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ABSTRACT

Implicit parameters allow programmers to omit certain ar-
guments from function calls and have them automatically
inferred by the compiler based on their types. At every call
site, the compiler determines the values of the implicit pa-
rameters based on their declared types and the bindings
currently in implicit scope. The programmer controls this
mechanism in two ways: by adding bindings to the implicit
scope, or by explicitly providing the implicit parameters for
the function call.

Implicit parameters are known from functional and object-
oriented languages such as Haskell and Scala. In recent years,
more languages have added support for implicit parameters,
including Agda, Coq, and Idris. Implicit parameters have
played an impressive role as the foundation for a broad range
of language features such as type classes, capability and effect
systems, software transactional memory, macros, and more.

In this paper, we propose a design of implicit parameters
for typed Horn clause based logic programming languages,
such as Datalog and Prolog. We illustrate the usefulness
of implicit parameters and show how they support logic
programming in the large. We explore some of the differ-
ences that arise between implicit parameters in functional
languages and in logic languages.

CCS CONCEPTS

• Theory of computation → Constraint and logic pro-

gramming; • Software and its engineering→Constraint

and logic languages;
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1 INTRODUCTION

Implicit parameters are a programming language feature
that allows certain arguments to be omitted from a function
call. The values of the omitted arguments are inferred by the
compiler based on their declared types and the bindings in
implicit scope. The implicit scope is composed of implicitly
passed arguments and bindings explicitly put into the im-
plicit scope. Implicit parameters allow parameterization of
functions and methods with extra arguments without requir-
ing those arguments to be explicitly passed through every
function call by the programmer.
For example, in the Scala programming language we can

declare a method with the signature:
def evaluate(q: Query)(implicit c: Conn): Result = ...

The method expects two parameters: the explicit parameter q
which is the query to run and the implicit parameter cwhich
is the connection to the database. Whenever the programmer
wants to evaluate a query, he or she may call the evaluate

method omitting the second implicit parameter:
val result = evaluate(someQuery)

In this case, the compiler automatically infers the implicit
parameter c based on its declared type. The question of how
the value of the implicit parameter is found opens up a large
design space with many proposals [8, 11, 12].
Implicit parameters were originally proposed by Lewis

et al. [8] as a mechanism to pass an argument to a function
deep inside multiple levels of recursion. Since the original
work, implicit parameters have played an impressive role
as the foundation for a broad range of other language fea-
tures including type classes [11], capability and effect sys-
tems [6, 13], software transactional memory [3], language
virtualization [10], and macros [4].

In this paper, we show that implicit parameters are useful
for typed logic programming. A logic program, in the context
of this paper, is a collection of declarative rules. Each rule
is a Horn clause and consists of a head predicate and zero
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or more body predicates. A predicate consists of a predicate
symbol and one or more terms, either variables or constants.
Intuitively, we can think of a predicate like a function

call in other languages, but there are differences. In most
other programming languages, a variable is declared in one
place in the program and can then be used in multiple other
places. There are two parts to the implementation of implicits
in these languages: at the declaration site, a variable may
optionally be designated as a candidate for implicit resolution
and assigned a type, and then at an implicit use site, the
compiler uses the type of term required by the use to select
a candidate variable of compatible type. Logic languages
like Datalog lack variable declarations: all occurrences of a
variable are uses. Thus, there can be implicit use sites, but
there is no obvious place to introduce candidate variables for
implicit resolution. In our system, the general solution to this
issue is for the compiler to effectively invent new variables,
one corresponding to each unique type that occurs at any
implicit use site within the Horn clause.
In this work, we are interested in logic programming on

a large scale: We do not expect that implicit parameters
will add much value to programs that are already small and
elegant. Implicit parameters will probably not simplify an
implementation of the Eight Queens Problem. Rather, our
inspiration is large-scale program analyses that runs to tens
of thousands of lines of Datalog code [2, 14].
Implicit parameters have been a powerful vessel as the

foundation for other programming language features. We
hope that by bringing implicit parameters to logic languages
we can help spur similar developments in this space.

The main contributions of this paper are:

• We illustrate how implicit parameters are useful for
logic programming.

• We present a design of implicit parameters for typed
logic programming languages.

• We present a program transformation that makes im-
plicit parameters explicit.

