
Programming a Dataflow Analysis in Flix

[Tools for Automatic Program Analysis (TAPAS), 2016]

Magnus Madsen
University of Waterloo

mmadsen@uwaterloo.ca

Ming-Ho Yee
University of Waterloo

ming.ho-yee@uwaterloo.ca

Ondřej Lhoták
University of Waterloo
olhotak@uwaterloo.ca

ABSTRACT
Flix is a logic and functional language designed for the
implementation of static analysis tools. Flix is inspired
by Datalog and extends it with user-defined lattices as well
as monotone filter and transfer functions. In recent work,
Flix has been used to express several analyses, including the
Strong Update analysis, and the IFDS and IDE algorithms.

1. INTRODUCTION
Designing, implementing, and testing static analysis tools

is a challenging and complex task. The designer is often faced
with difficult trade-offs between trying to ensure soundness,
precision, and overall scalability of the analysis. To overcome
these challenges, and to simplify the implementation, some
designers have turned to Datalog [2].

Datalog is a logic programming language for expressing
constraints on relations. A Datalog program is a collection
of facts and rules. Each rule can derive new facts from the
existing facts, and this process is iteratively repeated until
the least fixed point of the rules is found. In past work,
Datalog has successfully been used to specify large-scale
points-to analyses of object-oriented programs, in particular
for Java [1, 4]. Datalog is not limited to points-to analyses,
but it can also be used to express other analyses that are
based on constraints on relations, e.g. definite assignment,
reaching definitions, and available expressions.

However, many static analyses, including classic dataflow
analyses that have been known for over thirty years, are
not defined as constraints on relations, but as constraints on
lattices. These include sign analysis, constant propagation
analysis, and interval analysis. Regrettably, such analyses
cannot be expressed by Datalog.

We have proposed Flix to overcome these limitations [3].
Flix is inspired by Datalog and extends it with user-defined
lattices as well as monotone filter and transfer functions.
With Flix, we can implement static analyses that are difficult,
or even impossible, to express in Datalog.

2. FROM DATALOG TO FLIX
A Datalog program consists of rules of the form:

H(t) ⇐ B1(t), . . . , Bn(t).

where H and each Bi are predicate symbols, t is a sequence
of terms, and a term t is either a variable or constant. Intu-
itively, if the body predicates B1, . . . , Bn in a rule are satisfied
then the head predicate H of the rule must be satisfied.

In a Flix program, a rule has the more general form:

H(t, f(t)) ⇐ ϕ(t), B1(t), . . . , Bn(t).

and each predicate symbol is (optionally) associated with a
lattice. In the rule, ϕ is a monotone filter function and f is
a monotone transfer function. We express such functions as
code in the functional language of Flix. Crucially, this allows
functions to have infinite domains/codomains, something
which is not possible in Datalog. To illustrate the role played
by lattices in Flix, consider the Datalog program:

A("foo"). A("bar"). B("qux").

this program has the unique solution, i.e. minimal model:{
A("foo"), A("bar"), B("qux")

}
whereas the Flix program:

A(Cst(1)). A(Cst(2)). B(Cst(3)).

where A and B are defined over the constant propagation
lattice, and Cst(c) is the constructor for the constant c, has
the minimal model: {

A(>), B(Cst(3))
}

Notice how the two facts A(Cst(1)) and A(Cst(2)) are com-
bined into the fact A(>) according to the lattice order.

3. DATAFLOW ANALYSIS
We now show how to express a simple dataflow analysis

in Flix. We will implement an intra-procedural constant
propagation analysis. The purpose of this analysis is to
compute, for every local variable, whether it points to a
single constant, and if so, the value of that constant. We
begin by defining three input relations:

rel LitStm(r: Var, c: Int)
rel AddStm(r: Var, x: Var, y: Var)
rel DivStm(r: Var, x: Var, y: Var)

The three relations represent the program-under-analysis.
Specifically, the first relation represents literal statements of
the form r = c, where c is an integer literal and r is the result
variable; the second relation represents addition statements
of the form r = x+y, where r is the result variable and x and
y are the operands; and finally, the third relation represents
division statements of the form r = x/y, where r is the result
variable, x is the numerator, and y is the denominator. Next,
we define the lattice

lat LocalVar(k: Var, v: Constant)



This lattice is the result of the analysis: it maps every local
variable to an element of the constant propagation lattice.

