
Here, There and Everywhere
– On the Recurring Use of Turtle Graphics in CS1

Michael E. Caspersen and Henrik Bærbak Christensen
Centre for Experimental Systems Development

Department of Computer Science, University of Aarhus
DK–8200 Aarhus N, Denmark

{mec,hbc}@daimi.au.dk

Abstract

The Logo programming language implements a virtual
drawing machine—the turtle machine. The turtle ma-
chine is well-known for giving students an intuitive un-
derstanding of fundamental procedural programming
principles. In this paper we present our experiences with
resurrecting the Logo turtle in a new object-oriented
way and using it in an introductory object-oriented pro-
gramming course. While, at the outset, we wanted to
achieve the same qualities as the original turtle (under-
standing of state, control flow, instructions) we realized
that the concept of turtles is well suited for teaching
a whole range of fundamental principles. We have suc-
cessfully used turtles to give students an intuitive under-
standing of central object-oriented concepts and princi-
ples such as object, class, message passing, behaviour,
object identification, subclasses and inheritance; an in-
tuitive understanding of recursion; and to show students
the use of abstraction in practice as the turtles at a late
stage in the course becomes a handy graphics library
used in a context otherwise unrelated to the turtles.

1 Introduction

It is our firm conviction that the primary aim for an
introductory programming course is that students learn
fundamental programming principles and techniques.
The mastery of a programming language is, of course,
necessary, but we view it as a secondary concern; we
want to focus on fundamental principles and general
techniques as early as possible and thereafter unfold
these throughout the course.

Contrary to this, most introductory programming texts

focus on the programming language, often described in a
bottom-up fashion starting with the simpler constructs
of the language and progressing to more advanced con-
structs. Only subordinate to the presentation of the lan-
guage constructs follows the presentation of program-
ming techniques; however, all too often these program-
ming techniques are not even explicit in textbooks.

Another motivation for our approach is that most peo-
ple learn more easily through the concrete towards the
abstract [5, 9]. Having seen constructs and techniques
being applied in an appealing intuitive way, and there-
after mimicking these to solve similar problems, like in
a craft’s apprenticeship, provides an excellent basis for
a later thorough and more abstract treatment. In this
way the students have a practical experience to ground
the abstract treatment.

1.1 The Inverted Curriculum

Our view is not a novel one as is evident from many
papers from past SIGCSE conferences [4, 6, 7, 11, 12].
Bertrand Meyer [8] coined the term “the inverted cur-
riculum” (or “consumer-to-producer-strategy”) mean-
ing that important topics and concepts should be cov-
ered first by using classes solely through their abstract
specifications, and only then the students learn about
the internals of classes. A simplified variant of Meyer’s
vision is the objects-first approach which is prevailing
in many new textbooks, but still many of these books
are structured on the basis of the constructs in the pro-
gramming language and not on the basis of the lan-
guage independent concepts, principles and techniques
that the students are supposed to master by the end of
the course.

Of course, in order to be able to focus on programming
techniques and apply these in concrete programs, it is
necessary to be—at least to some extent—fluent in a
programming language. However, we do not want the
learning of the language to take over and become the
primary concern, especially not in the beginning of the
course. What we want is to jump start the students so

Figure 1: Architecture of the Turtle Machine

that they, as early as possible, can start writing interest-
ing and challenging programs based on the fundamental
principles and techniques that are our primary concern
in the course: programs as physical models, objects, be-
haviour, classes, state, control flow, parameterisation,
design by contract (specifications), inheritance, etc.

In order to facilitate a jump start of CS1, we have devel-
oped a Java package, Turtles, that takes as it starting
point the familiar turtle graphics developed by Seymour
Papert and others at MIT in 1967 [10, 1]. We use it to
give an intuitive introduction to concepts such as state,
control flow, and parameterisation. Somewhat to our
surprise, it turned out that the Turtles package could
play many more roles within CS1 than initially antici-
pated: It has become a recurring vehicle for introducing
such diverse topics as objects and classes, object models,
recursion, polymorphism and class hierarchies. Indeed,
turtles popped up here, there, and everywhere. . .

In the current version of our introductory programming
course we are using the programming language Java
which is also the language of choice for the presenta-
tion in this paper.