• We formulate a set of requirements that a design of
implicit parameters should satisfy and we prove that
our design conforms to these properties, including
type-safety of the transformation.

2 MOTIVATION

We motivate the need for implicit parameters through an
example: We show parts of a flow– and context-sensitive
points-to analysis implemented in Flix. Flix is a functional
and logic language inspired by Datalog extended with user-
defined lattices and functions. A specific use case of Flix is
for the implementation of large-scale program analyses [9].
The use of Flix in this paper is immaterial; the work is
equally applicable to any typed logic programming language.

2.1 Example: A Points-To Analysis

Assume we want to implement a context-sensitive and flow-
sensitive subset-based points-to analysis for an object-oriented
language like Java. Let us begin with a simplified version of
such an analysis. We start by declaring the input relations
along with their attributes and their types:
rel CFG(s1: Stm, s2: Stm)
rel New(s: Stm, r: Var, o: Obj)
rel Load(s: Stm, r: Var, b: Var, f: Fld)
rel Store(s: Stm, b: Var, f: Fld, v: Var)

Each of these relations is populated by a set of facts de-
rived from the program under analysis. For example, a fact
(s1, s2) ∈ CFG represents that there is a control-flow graph
edge from the statement s1 to the statement s2. Similarly,
a fact (s , r ,o) ∈ New represents that the abstract object o is
allocated at statement s and assigned to the result variable r .

Next, we declare the variable and heap points-to relations
which are the result of the analysis:
rel VarPtsToIn(c: Ctx, s: Stm, v: Var, o: Obj)
rel VarPtsToOut(c: Ctx, s: Stm, v: Var, o: Obj)
rel HeapPtsToIn(c: Ctx, s: Stm, b: Obj, f: Fld, t: Obj)
rel HeapPtsToOut(c: Ctx, s: Stm, b: Obj, f: Fld, t: Obj)

We declare two copies of each relation; each copy represents
the variable and heap points-to relations immediately before
and immediately after some program point identified by a
context and a statement. For example, a fact (c , s ,v,o) ∈

VarPointsToIn represents that the local variable v may point-
to the abstract object o before the statement s in context c .
Similarly, a fact (c , s ,b, f , t) ∈ HeapPointsToOut represents
that the field f of the base object b may point-to the target
object t after the statement s in the context c .
We can express the abstract semantics of a field read as:

VarPointsToOut(ctx, stm, resultVar, targetObj) :−
Load(stm, resultVar, baseVar, field),
VarPointsToIn(ctx, stm, baseVar, baseObj),
HeapPointsToIn(ctx, stm, baseObj, field, targetObj).

Informally, this rule states that if there is some field read
resultVar = baseVar.field at a statement where the local
variable baseVar points to some abstract object baseObj be-
fore the same statement in the same context, and the field
field of the abstract object baseObj points to some abstract
object targetObj again before the same statement in the
same context, then we infer that the local variable resultVar
points to the abstract object targetObj after the statement
stm in context ctx.
We can express the abstract semantics for the rest of the

analysis in a similar fashion. For example, we would need
to add rules for allocation of objects, for field stores, and
for propagating dataflow between control-flow graph edges.
A realistic program analysis may require more than a hun-
dred relations and several hundred rules totalling several
thousands of lines of code.
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If we look closely at the rule above, we see that many
parameters are repeated. Specifically, the rule is always rel-
ative to the same context ctx and statement stm and these
occur in every predicate. Repetition is a code smell and calls
for refactoring. What we would like is to make the context
and statement parameters implicit and omit them from each
predicate in the rule. This has two benefits: it makes the rule
more concise and it makes it clear that the semantics is the
same regardless of the current context and statement.

For this purpose, we allow the attributes of a predicate to
be declared implicit. For example,

rel VarPtsToIn(implicit c: Ctx, implicit s: Stm,
v: Var, o: Obj)

rel VarPtsToOut(implicit c: Ctx, implicit s: Stm,
v: Var, o: Obj)

rel HeapPtsToIn(implicit c: Ctx, implicit s: Stm,
b: Obj, f: Fld, t: Obj)

rel HeapPtsToOut(implicit c: Ctx, implicit s: Stm,
b: Obj, f: Fld, t: Obj)

declares that the attributes c and smay be treated as implicit
in the variable and heap points-to relations. Any attribute
may be declared implicit regardless of its position in the
relation or of any other implicit attributes. With the context
and statement attributes declared as implicit, the previous
rule can be simplified to:

VarPointsToOut(resultVar, targetObj) :−
Load(resultVar, baseVar, field),
VarPointsToIn(baseVar, baseObj),
HeapPointsToIn(baseObj, field, targetObj).