In order to implement this lattice, we must define the type
of its elements, a partial order on those elements, and the
usual lattice operations. We begin by defining the Constant

type as an algebraic data type with three variants:

enum Constant {
case Top,
case Cst(Int),
case Bot

}

Here, Bot and Top represent the bottom and top elements
of the lattice, respectively, and Cst(c) represents the specific
constant c. The next step is to define the partial order, as a
function, on the elements of this lattice:

def leq(e1: Constant, e2: Constant): Bool
= match (e1, e2) with {

case (Bot, _) => true
case (Cst(n1), Cst(n2)) => n1 == n2
case (_, Top) => true
case _ => false

}

This function takes two arguments e1 and e2, which are
lattice elements, and returns true if e1 is smaller than or
equal to e2. The function pattern matches on its arguments
and returns true if the first argument is bottom, if both
arguments are the same constant, or if the last argument is
top. Otherwise it returns false. We define functions for the
least upper bound and greatest lower bound in a similar way.

We are now able express the semantics of the analysis
using three simple rules, one for each of the input relations:

LocalVar(r, Cst(c)) :− LitStm(r, c).

LocalVar(r, sum(v1, v2)) :− AddStm(r, x, y),
LocalVar(x, v1),
LocalVar(y, v2).

LocalVar(r, div(v1, v2)) :− DivStm(r, x, y),
LocalVar(x, v1),
LocalVar(y, v2).

The first rule states that if there is a literal statement r = c,
where the variable r is assigned the constant c, then we
simply assign r the constant propagation lattice element
Cst(c). The second rule states that if there is an addition
statement r = x + y, where the value of the local variable x
is v1 and the value of y is v2, then the value of r is at least
the result of applying the sum function to v1 and v2. The
third rule is similar, but for division statements.

The functions sum and div, referred to in the head of
the last two rules, are transfer functions expressed in the
functional language of Flix. Here is the definition of sum:

def sum(e1: Constant, e2: Constant): Constant
= match (e1, e2) with {

case (_, Bot) => Bot
case (Bot, _) => Bot
case (Cst(n1), Cst(n2)) => Cst(n1 + n2)
case _ => Top

}

This function takes two arguments. If either is bottom then
the result is bottom. If both are constants then the result is
the sum of the constants. Otherwise, at least one argument
is top, thus the result is top.

This completes the implementation. The analysis com-
putes an element of the constant propagation lattice for every
local variable in the program-under-analysis.

We can easily extend the analysis to find bugs, for instance,
detecting potential division-by-zero errors. To do so, we
introduce a relation to capture result variables that are
possibly indeterminate

rel ArithmeticError(r: Var)

and we introduce the rule:

ArithmeticError(r) :− isMaybeZero(y),
DivStm(r, n, d),
LocalVar(d, y).

This rule states that if there is a division statement r = n/d,
where the value of the denominator variable d is y and y is
possibly zero according to the filter function isMaybeZero,
then the result variable r is possibly indeterminate. Here,
isMaybeZero is the function

def isMaybeZero(e: Constant): Bool
= match e with {

case Bot => false
case Cst(n) => n == 0
case Top => true

}

This function takes one argument and returns true iff it is
either the zero or top element.

4. CORRECTNESS
Every Datalog program eventually terminates and returns

the minimal model. Flix programs, on the other hand,
may fail to terminate if the user-defined lattices, filter, and
transfer functions fail to satisfy a range of mathematical
properties, e.g. monotonicity. To ensure termination and
the existence of a minimal model, we have implemented a
verifier for Flix programs. The verifier, which is based on
symbolic execution and satisfiability modulo theories, checks
that the program satisfies the required properties or outputs
an error message along with a counter-example.

5. SUMMARY
Flix is a logic and functional programming language de-

signed for the implementation of static analyses. Flix is
inspired by Datalog and extends it with user-defined lat-
tices and monotone filter and transfer functions. Using Flix,
static analysis implementors can express a broader range of
analyses than is possible in pure Datalog, while retaining the
familiar rule-based syntax of Datalog.

Flix is open-source and freely available on GitHub:

http://github.com/flix/

More information can be found on the Flix website:

http://flix.github.io/

6. REFERENCES
[1] M. Bravenboer and Y. Smaragdakis. Strictly Declarative

Specification of Sophisticated Points-To Analyses. In Proc.
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2009.

[2] S. Ceri, G. Gottlob, and L. Tanca. What You Always Wanted
to Know About Datalog (and Never Dared to Ask).
Transactions on Knowledge and Data Engineering, 1989.

[3] M. Madsen, M.-H. Yee, and O. Lhoták. From Datalog to Flix:
A Declarative Language for Fixed Points on Lattices. In Proc.
of the 37th Conference on Programming Language Design
and Implementation (PLDI), 2016.

[4] Y. Smaragdakis and M. Bravenboer. Using Datalog for Fast
and Easy Program Analysis. In Datalog Reloaded, 2011.


	Introduction
	From Datalog to Flix
	Dataflow Analysis
	Correctness
	Summary
	References

