Csizmadia
[52] found that computational thinking was one of the five most
frequently mentioned themes, that constitutes a successful strat-
egy for teaching computing, by more than 300 K-12 computing
teachers’ evaluations. However, even if teachers perceive a need to
teach computational thinking, teachers have different competen-
cies. Yadav et al. [68] investigated pre-service teachers’ perception
of their ability to teach computational thinking. The study found
that while teachers believe that computational thinking is an es-
sential skill for students to learn, only one third of the teachers
were confident they could teach computational thinking. There is
no agreement amongst educational scientists on whether compu-
tational thinking should be taught solely in computing education
classes or integrated into different high school subjects [58]. This
challenge become even more complex when we consider both com-
putational modelling and computational thinking, which are closely
aligned but not identical. Hence, there is a need to teach teachers
how to teach computational thinking and computational modelling
as part of computational thinking.

But why and what should teachers teach? There is evidence that
teaching students about modelling might aid the students to mas-
ter other fields. A study by Schwarz and White [48] suggests that
students’ appropriation of knowledge about modelling can produce
learning transfer. Furthermore, Chandrasekharan and Nersessian
[8] found that computer models facilitate student thinking about
natural phenomena and thus lead to new scientific insights. In
essence, modelling seems to help students construe basic structures
in their ways of making sense of both the everyday and scientific
world [24]. A study by Jackson et al. [26] describes modelling as a
process of making and using models to describe, explain, predict,
and design natural phenomena. Competence in computational mod-
elling draws upon proficiency in scientificmodelling and computing
[48, 54].

Through computational modelling, students learn to identify
real-world phenomena and to find proper representations of these

A Template for Teaching Computational Modelling in High School WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom

phenomena via concepts and abstractions embedded in computa-
tional models (see Figure 1). By relating one domain to another,
students are able to understand a computational model [41, 44].
Figure 1 depicts computational modelling into two categories of
domain: subject-specific and computer specific. The computational
modelling process is an iterative process between a subject do-
main and a computing domain, and teachers’ didactical questions
related to the two domains can foster students’ computational mod-
elling process. A study by Sins et al. [53] found that students rea-
soned most efficiently during scientific modelling when they were
able to focus on both parts and wholes of computer models. This
finding led us to stipulate that teachers should present both parts
and wholes of computer models. Research [43] have found that
high school teachers can effectively teach computational modelling
without first having to introduce complex computing concepts
that underpin modelling. It motivates students to learn to grasp
complex phenomena and when computational modelling allows
students to visualize and manipulate complex phenomena, this is
indeed reported by students as stimulating. Furthermore, in the
secondary classroom, a study by Jacobson et al. [27] investigated
learning designs involving different sequences for the structure of
problem-based activities with agent-based computer models of the
physics of electricity. They found that students participating in a
low-to-high structure learning sequence scored higher on a post-
test assessment of student conceptual understanding. In summary,
these results concerning the structure and introduction of teaching
activities can guide the design of teaching activities for students
in computational modelling in the intricate relationship between
computational thinking and computational modelling.

2.1 This study
In this study, we focused on didactical questions in order to help
teachers to stimulate student problem-solving (see Table 3). Didac-
tical questions refers vc to queries intended to challenge or probe
student understanding. This is sometimes in the literature called
Socratic questioning [46]. In this study, didactical questions and a
computer model form the basis for a teaching activity. Teaching
activities enable students to develop knowledge and skills required
to achieve the desired educational outcome. Teaching activities
can be a variety of activities including lectures, tutorials, concept
mapping, and questioning [3]. The teaching activities in this study
helped guide students to explore and modify computer models. The
computer models represented subject-specific phenomena, which
students then gained insight into. The didactical questions were
formulated by teachers, who asked the students to relate the subject
domain to the computing domain (see Figure 1).

In collaboration with high school teachers, we developed a gen-
eral template with didactical questions relating to computational
modelling in different high school subjects (see Table 3). The teach-
ing template had four advantages from the perspective of teachers.
First, it helped the teacher to plan the class. When teachers focused
on a subset of the 16 parameters, the template was perceived as
relatively easy to fill out. This helped the teacher to formulate a
concrete plan for teaching activities in advance of teaching. Second,
the template was a design tool that helped the teachers diagnose

students’ problems had in understanding scientific and computa-
tional models. Third, the identification of the problem helped the
teacher to identify a teaching activity to ameliorate the problem. For
instance, one teacher reported that the template helped the teacher
identify a student, who struggled with the mental act of decom-
posing, by asking the student to identify the elements included in
the computer model (see Table 3). Finally, the template helped high
school teachers formulate didactic questions concerning modelling
at different taxonomic levels.

3 METHOD
3.1 Research design
This study was inspired by design-based research, but contrary to
most design-based research, the study included a comparison group.
The Design-Based Research Collective [10] conceived of this type
of research as both a methodology to study learning and improve
educational practice. Design-based research has gained attention
in computing education research [37] and in STEM education, for
instance in biology [49]. This could be because of its breadth of
scope, integrating the scientific study of student learning with a
focus on teaching innovation where both learning and teaching are
mediated by a novel design or technology.

We were inspired by the pioneering work by Collins et al. [11]
on design research where researchers and educators collaborate
in all phases of the research process from idea to implementation.
This speaks to the fluidity and adaptability of this type of research
as “Design-based research is not so much an approach as it is a
series of approaches, with the intent of producing new theories,
artefacts, and practices that account for and potentially impact
learning and teaching in naturalistic settings” [1]. In designing this
study, we took note of a review by Warr and Mishra [62] arguing
that teachers should be viewed as designers or collaborators in
the design process. Arguably, the teacher has been overlooked in
design-based research [57]

The teaching template was a design, which could only be devel-
oped, implemented, and evaluated in collaboration. Other design-
based research studies have focused on teachers’ professional devel-
opment [61, 69]. Thus, the study focused on developing a template
as part of teachers’ professional development. The teachers in this
study participated together with a research team of four experts in
computing education, computer science, and educational psychol-
ogy.