This rule is equivalent to the previous, but omits the param-
eters for the context and statement. The omitted parameters
are automatically inferred by the compiler, and it ensures
that the same context and statement is used in each predicate.

Implicit attributes eliminate one form of redundancy, but
there is a another form of redundancy that we would like to
eliminate. Consider the dataflow propagation rule:

VarPointsToIn(c, s2, v, o) :−
CFG(s1, s2),
VarPointsToOut(c, s1, v, o).

This rule states that if there is a points-to fact (c , s1,v,o) ∈
VarPointsToOut immediately after some statement s1 in con-
text c and if there is a control-flow graph edge from s1 to s2,
then the same dataflow fact is available immediately before
the statement s2 in the same context. Locally, in this spe-
cific rule, we would like to treat the parameters c , v and o as
implicit. However, we do not want to globally declare these
attributes as implicit since that would affect every rule.

For this purpose, we introduce implicified predicates. We
mark a predicate, within a rule, as implicified by prefixing
it with an at-sign (@). Intuitively, an implicified predicate
treats every attribute as if it were declared implicit. With
implicified predicates, we can simply write the rule as:

@VarPointsToIn(s2) :−
CFG(s1, s2),
@VarPointsToOut(s1).

In this rule, the predicates VarPointsToIn and VarPointsToOut
are implicified whereas CFG is not. The CFG predicate binds
the parameters s1 and s2 to values of type Stm. The impli-
cified predicate @VarPointsToIn(s2) treats every attribute
as implicit and requires that the parameter s2 matches one
of these attributes. Intuitively, the rule can be understood
as follows: The CFG predicate determines the type of the
s1 and s2 parameters. This type information determines
which attribute s1 corresponds to in the implicified pred-
icate @VarPointsToIn. The remaining parameters are then
treated as implicit. Similarly for @VarPointsToOut.

The difference between predicates and implicified pred-
icates is that in the former we are only permitted to omit
the implicit parameters (if any) whereas in the latter we are
permitted to omit any parameter, as long as the types are
sufficient to disambiguate the omitted parameters. In fact, in
an implicified predicate it is only the types that are used for
resolution; the order of parameters does not matter.

3 IMPLEMENTATION

We now present our design of implicit parameters for typed
logic programming languages. We begin with a discussion
of some requirements and design choices. We then present
a minimal logic calculus ∆Dat, in the spirit of Datalog, and
show how to extend it with implicit parameters, and ulti-
mately how to replace the implicit parameters with explicit
parameters through a translation scheme.

3.1 Requirements

We consider four requirements that any reasonable design
of implicit parameters should satisfy:

• Type Safety. The design should preserve type safety.
Specifically, the declared types of every predicate should
agree with the types of the terms everywhere the pred-
icate is used.

• Consistency. The design should not change the se-
mantics of any program that has no implicit parame-
ters. Moreover, a program where every implicit param-
eter is explicitly given should have the same semantics
as if the program declared no implicit parameters.

• Determinism. The use of implicit parameters should
be unambiguous and the translation scheme should
always produce exactly one program.

• Predictability. The meaning of explicit parameters,
i.e. parameters written by the programmer, should not
be changed. The compiler should only “fill-in” implicit
parameters and leave explicit parameters untouched.
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3.2 Design Choices

With the above as a guide, we turn to some more practical
concerns and design choices.

• We assume a logic programming language with a static
type system where every predicate symbol must be
declared along with the types of its attributes.

• We assume that a predicate has a single parameter list.
• We assume that any parameter(s), at any position in
the list, may be declared as implicit.

• We consider two notions of implicit parameters: im-
plicit attributes and implicified predicates.

It is instructive to compare these design choices to those
of Scala. Other than our two notions of implicits, the most
striking difference is that we restrict ourselves to a single
parameter list and that implicit parameters may occur any-
where in the parameter list. In Scala, a method may have
multiple parameter lists, to allow currying, and only the last
parameter list may be declared implicit.