2 The Turtle Machine

The original Logo turtle machine is a virtual draw-
ing machine that uses the metaphor of a turtle with
a coloured pen moving around in a Cartesian drawing
area to produce drawings. The state of the turtle ma-
chine can be described as a 4-tuple: a turtle position
(x,y)-coordinates, an angle, a colour and a up/down
status for the pen. Initially the turtle is placed in the
lower left corner (0, 0), the angle is zero, the colour is
black and the pen is down (figure 1).

The set of instructions for the machine is minimal; only
nine instructions are used to operate the machine (see
Table 1).

Table 1: Instruction set for Turtle Machine
Command Behaviour
move(l) move l units in current direction
moveTo(x, y) move to position (x, y)
turn(d) increase the angle d degrees
turnTo(d) set the angle to d degrees
center() move to center
penUp() lift the pen
penDown() lower the pen
setColor(c) set the pen’s colour
clear() clean the drawing area

3 The Turtle Machine Resurrected: Turtles

The original turtle machine sprang out of the proce-
dural programming paradigm that views a program as
a sequence of instructions carried out by some virtual
machine. In contrast the object-oriented programming
paradigm views a program as a model where model
elements are objects that have behaviour and inter-
act with other objects. Thus—in our object-oriented
CS1 course—the turtle machine has naturally been re-
placed by turtle objects. In our Java implementation,
there is no machine that executes turtle commands, in-
stead there are objects that exhibit turtle behaviour;
behaviour that is described by the Turtle class. The
instruction set in Table 1 is replaced by (otherwise se-
mantically equivalent) methods in the Turtle class.

This change of view and paradigm comes natural be-
cause the original metaphor of a turtle moving around
on a drawing area is inherently an object-oriented
model.

4 Jump Starting

At the beginning of the course we teach the concepts
from the concrete towards the abstract. We start by in-
troducing our “mascot” turtle with the odd, but short,
name t. t lives in a sandbox (the large drawing area)
and has a pen that leaves a trail when it moves around.
t has behaviour: move-, turn-, and pen-behaviour. t
exhibits the move-, turn-, and pen-behaviour when we
pass it the message to do so, e.g. t.move(100) tells t
to move 100 units forward. Before we show a comput-
erised turtle, we actually let the audience command the
lecturer around the floor in an attempt to produce a
rectangle—while it reinforces the intuitive understand-
ing of the behaviour concept, it also ‘breaks the ice’
between audience and lecturer as the audience for a
short period is ‘in control of the lecturer’ as they pass
messages: “Henrik, please move 2 meters” and so on.
Controlling the turtle (or lecturer) also brings an intu-
itive understanding of the importance of the sequencing
of messages passed, the control-flow. Parameterisation

Figure 2: The “Spirille”

Program 1 The “Spirille” program
// 36 squares each turned an angle
// of 10 degrees from the previous
public class Spirille {
public static void main() {

Turtle t = new Turtle();

t.setColor(Color.blue);
t.center();
for (int i = 0; i<36; i++) {
for (int j = 0; j<4; j++) {

t.move(100);
t.turn(90);

}
t.turn(10);

}
}

}

also follows naturally as e.g. the ’move’-behaviour needs
additional detail, namely the actual distance to travel.

The computerised turtle is then described through on-
line viewing, editing, and running of Java code using a
laptop computer connected to a projector.

We motivate loops in control flow in order to
avoid textual repetition, e.g. looping four times over
{t.move(100); t.turn(90);} is easier than writing
eight turtle messages. This quickly leads to quite in-
teresting drawings as illustrated in figure 2 that is pro-
duced by program 1.

At this point, through a concrete and highly visual
metaphor, students have already an intuitive first un-
derstanding of fundamental object-oriented concepts:

object, object identification and message passing, as
well as fundamental procedural concepts: state, flow of
control (including loops) and parameters. The imme-
diate visual feedback from the program makes it easy
for students to identify logical programming errors and
helps the inexperienced student; at the same time the
material is still advanced enough to challenge those stu-
dents that are already familiar with the basic topics.

The lab exercises are about making simple drawing (a
flag and a house), nested drawings (pyramid seen from
the top, a high-rise block, etc.) and animations (various
objects that move around).

Typically, students can be divided into two groups; one
group of students tend to use the relative commands
turn and move whereas others are more comfortable
with the absolute commands turnTo and moveTo. We
discuss the different approaches in class, and in particu-
lar we investigate the difference of using the relative and
the absolute commands. This turns into a discussion on
important and fundamental software engineering issues
such as generality, modifiability and reusability of pro-
grams.

