
Programming in Context
– A Model-First Approach to CS1

Jens Bennedsen
IT University West
Fuglesangs Allé 20
DK-8210 Aarhus V

Denmark
jbb@it-vest.dk

Michael E. Caspersen
Department of Computer Science

University of Aarhus
Aabogade 34, DK-8200 Aarhus N

Denmark
mec@daimi.au.dk

ABSTRACT
The recommendations of the Joint Task Force on Computing Cur-
ricula 2001 encompass suggestions for an object-first introductory
programming course. We have identified conceptual modeling as
a lacking perspective in the suggestions for CS1. Conceptual
modeling is the defining characteristic of object-orientation and
provides a unifying perspective and a pedagogical approach fo-
cusing upon the modelling aspects of object-orientation. Reinfor-
cing conceptual modelling as a basis for CS1 provides an appea-
ling course structure based on core elements from a conceptual
framework for object-orientation as well as a systematic approach
to programming; both of these are a big help to newcomers. The
approach has a very positive impact on the number of students
passing the course.

Categories and Subject Descriptors
D1.5 [Programming Techniques]: Object-Oriented Program-
ming.

D3.3 [Programming Languages]: Language Constructs and
Features – Classes and objects.

K3.2 [Computers & Education]: Computer and Information
Science Education – Computer science education, Information
science education.

General Terms
Algorithms, Design, Documentation, Human Factors, Languages.

Keywords
CS1, Conceptual Modelling, Design, Objects-First, Pedagogy,
Programming Education, Systematic Programming, UML.

1. INTRODUCTION
Over the years there have been ongoing discussions on the
content of an introductory programming course. In order to define
a common curriculum including an introductory course, ACM and
IEEE established the Joint Task Force on Computing Curricula
2001. The charter was: “To review the Joint ACM and IEEE CS
Computing Curricula 1991 and develop a revised and enhanced
version for the year 2001 that will match the latest developments
of computing technologies in the past decade and endure through
the next decade”. In the final report [16], the role and place of
programming in the curriculum is discussed. Is programming
what needs to be taught first (what they call a programming-first
approach) or are there other topics that need attention first? The
conclusion is: “the programming-first model is likely to remain
dominant for the foreseeable future”.

The report describes three implementations of a programming-
first curriculum based on three programming paradigms: The
imperative, the functional and the object-oriented paradigm. The
object-oriented paradigm has gained much interest in the past
decade resulting in many textbooks (e.g. [2, 3, 10, 12, 15]) and
much interest among teachers on implementing the object-first
strategy (e.g. [1, 7]).

In [10] three perspectives on the role of a programming language
are described:

• Instructing the computer: The programming language is
viewed as a high-level machine language. The focus is on
aspects of program execution such as storage layout, control
flow and persistence. In the following we also refer to this
perspective as coding.

• Managing the program description: The programming
language is used for an overview and understanding of the
entire program. The focus is on aspects such as visibility,
encapsulation, modularity, separate compilation.

• Conceptual modelling: The programming language is used
for expressing concepts and structures. The focus is on
constructs for describing concepts and phenomena.

These represent a widespread three-level perspective on object-
oriented programming as represented by the three abstraction
levels for the interpretation of UML class models [9]: conceptual
level, specification level and code/implementation level.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA.

Copyright 2004 ACM 1-58113-798-2/04/0003…$5.00.

When designing a programming course one decides how much
time, effort and focus are given to each of the three perspectives.
It is possible just to focus on the first, instructing the computer,
and ignore the two others. This results in a course where the
details of the programming language are in focus but where the
students do not learn the underlying programming paradigm. If on
the other hand one just focuses on conceptual modeling (using a
case-tool to generate code), the result is a course where the
students cannot produce code by themselves. We find it vital to
balance the three views on the role of the programming language
by including conceptual modeling. The primary advantages are

• A systematic approach to programming

• A deeper understanding of the programming process

• Focus on general programming concepts instead of language
constructs in a particular programming language.

Most of the descriptions and discussions of the object-first
strategy tend to focus on instructing the computer and managing
the program description. To our knowledge, no introductory
programming textbook exists that includes conceptual modeling,
and we have been able to find only one article discussing the
adoption of conceptual modeling in CS1 [1]. It is our experience
from many years of teaching CS1 that including conceptual
modeling perspective has a great impact on the student’s skills
and their understanding of the programming process. It is our firm
conviction that the general omission of conceptual modeling is the
major reason for the problems identified in [16, p. 23]:

Introductory programming courses often oversimplify
the programming process to make it accessible to
beginning students, giving too little weight to design,
analysis, and testing relative to the conceptually simpler
process of coding. Thus, the superficial impression
students take from their mastery of programming skills
masks fundamental shortcomings that will limit their
ability to adapt to different kinds of problems and
problem-solving contexts in the future.