Other languages that support implicits do so using a com-
bination of two mechanisms. First, at a variable declaration
site, a variable may optionally be designated as a candidate
for implicit resolution and assigned a type. Second, at a use
site that requires an implicit term of some type, the compiler
searches the current scope to find a candidate variable of
that type. Logic languages like Datalog do not have variable
declarations, so all occurrences of a variable are uses. Thus,
we require a language design that does not depend on a
scope of candidate variables, and can synthesize the required
variables based only on the set of implicit uses that occur in
each Horn clause.

3.3 Introductory Example

We now present the technical developments necessary for
adding implicit parameters to a logic programming language.
We begin with an informal description of the key ideas.

At a high level, our goal is to transform a logic program
P with some parameters left implicit to another program P ′

where every parameter is explicit. As discussed earlier, this
transformation must preserve type safety along with several
other important properties.
Assume we have a program, similar to the one from Sec-

tion 2, with the declarations:
rel VarPtsToIn(implicit c: Ctx, implicit s: Stm,

v: Var, o: Obj)
rel VarPtsToOut(implicit c: Ctx, implicit s: Stm,

v: Var, o: Obj)
rel CFG(s1: Stm, s2: Stm)

We introduce the notion of attribute slots for a rule. An at-
tribute slot is a pair of indices i and j where i is the index of
an atom in the rule and j is the index of an attribute of the

predicate symbol.1 Notice that j ranges over both explicit
and implicit attributes of the predicate. We will write the
pair as sij to remind us that this is an attribute slot.

For example, given the rule:
VarPointsToIn(c, s2, v, o) :−
CFG(s1, s2),
VarPointsToOut(c, s1, v, o).

its attribute slots are:

s00 , s
0
1 , s

0
2 , s

0
3 , s10 , s

1
1 , and s20 , s

2
1 , s

2
2 , s

2
3

Intuitively, the attribute slot s00 represents the first attribute
of the first atom, i.e. the attribute c: Ctx of the atom A0 =

VarPointsToIn(c , s2,v,o). Similarly, the attribute slot s10 rep-
resents the first attribute of the second atom, i.e. the attribute
s1: Stm of the atom A1 = CFG(s1, s2).
It is instructive to view the attribute slots at their proper

positions in the rule:
VarPointsToIn(s00, s01, s02, s03) :−
CFG(s10, s11),
VarPointsToOut(s20, s21, s22, s23).

We remark that the types of the attributes of the predicate
symbols which occur in this rule are: Ctx, Stm, Var, and Obj.

We can now state our desired goal: We want to compute a
partitioning of the attribute slots, such that slots that the rule
is intended to force to be equal are in the same partition. In
the rule above, the programmer has explicitly given a variable
for each slot, with the intendedmeaning that different uses of
the same variable should denote the same value. For example,
the variable s2 is used twice, in two atoms, to indicate that the
value of the second attribute of the VarPointsToIn predicate
must be equal to the value of the second attribute of the CFG

predicate.
When variables explicitly indicate which attribute slots

need to be unified to have equal values, the variables them-
selves can be used to identify the equivalence classes of
equated attribute slots. Thus, we can phrase the problem of
partitioning the attribute slots as computing a map (a func-
tion) from the slots of a rule to its variables. Each variable
designates a partition. The rule above denotes the map:

{s00 , s
2
0} 7→ c , {s10 , s

2
1} 7→ s1, {s01 , s

1
1} 7→ s2,

{s02 , s
2
2} 7→ v, and {s03 , s

2
3} 7→ o

Here {a,b} 7→ x means that both a and b map to x . Observe
that we can obtain the original rule by applying the map as
a substitution to the rule with the attribute slots.

Now, let us consider a rule with implicit parameters:
@VarPointsToIn(s2) :−
CFG(s1, s2),
@VarPointsToOut(s1).

1An atom is a predicate symbol followed by a sequence of terms, e.g. CFG(s1,
s2) is an atom.
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Because this rule refers to the same predicates as before, it
gives rise to the same attribute slots. The types of those slots
are also the same. The task is also the same: to partition the
attribute slots so that slots that should require equal values
are in the same partition. However, we now have only the
two variables s1 and s2, because some of the variables have
been left implicit. This suggests that we cannot represent
the partitioning of the slots as just a mapping to variables.