The design process involved four researchers and 86 teachers.
The reason for using design based research to develop a template for
teaching activities, rather than assessing effectiveness, was the lack
of research on computational modelling in high school education.

NetLogo [65] was used in two courses. NetLogo is a widely used
agent-based programming environment developed specifically for
educational purposes. Examples of computer models developed in
the NetLogo programming environment and used by teachers can
be seen in Table 1. According to Blikstein et al. [5], NetLogo has
a “low threshold and high ceiling” (p. 1), meaning is it easy for
novice programmers to work with. Furthermore, NetLogo is freely
available online and regularly maintained by a group of experts.
Research has demonstrated that NetLogo might facilitate students

WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom Line Have Musaeus, Michael E. Caspersen, and Peter Musaeus

Table 1: Examples of computer models with interface and code: Top: developed by a participant in the Prog+ group. Bottom:
developed by an instructor in the Prog- group.

Interface Code

breed [employees employee]
breed [unemployees unemployee]
turtles-own [forbrugskvote]
to go
if ticks >= 1000 [stop]
ask turtles [
move
set label (forbrugskvote)]
ask unemployees [
update-color-unemployee]
ask employees [
update-color-employee]
tick
end
to setup
clear-all
ask patches [
set pcolor green]
create-employees 45 [
set shape "person"
set color blue
set size 1.5
set forbrugskvote 90
setxy random-xcor random-ycor]
create-unemployees 5 [
set shape "person"
set size 1.5
set forbrugskvote 90
setxy random-xcor random-ycor]
reset-ticks
end
to move
right random 360
forward 1
end
to update-color-unemployee
set color scale-color red (forbrugskvote) 110 80
end
to update-color-employee
set color scale-color blue (forbrugskvote) 110 80
end

breed [rabbits rabbit]
to setup
clear-all
set-default-shape rabbits "circle"
create-rabbits Antal [
set color white
setxy random-xcor random-ycor]
reset-ticks
end
to go
if count rabbits >= 10000
[stop]
ask rabbits
[move
reproduce]
tick
end
to move
right random 50
left random 50
forward 1
end
to reproduce
if random 100 < reproduktionschance
[hatch 1 [forward 3]]
end

Table 2: Details of participants in group Prog- and Prog+.

Number of Prog- Prog+ Total
Teachers 22 64 86

High schools 11 33 44
Learning activities 12 39 51
Subject domains* 6 6 12

A Template for Teaching Computational Modelling in High School WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom

in the activity of modelling complex real-world phenomena [13, 66,
67].

The design-based research study consisted of four phases as
following Reeves [47] and Herrington and Reeves ([23].

Phase 1: Problem analysis and exploration.Teachers and researchers
identified relevant phenomena within the high school subjects that
could be represented by an agent-based computer model. The re-
searchers used an educational didactical approach called the CMC
approach, which integrates coding (C) and modelling (M) activities
with content matter (C). The CMC approach is a didactic framework
to be used when high school teachers and researchers want to col-
laborate to design teaching activities in computational modelling
[41, 42]. Teachers, in collaboration with researchers, then designed
and developed computer models representing the subject phenom-
ena. Initial teaching activities were designed by the teachers to
engage students in the computational modelling process.

Phase 2: Development of template. The authors developed the
template in collaboration with 86 high school teachers. This de-
velopment fell into two phases: a.) Initial development of the tem-
plate based on the teaching activities designed by teachers and
researchers in phase 1, and on existing literature on modelling in
high school science subjects [8, 19, 44, 48]. Researchers extracted
"elements" from the literature, resulting in a list of potential param-
eters of the template. In coming up with the parameters, we used
research on model-based thinking in science [31, 54] and research
on what models are representations of versus what models can be
used for in classrooms [19]. The elements and themes from the
learning activities designed in phase 1 were discussed within the
research team and the most prevalent themes and elements were
identified, resulting in parameters 1, 4, 5, 6, 7, 11, 12, and 14 of the
template. b.) Iterative refinement of the template. The template was
presented to the teachers as a tool for designing and evaluating
teaching activities. More parameters were added and rephrased in
the form of didactical questions by the teachers in collaboration
with researchers. The teachers used the template for designing
teaching activities. The usefulness of the template was discussed
among teachers and researchers. Observations were recorded by
the researchers during the discussion. Two researchers then ad-
justed the template according to the discussion by introducing a
total of 16 parameters and the division of the parameters into the
subject domain and the computing domain (Table 3).

Phase 3: Implementation and evaluation in iterative cycles. The
research team reflected on the temporary results from the previous
phases to produce the final template. Specifically, this was devel-
oped by implementing teachers’ suggestions for didactic questions
and having teachers discuss and evaluate the usefulness of these
questions after they had tested them in their classrooms. This phase
produced the final formulation of questions and coding within the
final version of the parameters (see Table 3).

Phase 4: Reflection to produce design principles. Once the tem-
plate had been implemented, evaluated, and refined, the design was
described (see Table 3 and the rubric in Table 4).