[16] generally ignores conceptual modeling in the object-first
recommendations for CS1. Aspects of conceptual modeling are
mentioned only briefly and the recommended time to be used on
the subject is four core hours!

2. CONCEPTUAL MODELING
In [13] object-oriented programming is defined as follows:

A program execution is regarded as a physical model,
simulating the behavior of either a real or imaginary
part of the world.

The key point here is model. An object-oriented program is a
model, and this model can be viewed at different levels of detail
characterized by different degrees of formality: An informal
conceptual model describing key concepts from the problem
domain and their relations, a more detailed class model giving a
more detailed overview of the solution, and the actual implemen-
tation in an object-oriented programming language.

Object-orientation has a strong conceptual framework (notions of
concepts and phenomena, identification of objects, identification
of classes, classification, generalization and specialization,

multiple classification, reference- and part-of composition). One
of the advantages of the conceptual framework is that it gives an
integrating perspective on analysis, design and programming thus
making it much easier for the students to understand these nor-
mally fuzzy concepts. Analysis is that process by which you
create a conceptual model of the problem domain, design is that
by which you fit the model to the restrictions of the particular
programming language, and implementation is that by which you
implement the design model. Omitting this integrating perspective
and focusing only on object-orientation for implementation will
leave out one of the most important assets of object-orientation.

We focus on the conceptual modeling perspective, emphasizing
that object-orientation is not merely a bag of solutions and tech-
nology, but a way to understand, describe and communicate about
a problem domain and a concrete implementation of that domain.

The integration of conceptual modeling and coding provides
structure, traceability and a systematic approach to program
development which strongly motivates and supports the students
in their understanding and practice of the programming process.

3. STRUCTURE OF A MODEL-FIRST
COURSE
The approach taken here is to use the three perspectives on the
role of the programming language as a guide for the structure of
the course. In the first half of the course, roughly speaking, focus
is concurrently on conceptual modeling and coding; in the second
half of the course the primary focus is on internal software quali-
ty, i.e. managing the program description.
Coding and conceptual modeling is done hand-in-hand, with the
latter leading the way. Introduction of the different language
constructs are subordinate to the needs for implementing a given
concept in the conceptual framework. After introducing a concept
from the conceptual framework a corresponding coding pattern is
introduced; a coding pattern is a guideline for the translation from
UML to code of an element from the conceptual framework.
This approach supports a spiral course layout [5], reinforcing the
most important concepts several times in the course. There are
two criteria for the design of the spiral layout: the most common
concepts of the conceptual framework are introduced first, and
throughout the course the students must be able to create working
programs.
The conceptual framework is comprehensive; for CS1 we restrict
the coverage to association, composition and specialization which
by far are the most used concepts in object oriented modeling and
programming.
The starting point is a class and properties of that class. One of
the properties of a class can be an association to another class;
consequently the next topic is association. This correlates nicely
to the fact that association (reference) is the most common struc-
ture between classes (objects). Composition is a special case of
association; composition is taught in the next round of the spiral.
The last structure to be thoroughly covered is specialization.
Specialization is the least common structure in conceptual
models, and it bridges nicely to the second half of the course
where the focus is on software quality and design.

In the following subsections we describe some of the elements of
the design of the course focusing on the first half of the course
where modeling dominates.

3.1 Getting Started
We want to give the students an everyday understanding of
object-orientation and a very informal understanding of the
process of creating a UML class model. We therefore start by
illustrating the concepts using everyday life situations in a role-
play. The goal for the role-play is to illustrate structure and
dynamics in terms of concepts, phenomena and messages in a
problem domain and classes, objects and method calls in a corres-
ponding (class and program) model. We use UML (primarily
class diagrams) to describe concepts and their properties, without
any formal introduction to the modeling language.

To introduce the students to basic coding we use a graphics pack-
age [6]. The graphics package is presented in terms of a class
diagram; hence, the students experience very early the strength of
a class model as an abstract description of a program component
as well as a communication tool; the UML-model provides an
effective “language” for documenting and communicating about
classes.

This introductory part of the course provides an external view of
classes and objects.

3.2 Class
After having used classes and objects we turn to an internal view
and start writing classes; we do this by introducing the first
coding pattern: Implementation of a class. The students discuss a
domain concept, select a few properties, and express the domain
concept using UML. Using the coding pattern the UML-descrip-
tion is systematically translated into Java code.
In this phase of the course the students learn about basic language
constructs such as assignment, parameters, conditional statements;
constructs needed for the systematic translation of model into
code.
Initially, the coding pattern is introduced by example. Through a
number of similar examples, the students become confident with
the systematic translation, and finally they can generalize and
create a generic coding pattern for a simple class.