5 Objects and Classes

A natural next step is to introduce two turtles into
the same drawing area. This seemingly trivial addition
is actually an intuitive and powerful way to introduce
the students to another important range of fundamen-
tal concepts in object orientation—a trivial and natural
step in an object-oriented language but difficult in the
original turtle machine.

Having two turtles makes the importance of object iden-
tification clear: How else can you identify the actual tur-
tle to whom a message is sent? Another reinforced point
is that the two turtles have different states though they
share a common behaviour—they appear and draw in
different areas of the drawing area. From this example
it is natural to discuss the benefits of categorising ob-
jects with common behaviour, and give examples from
everyday life where we classify concepts and phenom-
ena. Introducing the notion of a (Java) class is thus
relatively easy.

6 Class Hierarchies and Procedural Abstraction

The next step is to introduce procedural abstraction
through defining new methods to draw, say, a rectan-
gle. At first sight this seems like an overwhelming task
to do in the second lecture as the only way to add a new
method in Java is either to introduce it into the Turtle
implementation or to extend the Turtle class and intro-
duce the method in the subclass. The first alternative is
not an option—primarily because the turtle is provided

Program 2 Procedural abstraction and parameterisa-
tion
class SkilledTurtle extends Turtle {

void rectangle(int w, int h) {
t.move(w); t.turn(90);
t.move(h); t.turn(90);
t.move(w); t.turn(90);
t.move(h); t.turn(90);

}

public static void main() {
SkilledTurtle t = new SkilledTurtle();

... t.rectangle(100, 50); ...
}

}

as a Java package and secondly because we do not want
to expose the implementation with all its details of the
Java graphics. But the second option, to extend the
Turtle class, turns out to be quite natural as described
below.

6.1 Class Hierarchies

What do you do when you want your turtle to learn
new “tricks”, say, drawing a rectangle? You train your
turtle until its behaviour extends to include the ability
to draw rectangles—and your turtle becomes a skilled
turtle.

By focusing on the idea of ‘extending behaviour’ the
Java syntax for declaring subclasses seems feasible (pro-
gram 2 and 3). We show the students how (program 2),
and they are able to mimic the idea in exercises where
turtles with new special skills are required as exem-
plified in program 3. We do not dwell on abstract,
complex, properties of inheritance and class hierarchies;
rather, we show how this technique—grounded in an in-
tuitive understanding of “training turtles”—can be used
to solve a concrete problem. In this way we have an ex-
cellent basis for a thorough treatment later in the course
when the students have concrete experience and an in-
tuitive understanding of inheritance. Also, the students
have seen an aspect of what inheritance is actually used
for—and in the end we find this is the basic purpose
of the course: not merely to understand language con-
structs and object oriented principles but being able to
apply them to solve recurring problems in computer sci-
ence.

6.2 Procedural Abstraction and Design by Contract

Based on the metaphor of skilled turtles the focus is
turned to the problem of “training”. The first skilled
turtle is one that can draw rectangles, and clearly, one
wants to be able to define once and for all how to draw

Program 3 Specialisations of turtles
class GeometryTurtle extends Turtle {
void rectangle(int w, int h) { ... }
void circle(int r) { ... }
...

}

class ArchitectTurtle extends Turtle {
void window(int w, int h) { ... }
void door(int w, int h) { ... }
void roof(int w, int h) { ... }
...

}

a rectangle with width w and height h (program 2).

From the SkilledTurtle example (or similar ones) we
initiate a discussion on the necessity of the last
t.turn(90) in the procedure of program 2. The state-
ment is superfluous as far as the resulting drawing is
concerned, but there are obvious reasons to include the
statement: to leave the turtle in the same state as before
the call, making it easier to make composite drawings
by multiple calls (like the Spirille). The students under-
stand the point, and hopefully valuable seeds have been
sown.

On the basis of simple examples like this we discuss
important fundamental principles such as design, spec-
ifications and the distinction of what and how. In the
context of the turtles, it comes natural for the students
to express sound and well established principles for pro-
cedural abstractions, and later in the course when things
get more complicated, we return to this common ground
and recall the principles.