3.2 Evaluation of the template
To evaluate the template, this study used data from two professional
development courses (Prog- and Prog+). The participants were in-
service high school teachers assigned by the teachers’ principals to
either of the courses before the study. Thus, the assignment of par-
ticipants was not random, but beyond the researchers’ control. The
two courses had identical duration and spanned an entire school
year, with four seminar days approximately two months apart. The
teachers participating in the Prog+ course were given an intro-
duction to programming in NetLogo [65] for developing computer
models. Prog- participants were not given this introduction but
provided input on subject-specific phenomena, which the instruc-
tors used to program the computer models. During this process,
teachers completed a questionnaire about the representation of the
phenomena to help instructors develop the computer models. Items
included for instance: Which agents should the model include, or
can you describe the properties and behaviours of agents in the
model?

3.3 Course instructions
There were four seminar days of teacher training:

Day 1: Developing computer models. On the first seminar day
of both courses, teachers were taught computational modelling,
specifically agent-based modelling. In the Prog- group, teachers,
worked in groups of two to three, to identify a phenomenon within
their subject domain (see Figure 1) suitable for a computer represen-
tation. Two instructors, skilled in programming and with similar
teaching experience, were assigned to each course. In the Prog-
group, teachers’ identification of a subject specific domain and
phenomenon provided input to instructors programming the com-
puter models in NetLogo. The teachers completed a questionnaire
about requirements for their model. This part lasted for two hours.
The instructors then developed the computer models. In the Prog+
group, teachers learned to program computer models in NetLogo.
A short introduction to NetLogo and design principles [66], which
also lasted for two hours (on the first seminar day), was given to
the Prog+ group. Apart from the two hours, the instructions were
identical in content for the two groups. The first seminar day had
the same duration for both groups. Teachers in both groups met
with instructors to refine computer models in NetLogo for a 1.5
hours physical meeting between the first and second seminar days.
The computer models were similar in terms of interface and code
complexity. The code complexity was evaluated as the number of
elements included in the interface and the lines and procedures in
the code. Table 1 shows examples of computer models produced by
either a participant or an instructor from each of the two courses.

Day 2: Developing teaching activities. Teachers were introduced
to the CMC approach, didactical principles related to the princi-
ples of use-modify-create [33], guidance [27], and tinkering ([59].
The initially developed template was presented and discussed, and
subsequently the teachers developed teaching activities during the
second seminar day. In the time between the second and third sem-
inar days, teachers applied the teaching activities and computer
models in their teaching.

Day 3: Improving teaching activities. At this stage, we asked
teachers to reflect on their experiences and reiterate their teaching

WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom Line Have Musaeus, Michael E. Caspersen, and Peter Musaeus

activities in relation to the template. This way, teachers were en-
couraged to redesign the teaching activities. In the time between the
third and fourth seminar days, teachers applied these redesigned
teaching activities to a new class of students.

Day 4: Presenting computer models and teaching activities. On
the fourth seminar day, participants presented and shared com-
puter models and teaching activities with each other. We collected
the teaching activities for analysis. The teaching activities and
computer models can be accessed here: https:// https://library.ct-
denmark.org/.

3.4 Participants
Participants were 86 in-service high school teachers (26 female,
60 male) who volunteered to participate. They came from 44 high
schools sampled randomly from the whole of Denmark. The teach-
ers taught 12 different subjects. Participants were assigned to either
computational modelling and programming (Prog+) or modelling
(Prog-) conditions (see Table 2). Teachers collaborated in groups of
two to three to produce a total of 51 teaching activities. Less than
10% of the participating teachers in both courses reported having
any programming experience before participating.

3.5 Classification of the didactical questions
Teachers were asked to formulate didactic questions that would
facilitate students’ understanding of computational modelling. The
teachers’ names were anonymized before teaching activities were
coded. First, the first and the second author coded the same five
randomly selected teaching activities independently, by referring
each didactical question to a parameter in the template (Table 3).
Second, the two researchers met, discussed disagreements, and re-
fined the coding procedure. Third, the two researchers proceeded
to independently code ten more teaching activities by referring
each didactical question to the relevant modelling parameters of
the template. The level of agreement between the two coders was
recorded, and an Inter-Rater Reliability (IRR) across the two coders
was established. We obtained an IRR of 0.87 (Cohen’s d: 0.74, 0.95
confidence interval), indicating substantial agreement. Fourth, the
first author coded the remaining teaching activities. A binary score
(zero or one) was assigned to each parameter, depending onwhether
the teaching activity contained didactical questions relating to this
specific parameter. To compare the scores of the teaching activities
from the two different courses, the percentage of teaching activi-
ties containing didactical questions related to each parameter was
calculated for each course. The frequencies of the 16 parameters
were normally distributed, ascertained numerical by skewness and
kurtosis [39]. A one-way chi-square analysis and one-way ANOVA
(with one source of variability) analysis were performed to com-
pare teaching activities from the two courses and to compare effects
within subjects. We calculated the effect sizes, based on Cohen’s d,
and performed a one-way ANOVA analysis to examine the possible
within-subjects effects. Subsequently, we selected representative
didactical questions from the teachers’ learning activities for each
taxonomical level and parameter by two members of the research
team and compared. One question for each parameter and taxo-
nomical level was chosen by the researchers and presented in the
template (Table 3).

In summary, teachers participated in either of two courses (Prog+,
Prog-) and developed and applied computer models (in Prog+) or
applied computer models (in Prog-) together with producing teach-
ing activities on computational modelling by designing didactical
questions.

4 RESULTS
4.1 Design of the template
The first research question was: What parameters should be in-
cluded in a template aimed to help teachers design teaching activi-
ties about computational modelling? To answer this question, we
developed a teaching template consisting of 16 parameters relating
to the computational modelling process (Table 3).