3.3 Association
In the model of the problem domain the most common structure
between classes is an association. We use several examples with
progressive complexity to illustrate the concept and its
implementation.

3.3.1 One Class with a Reference to Itself
Through a number of progressive examples we illustrate that an
association is a property of a class, a class can have more than one
association, and an association is a dynamic relation.
The students extend a previous example with a recursive associa-
tion. One example is that a Person can be married_to another
Person or the lover of another Person. This results in the model in
figure 1.

Figure 1: One class with two associations

In order to implement associations with 0..1 cardinality the
student needs to know about programming language elements
(e.g. reference and the null value). It also gives the students an
understanding of interaction between objects (calling methods on
other objects) and reference semantics.
Turning to 0..* associations imply that the student needs to know
about Collections (either one of the Java standard Collections or
the array type) and the need for iteration arises (an Iterator or an
index variable and a simple loop). This is done using a simple
algorithm pattern for sweeping through a collection.

3.3.2 More Classes
In order to get more interesting collaboration between classes, the
next concept is associations between different classes. As a
starting point we use a domain model with the following struc-
ture:

Figure 2: One customer can have many accounts

The students quickly understand that an association between dif-
ferent classes in principle is the same as a recursive association.
This is true for the implementation as well; again the students
generalize to a generic coding pattern for 0..* associations.

3.4 Composition, Specialization and
Interfaces
We treat the remaining elements of the conceptual framework,
composition and specialization, in a similar way. As mentioned
earlier, specialization bridges nicely to the second half of the
course focusing on software design and quality. The primary
quality aspect is coupling and the main language construct by
which to achieve low coupling is interfaces. Interfaces play an
important role in the separation of specification and implementa-
tion: the specification of properties of a domain concept and
(different) implementation(s) of these properties.

4. ON THE ROLE OF CONCEPTUAL
MODELING IN CS1
In the following we will discuss some of the aspects of integrating
conceptual modeling in an introductory programming course.

4.1 Systematic Approach to Programming
The goal is to teach the students to appreciate and achieve quality
software. By good quality software we mean modifiable software,
i.e. readable and understandable programs with a good structure,
low coupling and high cohesion. These quality measures are by
no means obvious to newcomers, and how to achieve them is even
harder. We need to teach the students guidelines for achieving it
and a vocabulary to talk abut their programs in order to help them
build quality programs.

We reinforce five abstraction-levels of techniques for the syste-
matic creation of object-oriented programs:

1. Problem domain → model: Create a UML class model of the
problem domain, focusing on classes and structure between
classes

2. Model → Java code: Create a skeleton for the program using
the coding patterns.

3. Functionality → Java code: Specify properties and distribute
responsibility among classes.

4. Implementation of classes: Create class invariants describing
the internal constraints that have to be fulfilled before and
after each method call.

5. Implementation of methods: Use algorithm patterns for the
traditional algorithmic problems like searching, sweeping.
Use loop-invariants for the systematic construction of loops.

In this paper focus is on the first two of these systematic techni-
ques; we mention the other three to give the full picture of how
we reinforce systematic techniques at different levels of abstrac-
tion.

4.2 Providing Confidence
To program is difficult! In [14] the authors found “shockingly low
performance on simple programming problems, even among
second-year, college-level students at four schools in three
different countries”. It requires knowledge and skills of many
things such as the programming language, development tools and
the capability of formulating a solution in such a way that a
computer is able to understand it. Especially the last demand
implies the need for creativity when programming.

Students find the creative process very difficult. In a more
traditional programming course students are guided by standard
algorithmic techniques such as searching, sorting, divide and
conquer etc. The problem is that algorithmic techniques do not
help the students to create the overall structure of a solution; they
do not know where and how to start because the mental gap
between the problem description and an implementation in terms
of algorithms is too big. Conceptual modeling gives a systematic
and structured approach to programming which provides confi-
dence and a safe ground for addressing the programming task.

Most programming tasks are trivial and can be handled using
simple standard techniques such as the generic coding patterns
described above. By focusing on standard techniques first, the
need for algorithmic creativity is reduced (and a thorough treat-
ment is postponed to CS2).

4.3 The Programming Process
The modeling approach to programming invites for an iterative
process where the program is developed incrementally. Through
progressive exercises we reinforce such a process in order to
imitate modern program development processes [4].

4.4 Abstraction
One of the important skills we want our students to possess is the
capability to abstract. One way of stimulating the student’s ability
to abstract is to give several exercises with similar structure.