The moral of the discussion is that we need to be pre-
cise about what we want a piece of software to do. The
best way to express such requirements is by writing a
functional specification; hence we introduce the notion
of design by contract [8], and from then on we use the
technique throughout the course. This is reinforced as
we provide the specification of the Turtle as JavaDoc
API documentation, thereby forcing the students to be-
come acquainted with the standard way of documenting
Java classes and packages.

7 Recursion and Fractals

A traditional way to introduce recursion is to compute
factorials. We find this unfortunate, because it intro-
duces the technique on a problem for which it is inef-
ficient and an iterative solution is straight-forward to
express. Contrary to this, we introduce recursion for
problems where the recursive solution is effective and
iterative solutions are difficult to express elegantly.

The students are asked to write a program that can
produce the list of drawings, Triangle, Penta and Poly,

Figure 3: Triangle, Penta, and Poly

Program 4 Java code for triangle and penta
public void triangle(int l) {
for (int i= 0; i<3; i++) {

move(l);
turn(120);

}
}
public void penta(int l) {
triangle(l/2);

move(l/2);
triangle(l/2);

turn(120); move(l/2); turn(-120);
triangle(l/2);

turn(-120); move(l/2); turn(120);
}

in figure 3 (and the next seven figures which are given
equally odd names). However, first we demonstrate how
to write methods for the first two drawings (program 4).

As expected, the students produce eight new methods
by copy-paste-and-substitute of the penta method. It
works, but of course the students get the hunch that
this cannot be the proper way to do it.

Once more we emphasise the notion of parameterisa-
tion, and we introduce the term superTriangle(n)
to mean “a superTriangle of degree n”. Defin-
ing superTriangle(0) to denote Triangle,
superTriangle(1) to denote Penta and so forth,
brings us more than half way towards the general
solution; realizing that superTriangle(-1) does not
make sense and handling this special case brings us the
rest of the way (program 5).

The derivation is fairly easy; with little guidance the
derivation is almost exclusively done by the students.

Program 5 A general (recursive) solution
public void superTriangle(int n, int l) {
if (n == 0)

triangle(l)
else {

superTriangle(n-1, l/2);
move(l/2);

superTriangle(n-1, l/2);
turn(120); move(l/2); turn(-120);

superTriangle(n-1, l/2);
turn(-120); move(l/2); turn(120);

}
}

Figure 4: A hierarchy of geometric shapes

But even more interesting: Nobody mentions the notion
of recursion; the solution just turns out to be what we
call recursive.

8 Turtles as a Class Library

Later in the course, when we are covering more ad-
vanced object-oriented topics such as class hierarchies,
polymorphism and application frameworks, we dig out
the “old” Turtles package and use it as just another
class library. We also find it important for students to
use class libraries and the accompanying documentation
as early as possible in the undergraduate curriculum, as
pointed out in e.g. [13].

8.1 Class Hierarchies and Polymorphism

We use geometric shapes as example of a class hierar-
chy. An abstract class Shape has concrete methods move
and erase and an abstract method draw that is imple-
mented in subclasses of the Shape class. Each Shape
instance has a turtle associated that it delegates the
drawing tasks to; in this way the turtle becomes our
graphical drawing library effectively encapsulating the
Java specific graphical toolbox (figure 4).

There is another important point in (re-)using the Tur-
tles package as a drawing toolbox: Abstraction is the
key concept in programming, and the code which is the
intense focus of design, development, and testing to-
day (the implementation view, how), will be taken for
granted next month and simply used (the specification
view, what). In a similar vein, the turtle was “the prob-
lem” in the beginning of the course—now it is the so-
lution to the problem of drawing shapes in a new and
different context.

8.2 Application Frameworks

Before introducing the students to GUI-programming
with AWT or Swing, we give a lesson about frame-
works in general, and we exemplify by providing a sim-

Figure 5: A turtle in the Presenter framework

ple framework for the students. The purpose of the
framework, called Presenter, is to allow fast develop-
ment of graphical presentations of a set of images (ac-
tually graphical components) and text, where the or-
dering in the set is arranged using a familiar naviga-
tional metaphor: The compass with directions north,
east, south, and west.

Our initial instantiation of the framework is a multime-
dia presentation of the tomb of Tutankhamon—using
the compass buttons the user can move between the
different chambers of the tomb, each chamber described
both in text and by a picture from the original opening
of the tomb.