The parameters classify teaching activities in terms of how well
they might foster students’ skills in computational modelling. The
16 parameters are divided into two categories: Subject and comput-
ing domain. The template was introduced to the teachers partici-
pating in this study, and feedback from the teachers incorporated
into the final design of the template. All parameters of the initial
template were perceived as useful by the teachers, but teachers re-
ported a need for more parameters and for relating each parameter
to either of the two domains described in Figure 1. This led to the
result seen in Table 3.

The first 11 parameters related to the subject domain (see Figure
1). In formulating these parameters, we were inspired by Schwarz
and White [48] who analysed modelling activities in science ed-
ucation. These activities were included to help students visualize
complex concepts and test their conceptual understanding.

The last five parameters, numbers 12 to 16 (see Table 3), related
to the computing domain and students’ competencies in compu-
tational modelling (see Figure 1). Here we build on work done
by Nowack and Caspersen [44] on computational model-based
thinking and practice training students in identifying and relating
concepts. Furthermore, we were inspired by a study by Lee et al.
[33] prescribing a progression from student exploration and use of
the computer model to modifying the model and finally creating a
new or improved computer model.

4.2 Guiding the design of teaching activities
By answering the first research question, the aim was to guide
researchers and teachers to develop teaching activities in computa-
tional modelling. The teaching activities from the two courses in-
cluded on average 18 questions. Two members of the research team
independently evaluated and scored teachers’ didactical questions.
The two researchers independently categorized the questions with
reference to the SOLO taxonomy, which stands for the structure of
observed learning outcomes [4]. The questions were anonymized
and coded into three taxonomic levels: low, medium, or high (see
Table 4 columns 2 to 4). Table 4 was constructed from the above
analysis to inform and guide the development of new teaching activ-
ities. Table 4 provides examples of didactical questions formulated
by teachers for their students. The examples of didactical questions
presented in Table 4 are drawn from all 12 subjects represented by
the high school teachers participating in the two courses (Prog+,
Prog-). The examples can serve as guidelines for how to design

A Template for Teaching Computational Modelling in High School WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom

Table 3: Modelling parameters in template. Subject domain modelling (parameters 1-11) and computer domain modelling
parameters 12-16)

Number Modelling parameter
1 Range of the model
2 Explanatory power of the model
3 Causality between the elements in the model
4 Behaviour of the model
5 Elements included in the model
6 Elements not included in the model
7 How the model relates to a real-world phenomenon
8 Formulation of hypothesis that can be tested by the model
9 Results from repeated execution of the model
10 Emergent phenomenon developing over time
11 Use of and interaction with the model
12 Changing a value or variable
13 Adding a variable
14 Changing a procedure
15 Adding a procedure
16 Creating a new model

Table 4: Template with modelling parameters versus taxonomical levels of didactical questions (posed by teachers to students)
in teaching activities. [] authors comments.

Taxonomical levels of questions Low Medium High

1 Range of the model Can the model show temperature? What can the model predict? Discuss whether the opportunities to influence input and output
are realistic.

2 Explanatory power of the model Name an element relevant for estimating the temperature of the
atmosphere.

Which assumptions have been made as a basis for the model? What are the implications of using computer models for policy-
making?

3 Causality between elements of the model Identify a water molecule and describe how it interacts with
other molecules.

Add carbon dioxide to the atmosphere. What impact does this
molecule have on the temperature of the Earth?

How does the effect of energy transfer change when material
type and mass are changed?

4. Behaviour of the model What happens when you press ’go’? How can we see that green people react, reproduce, move differ-
ently than blue people?

Predict what happens to the dependent variables (Crime Index,
Sense of Justice) when the independent variables (Length of
sentence and number of police officers) are changed?

5 Elements included in the model What do you see, when you press ‘setup’? How would you describe all elements in the interface, both the
agents and the background?

Identify all the elements of the model, from what you see in the
interface and can read in the code.

6. Elements not included in the model Can you name the elements that are missing in the model? Are there any elements missing in the model, or are there ele-
ments behaving differently than you would expect?

What is missing in the model, if any, compared to the experiment
you have done?

7. How the model relates to a real-world
phenomenon

Describe what the model depicts. Compare the model to your own subject knowledge about the
phenomenon - does it match? Why/why not?

Discuss in what ways the model is a simplification of reality.

8. Formulation of hypothesis that can be
tested by the model

How will a water molecule behave when you press ‘go’? Make a prediction based on your model about how a Roman
soldier can influence other agents in the model and how the
simulation will turn out.

Find out how to set the independent variables and hypothesize
what effect this will have on the dependent variables. Test your
hypothesis by running the model.

9. Results from repeated execution of the
model

Run the simulation five times. Is the result the same? Change the albedo value [represented by a slider], run the simu-
lation and note the effect. Repeat the ’experiment’ many times.
What effect does the albedo have?

Run the model a certain number of times and compare the out-
come. Try changing the value of a variable and run the model
again the same number of times. What is the effect of changing
the value of the variable? How sure of the effect are you?

10. Emergent phenomenon developing
over time

Describe what happens to the CO2 molecules when you run the
model?

How many times, out of 10 runs, does it lead to a fall of the
Roman Empire?

Explain whether the simulation always give the same result?

11. Use of and interaction with the model Can you describe what happens to the reaction rate [visualized
by a plot] when you increase the number of reactants [repre-
sented by a slider]?

Interact with the model. E.g. add clouds [button] or CO2 [slider]
to the model. What happens to the reflection of the energy?

Experiment with the model. Can you evaluate which variables
are changeable from the interface and which you can change in
the code?