One example from the bank domain is the model shown in Error!
Reference source not found.. In a student administration domain
we have the following model:

Figure 3: A student can participate in many courses

Initially the students see these two models as completely
different, but gradually they realize they are both instantiations of
the same abstract model:

Figure 4: Abstract to many association

From this abstract model they can produce a corresponding
generic coding pattern (see figure 5).

Figure 5: Generic coding pattern for 0..* association

import java.util.*;

public class A
{ private Collection bs;
 public A()
 { bs = new ArrayList(); }
 public Collection getBs()
 { return bs; }
 public void addB(B b)
 { bs.add(b); }
 public void removeB(B b)
 { bs.remove(b); }
}

5. CONCLUSIONS
In the recommendations of the Joint Task Force on Computing
Curricula 2001 we have identified conceptual modeling as a
lacking perspective in CS1. We have described the characteristics
of conceptual modeling and argued that it is the defining
characteristic of object-orientation. We have described a general
structure for CS1 with conceptual modeling as the driving force.
Furthermore we have discussed a number of aspects of this
structure including a systematic approach to programming.
The approach described in this paper has been applied for three
years. Apart from qualitative improvements as described above,
the change has had a quantitative impact on the number of
students passing the course. Before we started using conceptual
modeling and other systematic approaches to the programming
process the average percentage of students passing the exam were
52%. Since we switched to the approach described in this paper,
the percentage of students passing the exam has increased to 79%.

6. FUTURE WORK
The approach to programming described in this paper was charac-
terized by Kristen Nygaard as the Scandinavian approach to
object-orientation. The COOL project (Comprehensive Object-
Oriented Learning) is motivated by the following note on traditio-
nal ways of teaching object-orientation: “They suffer from the
lack of a unifying perspective and a pedagogical approach
focusing upon the modeling aspects of object-orientation” [8,
paragraph 1.2]. Within the COOL project we intend to investigate
the tension between pedagogical approaches, didactical tech-
niques, suitable examples, tools etc.

7. REFERENCES
[1] Alphonce, C., and Ventura, P.J.: “Object-Orientation in CS1-

CS2 by Design”, Proceedings of Innovation and Technology
in Computer Science Education, Aarhus, Denmark, 2002.

[2] Arnow, D., Dexter, S., and Weiss, G., Introduction to
Programming Using Java: An Object-Oriented Approach,
Addison-Wesley, 2004.

[3] Barnes, D.J., and Kölling, M. Objects First with Java – A
Practical Introduction using BlueJ, Pearson Education,
2003.

[4] Beck, K., Extreme Programming Explained, Addison-
Wesley, 2000.

[5] Bergin, J., ”14 Pedagogical Patterns”, available on-line at
“http://csis.pace.edu/~bergin/PedPat1.3.htm”.

[6] Christensen, H.B., and Caspersen, M.E.: “Here, There and
Everywhere – On the Recurring Use of Turtle Graphics in
CS1”, Proceedings of the Fourth Australasian Computing
Education Conference, ACE 2000 Melbourne, Australia,
2000.

[7] Cooper, M. et al.: “Teaching Objects-First in Introductory
Computer Science”, Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education,
Reno, Nevada, USA, 2003, pp. 191–195.

[8] Description of the COOL project, available on-line at
“http://heim.ifi.uio.no/~kristen/FORSKNINGSDOK_MAPP
E/F_COOL1.html”.

[9] Fowler, M., UML Distilled – A Brief Guide to the Standard
Object Modeling Language, Addison-Wesley, 2000.

[10] Horstmann, C.S., Big Java, John Wiley & Sons, 2001.

[11] Knudsen, J.L., and Madsen, O.L., Teaching Object-Oriented
Programming is more than Teaching Object-Oriented
Programming Languages, DAIMI-PB 251, Department of
Computer Science, University of Aarhus, Denmark, 1990.

[12] Lewis, J., and Loftus, W., Java Software Solutions: Foun-
dations of Program Design, Addison-Wesley, 2003.

[13] Madsen, O.L., Møller-Petersen, B., and Nygaard, K., Object-
Oriented Programming in the BETA Programming
Language, Addison-Wesley/ACM Press, 1993.

[14] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y.B.-D., Laxer, C., Thomas, L., Utting,
I., and Wilusz, T. “A multinational, multiinstitutional study
of assessment of programming skills of first-year CS
students”, ACM SIGCSE Bulletin, 33 (4), 2001, pp. 125–140.

[15] Niño J., and Hosch, F.A., An Introduction to Programming
and Object-Oriented Design Using Java, John Wiley & Sons,
2001.

[16] The Joint Task Force on Computing Curricula (IEEE
Computer Society and Association for Computing
Machinery). Computing Curricula 2001 (final report),
December 2001. Available on-line at
“http://www.computer.org/education/cc2001/final”.