In an exercise the students are asked to program a tur-
tle controller i.e. the buttons North, West, South and
East must control the movement of the turtle (moving
at right angles), as shown in figure 5. While it shows
the turtle in yet another context the main point here is
that the turtle’s drawing area is actually a subclass of
java.awt.Component, the basic graphical component in
Java, and therefore the framework accepts to display the
turtle drawing area. This way another important prop-
erty of inheritance is demonstrated to the students; not
as much as a language construct, but as a technique for
solving a specific set of problems.

9 Conclusion

We have described our use of a Java package, Turtles,
which is an object-oriented variant of the classical turtle
machine. Early in the course we are using the Turtles

package to jump start our CS1 course by giving an in-
tuitive introduction to classical procedural concepts in
the spirit of the Logo language, introducing only the
most necessary constructs and only by example; we do
not want to provide detailed explanations that will not
be understood nor remembered at this early stage.

Turtles is a great way to introduce simple as well as
more advanced object-oriented concepts such as state,
behaviour, object identification, inheritance, and poly-
morphism because the metaphor of a turtle on a drawing
area is inherently an object-oriented model.

Furthermore, the Turtles package has been success-
fully used to illustrate abstraction at a later stage in
the course: while the semantics and details of turtles
were the focus and problems in the early part of the
course, it is simply used as a drawing class library in
the later part of the course.

Though we have not conducted qualitative nor quanti-
tative analysis of the effectiveness of our use of turtles
to introduce object-oriented concepts to students, we
have many indications of the positive effect. Our teach-
ing assistants report that most students are proficient
in basic object-oriented and procedural techniques early
in the course, and students report using the turtles as
fun and motivational. After all, this is not too bad.

Acknowledgements

We acknowledge Jens Bennedsen for stimulating dis-
cussions and collaboration during early development
and use of the Turtle Machine. We also acknowledge
Erik Martino for implementing the Turtles package
in Java.

References

[1] Abelson, H., and diSessa, H. Turtle Geometry: The
Computer as a Medium for Exploring Mathematics.
The MIT Press, 1980.

[2] ACM SIGCSE. The Papers of the Twenty-fourth
SIGCSE Technical Symposium on Computer Sci-
ence Education (March 1993), vol. 25 of SIGCSE
Bulletin.

[3] ACM SIGCSE. The Papers of the Twenty-sixth
SIGCSE Technical Symposium on Computer Sci-
ence Education (March 1995), vol. 27 of SIGCSE
Bulletin.

[4] Astrachan, O., and Reed, D. The Applied Ap-
prenticeship Approach to CS1. In The Papers of
the Twenty-sixth SIGCSE Technical Symposium on
Computer Science Education [3].

[5] Brightman, H. J. On Learning Styles.
Tech. rep., Georgia State University, 1998.
www.gsu.edu/~dschjb/masterteacher.html.

[6] Decker, R., and Hirshfield, S. Top-Down Teach-
ing: Object-Oriented Programming in CS 1. In
The Papers of the Twenty-fourth SIGCSE Tech-
nical Symposium on Computer Science Education
[2].

[7] Hilburn, T. B. A Top-Down Approach to Teach-
ing an Introductory Computer Science Course. In
The Papers of the Twenty-fourth SIGCSE Tech-
nical Symposium on Computer Science Education
[2].

[8] Meyer, B. Object-Oriented Software Construction
(2nd edition). Prentice-Hall, 1997.

[9] Myers, I. B., and McCaulley, M. Manual: A Guide
to the Development and Use of the Myers-Briggs
Type Indicator. Consulting Psychologist Press,
1985.

[10] Papert, S. Children, Computers, and Powerful
Ideas. Harvester Press, 1980.

[11] Patti, R. E. The ‘Procedures Early’ Approach in
CS 1: A Heresy. In The Papers of the Twenty-
fourth SIGCSE Technical Symposium on Computer
Science Education [2], pp. 122–126.

[12] Reek, M. A Top-Down Approach to Teaching
Programming. In The Papers of the Twenty-sixth
SIGCSE Technical Symposium on Computer Sci-
ence Education [3], pp. 6–9.

[13] Tewari, R., and Gitlin, D. On Object-Oriented
Libraries in the Undergraduate Curriculum: Im-
portance and Effectiveness. In The Papers of
the Twenty-fifth SIGCSE Technical Symposium on
Computer Science Education (March 1994), vol. 26
of SIGCSE Bulletin, ACM SIGCSE, pp. 319–323.