12. Change a value or variable Find the term ‘color’ in the code. Can you change the color of
the water molecule?

Change the number of persons [turtles] in the initial setting,
by exploring the code: How many blue, black, pink persons are
being created?

Change the color and shape of the enzyme [turtle] by identifying
the relevant turtle described in the code. Why did you choose
that particular color and shape?

13. Adding a variable Add a shape like a square to the enzyme. Introduce a new shape for ‘person’. Do you need a different
shape for each person created in the code?

Introduce a variable called birth age and let it be the age for
when the rabbits [turtles] are sexually mature. Investigate how
many places birth age should be entered in the code.

14. Changing a procedure Change the movements of the water molecules to include back-
ward movements.

You want to visualize that each year the rabbits give birth to two
new cubs instead of one. Can you redesign the code so that this
is visualized?

Expand the code, so that the decay of an atom can be one of
three possibilities, rather than not just one. Run the program.
Can you explain the effect that this has?

15. Adding a procedure Introduce a limit for how many rabbits [turtles] the simulation
can have before the program stops.

Use the ’wait’ command. Can you make the ball [turtles] move
slower?

Study the procedure for how the inhibitors [turtles] are created
and behave. Then create a new type of inhibitor that behave
differently.

16. Creating a new model Create a new model by copying the first part of the code from
this model. How much code is needed?

Try to put together all your small program pieces from the three
previous models. Can you create a new model?

Create a new model by applying at least one of the rules de-
scribed in this model. What phenomenon can the new model
represent?

WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom Line Have Musaeus, Michael E. Caspersen, and Peter Musaeus

didactical questions related to specific parameters presented in the
template, as part of the teaching activities.

4.3 Classifying didactical questions
To investigate possible differences in the two groups of partici-
pants, each teaching activity was scored. For every parameter in
the template, the number of didactical questions related to this
parameter was recorded. Figure 3 shows the prevalence of ques-
tions from the teaching activities representing each parameter, in
percentage. Overall, there was a statistically significant difference
didactical questions from the teaching activities between the two
groups when tested by a one-way chi-square test (p < .001, level
.95, n = 51) with a large effect size (Cohen’s d = 0.8), see Figure 2.

Figure 2: Percentage of teaching activities, containing ques-
tions relating to each parameter, in Prog+ (dark) and in Prog-
(light). See Table 3 for a description of each parameter.

Figure 3: Average scores per parameter according to subject.

For parameters 1 to 11, there was no statistically significant
difference in the distribution of parameters between the two groups
of participants in course Prog+ and Prog- respectively (one-way chi-
square test, p = .946, level .95, n = 51) with a small effect size (Cohen’s
d = 0.4). This indicated that both courses gave the teachers the ability
to produce teaching activities that included didactical questions
concerning modelling of the subject domain, as illustrated in Figure

1. However, a statistically significant difference was found between
the two courses when comparing the percentages of parameters 12
to 16 by a one-way chi-square test (p = .004, level .95, n = 51) with a
very large effect size (Cohen’s d = 1.6). This indicated that teachers
in the Prog+ group were better at designing teaching activities that
entailed high taxonomic level didactical questions regarding the
computational model than teachers in the Prog- group (see Figure
2). These parameters (12 to 16) represented questions concerning
students’ ability to modify and create code in the computer models.

The template was used to classify didactical questions in eight
different school subjects. Table 5 shows the number of teaching
activities representing each subject. To study effects within school
subjects, we performed a one-way ANOVA test, only considering
study subjects as the source of variability. Results showed that there
were statistically significant differences in means between groups
(subjects), (p = 0.001 F-value (F = 3.775) > F critical (F = 2.087)).
Figure 3 illustrates the distribution of the average scores per pa-
rameter for each subject represented in the teaching activities. In
general, teaching activities on computational modelling in music
only represented a few parameters of the template, while subjects
such as chemistry and biology were addressing all parameters in
the didactical questions to a medium degree. Hence, the template
could be used for guiding high school teachers in developing teach-
ing activities for computational modelling containing more than
one taxonomical level relating to the subject domain. The template
also proved useful for evaluating teaching activities. Furthermore,
when applying the template for evaluating teaching activities devel-
oped by teachers, the results showed differences in the developed
teaching activities depending on the teachers’ backgrounds.

5 DISCUSSION AND CONCLUSION
With this design-based research study, we aimed at developing a
template for teaching activities in computational modelling. The
template can be used as a starting point in dialogue between teach-
ers and researchers for designing and conducting teaching activities
in computational modelling. It can also be used to evaluate teach-
ing activities and didactic questions in computational modelling.
The data analysis suggested that the template could help teach-
ers and researchers evaluate didactic questions developed by high
school teachers. Results showed that Prog+ participants were able
to produce computational modelling teaching activities with several
questions referring to parameters from the template concerning the
computer domain (parameters 12 to 16), while the Prog- participants
were not. This indicates that achieving knowledge of programming
positively affects teachers’ ability to produce teaching activities for
computational modelling, but raises questions as to what and how
much knowledge teachers need for achieving this.

This study was novel in terms of researching computational
modelling in high school subjects including physics, mathemat-
ics, chemistry, biology, social science, history, Danish, and music.
The study contributed on methodological grounds by developing a
template for guiding and evaluating high school education [38, 56].
Teachers reported that the template could help them formulate
questions at different taxonomical levels appropriate for students
who are learning computational modelling.

A Template for Teaching Computational Modelling in High School WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom

Table 5: Number of teaching activities produced by teachers in each subject.