Instead, we will extend the map so that it maps each slot to
either a variable or to a type. Intuitively, if the programmer
has not specified any explicit variable for a given slot, we
will map the slot to its type, rather than to a variable. As
a result, all attribute slots of a given type that have been
left implicit by the programmer will be unified in the same
partition, identified by the type. Figure 1 shows this process
on the rule above. We now explain how this process works.
Conceptually we perform a sequence of steps to compute a
set of edges in a bipartite graph of attribute slots, variables,
and types. Two attribute slots are in the same partition if
and only if they are adjacent to some common variable or
type in the graph.
Later, we shall see that only two distinct steps are neces-

sary, but for the purpose of exposition we use more steps in
this example.

𝑠0
0 𝑠1

0 𝑠2
0 𝑠3

0 𝑠0
1 𝑠1

1 𝑠0
2 𝑠1

2 𝑠2
2 𝑠3

2

s1 s2 c s v o

Figure 1: Example of the bipartite graph used to com-

pute the partitioning.

1) We begin with the atom A1 = CFG(s1, s2). We say that
this atom is complete since the predicate symbol CFG is de-
clared with two attributes and the atom has two arguments,
the variables s1 and s2. We know that the attribute slots ofA1
are s10 and s

1
1 and that the variables s1 and s2 appear at these

locations, hence we introduce an edge from s10 to s1 and an
edge from s11 to s2, as shown in Figure 1.
2) We now consider the atom A0 = @VarPointsToIn(s2).

We say that this atom is implicified since it is prefixed by
an at-sign@. We want to determine to which attribute slot
we should assign the variable s2. However, we cannot do so
syntactically, because in an implicified atom, not all variables
are present, i.e. its arity is less than its declared arity. How-
ever, we know that there is an edge from s11 to s2, which was
added in Step (1). Since the type of s11 is Stm, the type of s2
must also be Stm. The VarPointsToIn predicate declares only
one attribute of type Stm, the second attribute. Hence we
conclude that we should add an edge from the attribute slot

s01 , i.e. the attribute of type Stm, to the variable s2, as shown
in Figure 1.

3) We now consider the atom A2 = @VarPointsToOut(s1).
We use the exact same reasoning as in Step (2). In fact, we
could have swapped the order of Step (2) and Step (3), with
no difference in result. By the same line of reasoning as in
Step (2), we conclude that we should add an edge from the
attribute slot s21 to s1, as shown in Figure 1.
4) At this point, we have processed every atom in the rule.

However, we are not yet finished: We have several attribute
slots which are not yet connected to any variable or type. We
take the remaining unconnected attribute slots and connect
them to their type. For example, the attribute slot s00 has the
type Ctx, so we connect it to the Ctx type in the graph. We
repeat this for every unconnected attribute slot. The end
result is shown in Figure 1.

The final graph has the following edges:

{s00 , s
2
0} 7→ Ctx, {s10 , s

2
1} 7→ s1, {s01 , s

1
1} 7→ s2,

{s02 , s
2
2} 7→ Var, and {s03 , s

2
3} 7→ Obj

This graph defines a map from attribute slots to variables
and types. If we substitute the types Ctx, Var, and Obj for the
variables xCtx, xVar, and xObj and apply the resulting map to
the rule with the attribute slots we obtain the rule:
VarPointsToIn(xCtx, s2, xVar, xObj) :−
CFG(s1, s2),
VarPointsToOut(xCtx, s1, xVar, xObj).

In this rule, every variable is explicit, and the rule has the
same semantics as the original rule.
We can apply this translation scheme to every rule in a

logic program P to obtain another logic program P ′ where
every implicit parameter has been made explicit. In the above
discussion, we did not cover all the cases of the translation
nor did we cover the situations when the map may fail to
exist or fail to satisfy some of the requirements or design
choices we discussed earlier. With these examples in mind,
we now turn to a general and formal treatment of these ideas.

3.4 A Minimal Logic Calculus

We illustrate the translation scheme on a minimal logic pro-
gramming language similar to Datalog. Figure 2 shows the
grammar of this language which we name ∆Dat.