Subject Number of learning activities
Physics 14
Mathematics 12
Chemistry 8
Biology 6
Social Science 4
History 3
Danish 3
Music 1

There were two main limitations to this study. First, relating to
the two groups and the fact that there was no control of the allo-
cation of the participants to groups by the research team and the
unequal distribution of the participants in each group. The unequal
group size would have been problematic, particularly in a tradi-
tional intervention study. However, this study was a design based
research study and did not aim to measure the intervention effect
of computational modelling on student or teacher understanding.
Further research studies, such as controlled designs on the learn-
ing effects of specific computational modelling environments, are
needed. The teaching subjects represented in the two groups were
different, although all participants in both groups reported that
they were novice programmers. The fact that there were more nat-
ural science teachers in the Prog+ group could potentially explain
why parameters of the computing domain were more prevalent in
this group (Figure 2). A traditional assumption would be that the
natural science teachers feel better educated, more interested in,
and trained in how to think about computing than the humanities
and social science teachers. The need to control for participants’
background and knowledge is important for future research.

The second limitation concerns the application of the template.
It could be objected that the parameters were not independent, but
conceptually overlapping. This could have complicated the cod-
ing of the teaching activities, i.e. the assignment of each didactical
question in the teaching activities to each parameter in the tem-
plate. However, since we were able to code all the questions in the
teaching activities (and thus refer all the questions to one of the 16
parameters), we saw no need to identify a clearer demarcation of
individual parameters.

In spite of these limitations, this study responded to a growing
need in research and educational practice for incorporating com-
putational modelling in high school curricula and in a range of
different subjects. Future studies could use classroom observations
and interviews with teachers and students about the perceived
usefulness of the template.

In conclusion, this study is a first step towards developing and
applying a template intended for improving teaching activities
in computational modelling within various existing high school
subjects. It integrates parameters of computational modelling with
levels of didactic questions. By delineating computational modelling
into 16 parameters, we achieved a comprehensive yet manageable
list of identifiable and measurable behavioural criteria. We hope

that teachers will be inspired by the template to qualify their own
teaching in something as complicated as computational modelling.

ACKNOWLEDGMENTS
The authors wish to thank the participating teachers and our col-
leagues at Center for Computational Thinking & Design for fruitful
discussions. This work was funded by The Velux Foundations by
Grant no. 24635 and Region Midt.

REFERENCES
[1] Sasha Barab and Kurt Squire. 2004. Design-based research: Putting a stake in the

ground. The journal of the learning sciences 13, 1 (2004), 1–14.
[2] Todd K BenDor and Jürgen Scheffran. 2018. Agent-based modeling of environ-

mental conflict and cooperation. CRC Press.
[3] John Biggs. 1999. What the student does: Teaching for enhanced learning. Higher

education research & development 18, 1 (1999), 57–75.
[4] John B Biggs and Kevin F Collis. 2014. Evaluating the quality of learning: The

SOLO taxonomy (Structure of the Observed Learning Outcome). Academic Press.
[5] Paulo Blikstein, Dor Abrahamson, and Uri Wilensky. 2005. Netlogo: Where we

are, where we’re going. In Proceedings of the annual meeting of Interaction Design
and Children, Press, Vol. 23.

[6] Paulo Blikstein and Uri Wilensky. 2009. An atom is known by the company it
keeps: A constructionist learning environment for materials science using agent-
based modeling. International Journal of Computers for Mathematical Learning
14 (2009), 81–119.

[7] Whitney Wall Bortz, Aakash Gautam, Kemper Lipscomb, and Deborah Tatar.
2019. Integration Computational Thinking into Middle School Science: A search
for Synergistic Pedagogy. In ASEE Southeastern Section Conference.

[8] Sanjay Chandrasekharan and Nancy J Nersessian. 2015. Building cognition: The
construction of computational representations for scientific discovery. Cognitive
science 39, 8 (2015), 1727–1763.

[9] John Clement. 2008. Six levels of organization for curriculum design and teaching.
Model based learning and instruction in science (2008), 255–272.

[10] Design-Based Research Collective. 2003. Design-based research: An emerging
paradigm for educational inquiry. Educational researcher 32, 1 (2003), 5–8.

[11] Allan Collins, Diana Joseph, and Katerine Bielaczyc. 2004. Design research:
Theoretical and methodological issues. The Journal of the learning sciences 13, 1
(2004), 15–42.

[12] Barbara A Crawford and Michael J Cullin. 2004. Supporting prospective teachers’
conceptions of modelling in science. International Journal of Science Education
26, 11 (2004), 1379–1401.

[13] Damian Dalle Nogare and Ajay B Chitnis. 2020. NetLogo agent-based models
as tools for understanding the self-organization of cell fate, morphogenesis
and collective migration of the zebrafish posterior Lateral Line primordium. In
Seminars in cell & developmental biology, Vol. 100. Elsevier, 186–198.

[14] Peter J Denning. 2017. Remaining trouble spots with computational thinking.
Commun. ACM 60, 6 (2017), 33–39.

[15] Peter J Denning and Matti Tedre. 2019. Computational thinking. Mit Press.
[16] Rachele Dominguez and Benjamin Huff. 2015. The role of computational physics

in the liberal arts curriculum. In Journal of Physics: Conference Series, Vol. 640.
IOP Publishing, 012061.

[17] Dedre Gentner and Albert L Stevens. 2014. Mental models. Psychology Press.
[18] Ronald N Giere. 1992. Cognitive models of science. Vol. 15. U of Minnesota Press.
[19] Julia Gouvea and Cynthia Passmore. 2017. ‘Models of’versus ‘Models for’ Toward

an Agent-Based Conception of Modeling in the Science Classroom. Science &

WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom Line Have Musaeus, Michael E. Caspersen, and Peter Musaeus

Education 26 (2017), 49–63.
[20] Lorraine Grosslight, Christopher Unger, Eileen Jay, and Carol L Smith. 1991.

Understanding models and their use in science: Conceptions of middle and high
school students and experts. Journal of Research in Science teaching 28, 9 (1991),
799–822.

[21] Shuchi Grover and Roy Pea. 2018. Computational thinking: A competency whose
time has come. Computer science education: Perspectives on teaching and learning
in school 19, 1 (2018), 19–38.

[22] Mark Guzdial, Alan Kay, Cathie Norris, and Elliot Soloway. 2019. Computational
thinking should just be good thinking. Commun. ACM 62, 11 (2019), 28–30.

[23] Jan Herrington and Thomas C Reeves. 2011. Using design principles to improve
pedagogical practice and promote student engagement. (2011).

[24] David Hestenes. 2013. Modeling theory for math and science education. Modeling
Students’ Mathematical Modeling Competencies: ICTMA 13 (2013), 13–41.

[25] Nicole M Hutchins, Gautam Biswas, Miklós Maróti, Ákos Lédeczi, Shuchi Grover,
Rachel Wolf, Kristen Pilner Blair, Doris Chin, Luke Conlin, Satabdi Basu, et al.
2020. C2STEM: A system for synergistic learning of physics and computational
thinking. Journal of Science Education and Technology 29 (2020), 83–100.

[26] Jane Jackson, Larry Dukerich, and David Hestenes. 2008. Modeling Instruction:
An Effective Model for Science Education. Science Educator 17, 1 (2008), 10–17.

[27] Michael J Jacobson, Beaumie Kim, Suneeta Pathak, and BaoHui Zhang. 2015.
To guide or not to guide: issues in the sequencing of pedagogical structure in
computational model-based learning. Interactive Learning Environments 23, 6
(2015), 715–730.

[28] Michael J Jacobson, James A Levin, andManu Kapur. 2019. Education as a complex
system: Conceptual and methodological implications. Educational researcher 48,
2 (2019), 112–119.

[29] Dennis Kafura, Austin Cory Bart, and Bushra Chowdhury. 2015. Design and
preliminary results from a computational thinking course. In Proceedings of the
2015 ACM Conference on Innovation and Technology in Computer Science Education.
63–68.

[30] Moritz Krell, Annette Upmeier zu Belzen, and Dirk Krüger. 2014. Students’ levels
of understanding models and modelling in biology: Global or aspect-dependent?
Research in science education 44 (2014), 109–132.

[31] Mark J Lattery. 2016. Deep Learning in Introductory Physics: Exploratory Studies
of Model? Based Reasoning. IAP.

[32] Irene Lee, Shuchi Grover, Fred Martin, Sarita Pillai, and Joyce Malyn-Smith. 2020.
Computational thinking from a disciplinary perspective: Integrating compu-
tational thinking in K-12 science, technology, engineering, and mathematics
education. Journal of Science Education and Technology 29 (2020), 1–8.

[33] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. Acm Inroads 2, 1 (2011), 32–37.

[34] Richard Lehrer and Leona Schauble. 2006. Cultivating model-based reasoning in
science education. Cambridge University Press.

[35] Richard Lehrer and Leona Schauble. 2013. Modeling in mathematics and science.
In Advances in instructional psychology. Routledge, 101–159.

[36] Yeping Li, Alan H Schoenfeld, Andrea A diSessa, Arthur C Graesser, Lisa C
Benson, Lyn D English, and Richard A Duschl. 2020. Computational thinking is
more about thinking than computing. , 18 pages.

[37] Lauren E Margulieux, Brian Dorn, and Kristin A Searle. 2019. Learning sciences
for computing education. Cambridge: Cambridge University Press.

[38] André Menolli and João Coelho Neto. 2022. Computational thinking in computer
science teacher training courses in Brazil: A survey and a research roadmap.
Education and Information Technologies 27, 2 (2022), 2099–2135.

[39] Prabhaker Mishra, Chandra M Pandey, Uttam Singh, Anshul Gupta, Chinmoy
Sahu, and Amit Keshri. 2019. Descriptive statistics and normality tests for
statistical data. Annals of cardiac anaesthesia 22, 1 (2019), 67.

[40] Mary S Morgan and Margaret Morrison. 1999. Models as mediators: Perspectives
on natural and social science. Number 52. Cambridge University Press.

[41] Line Have Musaeus and Peter Musaeus. 2019. Computational thinking in the
Danish high school: Learning coding, modeling, and content knowledge with
NetLogo. In Proceedings of the 50th ACM technical symposium on computer science
education. 913–919.

[42] Line Have Musaeus and Peter Musaeus. 2021. Computing and gestures in high
school biology education. In Proceedings of the 26th ACM Conference on Innovation
and Technology in Computer Science Education V. 1. 533–539.

[43] Line Have Musaeus, Deborah Tatar, and Peter Musaeus. 2022. Computational
Modelling in High School Biology: A Teaching Intervention. Journal of Biological
Education (2022), 1–17.

[44] Palle Nowack and Michael E Caspersen. 2014. Model-based thinking and practice:
A top-down approach to computational thinking. In Proceedings of the 14th Koli
Calling International Conference on Computing Education Research. 147–151.

[45] Cynthia M Passmore and Julia Svoboda. 2012. Exploring opportunities for argu-
mentation in modelling classrooms. International Journal of Science Education 34,
10 (2012), 1535–1554.

[46] Richard Paul and Linda Elder. 2007. Critical thinking: The art of Socratic ques-
tioning. Journal of developmental education 31, 1 (2007), 36.

[47] Thomas Reeves. 2006. Design research from a technology perspective. In Educa-
tional design research. Routledge, 64–78.

[48] Christina V Schwarz and Barbara Y White. 2005. Metamodeling knowledge: De-
veloping students’ understanding of scientific modeling. Cognition and instruction
23, 2 (2005), 165–205.

[49] Emily E Scott, Mary Pat Wenderoth, and Jennifer H Doherty. 2020. Design-
based research: a methodology to extend and enrich biology education research.
CBE—Life Sciences Education 19, 2 (2020), es11.

[50] Pratim Sengupta, John S Kinnebrew, Satabdi Basu, Gautam Biswas, and Douglas
Clark. 2013. Integrating computational thinking with K-12 science education
using agent-based computation: A theoretical framework. Education and Infor-
mation Technologies 18 (2013), 351–380.

[51] Pratim Sengupta and Uri Wilensky. 2009. Learning electricity with NIELS: Think-
ing with electrons and thinking in levels. International Journal of Computers for
Mathematical Learning 14 (2009), 21–50.

[52] Sue Sentance and Andrew Csizmadia. 2017. Computing in the curriculum: Chal-
lenges and strategies from a teacher’s perspective. Education and Information
Technologies 22 (2017), 469–495.

[53] Patrick HM Sins, Elwin R Savelsbergh, and Wouter R van Joolingen. 2005. The
Difficult Process of Scientific Modelling: An analysis of novices’ reasoning during
computer-based modelling. International Journal of Science Education 27, 14
(2005), 1695–1721.

[54] Yanlong Sun, Wendy Newstetter, and Nancy J Nersessian. 2006. Promoting model-
based reasoning in problem-based learning. Trabajo presentado en la reunión
anual de la Cognitive Science Society, Vancouver, Canadá (2006).

[55] Julia Svoboda and Cynthia Passmore. 2013. The strategies of modeling in biology
education. Science & Education 22 (2013), 119–142.

[56] Xiaodan Tang, Yue Yin, Qiao Lin, Roxana Hadad, and Xiaoming Zhai. 2020.
Assessing computational thinking: A systematic review of empirical studies.
Computers & Education 148 (2020), 103798.

[57] Jan Van den Akker. 1999. Principles and methods of development research. Design
approaches and tools in education and training (1999), 1–14.

[58] Joke Voogt, Petra Fisser, Jon Good, Punya Mishra, and Aman Yadav. 2015. Com-
putational thinking in compulsory education: Towards an agenda for research
and practice. Education and Information Technologies 20 (2015), 715–728.

[59] Aditi Wagh, Kate Cook-Whitt, and Uri Wilensky. 2017. Bridging inquiry-based
science and constructionism: Exploring the alignment between students tinkering
with code of computational models and goals of inquiry. Journal of Research in
Science Teaching 54, 5 (2017), 615–641.

[60] Chia-Yu Wang and Lloyd H Barrow. 2011. Characteristics and levels of sophisti-
cation: An analysis of chemistry students’ ability to think with mental models.
Research in Science Education 41 (2011), 561–586.

[61] Shiang-Kwei Wang, Hui-Yin Hsu, Thomas C Reeves, and Daniel C Coster. 2014.
Professional development to enhance teachers’ practices in using information
and communication technologies (ICTs) as cognitive tools: Lessons learned from
a design-based research study. Computers & Education 79 (2014), 101–115.

[62] Melissa Warr and Punya Mishra. 2021. Integrating the discourse on teachers and
design: An analysis of ten years of scholarship. Teaching and Teacher Education
99 (2021), 103274.

[63] Mary Webb, Niki Davis, Tim Bell, Yaacov J Katz, Nicholas Reynolds, Dianne P
Chambers, and Maciej M Sysło. 2017. Computer science in K-12 school curricula
of the 2lst century: Why, what and when? Education and Information Technologies
22 (2017), 445–468.

[64] David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2016. Defining computational thinking for mathe-
matics and science classrooms. Journal of science education and technology 25
(2016), 127–147.

[65] Uri Wilensky. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/
[66] Uri Wilensky and William Rand. 2015. An introduction to agent-based modeling:

modeling natural, social, and engineered complex systems with NetLogo. Mit Press.
[67] Uri Wilensky and Kenneth Reisman. 2006. Thinking like a wolf, a sheep, or a

firefly: Learning biology through constructing and testing computational the-
ories—an embodied modeling approach. Cognition and instruction 24, 2 (2006),
171–209.

[68] Aman Yadav, Elisa Nadire Caeli, Ceren Ocak, and Victoria Macann. 2022. Teacher
Education and Computational Thinking: Measuring Pre-service Teacher Concep-
tions and Attitudes. In Proceedings of the 27th ACM Conference on on Innovation
and Technology in Computer Science Education Vol. 1. 547–553.

[69] Doron Zinger, Ashley Naranjo, Isabel Amador, Nicole Gilbertson, and Mark
Warschauer. 2017. A design-based research approach to improving professional
development and teacher knowledge: The case of the Smithsonian learning lab.
Contemporary Issues in Technology and Teacher Education 17, 3 (2017), 388–410.

http://ccl. northwestern. edu/netlogo/

	Abstract
	1 Introduction
	2 Background
	2.1 This study

	3 Method
	3.1 Research design
	3.2 Evaluation of the template
	3.3 Course instructions
	3.4 Participants
	3.5 Classification of the didactical questions

	4 Results
	4.1 Design of the template
	4.2 Guiding the design of teaching activities
	4.3 Classifying didactical questions

	5 Discussion and Conclusion
	Acknowledgments
	References