Syntax. A program ⟨D1, · · · ,Dn ,R1, · · · ,Rn⟩ is a pair of
predicate declarations D1, · · · ,Dn and logic rules R1, · · · ,Rn .
A predicate declaration p(a1, · · · ,an) associates a predicate
symbol p with a sequence of attributes a1, · · · ,an . An at-
tribute is an identifier ident and a type τ possibly marked as
implicit with the implicit keyword. If an attribute is not
marked implicit, we say that it is explicit. A rule A0 ⇐

A1, · · · ,An is a Horn clause where A0 is the head atom and



PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Magnus Madsen and Ondřej Lhoták

P ∈ Program = ⟨D1, · · · ,Dn , R1, · · · ,Rn⟩

D ∈ Declarations = p(a1, · · · ,an )

a ∈ Attributes = ident : τ | implicit ident : τ
R ∈ Rules = A0 ⇐ A1, · · · ,An

A ∈ Atoms = p(t1, · · · , tn ) | @p(t1, · · · , tn )

t ∈ Terms = x

τ ∈ Types = is a set of base types.
ident ∈ Identifiers = is a set of attribute names.
x ,y, z ∈ Variables = is a set of variable symbols.
p,q ∈ Predicates = is a set of predicate symbols.

sij ∈ Slots = is a set of attribute slots.

Figure 2: Syntax of ∆Dat

A1, · · · ,An are body atoms. An atom p(t1, · · · , tn) is a pred-
icate symbol p followed by a sequence of terms t1, · · · , tn .
An atom is implicified if an at-sign @ is placed in front of it.
Finally, a term is simply a variable.
We impose three additional restrictions which are not

naturally captured by the grammar:
• Every predicate symbol which appears in a logic rule
must be declared.

• No two predicate declarations may share the same
predicate symbol.

• The arity of an atom p(t1, · · · , tk ) must be less than or
equal to the declared arity of p.

With these restrictions in place, we define a few functions:
The decl function returns the declaration p(a1, · · · ,an) of

a predicate symbol p:

decl : Predicates → Declarations

The functions explicitArity : Predicates → N , implicitArity :
Predicates → N , and totalArity : Predicates → N return re-
spectively the number of explicit, implicit, and total attributes
of a predicate symbol.

Atoms. We distinguish three types of atoms:
• An atom p(t1, · · · , tk ) is complete if its arity k is equal
to the arity of its predicate p, i.e. k = totalArity(p).

• An atom p(t1, · · · , tk ) is partial if its arity k is equal to
the explicit arity of its predicatep, i.e.k = explicitArity(p).

• An atom@p(t1, · · · , tk ) is implicified if it is is prefixed
by an at-sign @. Its arity must be less than or equal
to the total number of attributes of its predicate, i.e.
k ≤ totalArity(p).

Every atom, in every rule, must fall into one of the above
categories, otherwise the program is illegal and must be
rejected by the compiler.

Attribute Slots. Given a rule R = A0 ⇐ A1, · · · ,An , we
introduce a set of attribute slots slots(R). An attribute slot is
a pair of a atom index i and an attribute index j. We write
an attribute slot as sij where i is the atom index and j is the
attribute index. The attribute slot sij is in slots(R) if and only
if the ith atom in the rule has some predicate p and p has at
least j attributes.

For example, given a program with the declarations:

p1(a : τ1, b : τ1, implicit c : τ2),
p2(a : τ1, b : τ1, implicit c : τ2), p3(c : τ2)

the rule:

p2(x , z) ⇐ p2(x ,y), p1(y, z), p3().

gives rise to the attribute slots:

s00 , s
0
1 , s

0
2 , s10 , s

1
1 , s

1
2 , s20 , s

2
1 , s

2
2 , and s30

which are easier to understand when placed at their appro-
priate positions in the rule:

p2(s
0
0 , s

0
1 , s

0
2) ⇐ p2(s

1
0 , s

1
1 , s

1
2), p1(s

2
0 , s

2
1 , s

2
2), p3(s

3
0).

The type of each attribute slot is uniquely determined by its
position in an atom. For example, the type of s00 is τ1 and the
type of s30 is τ2. The type utility function returns the type of
an attribute slot:

type : Slot → Type

We need one other helper function before we can proceed:
The offset function takes a predicate symbol and the index
of a variable term in a partial atom and returns the index of
its attribute.

offset : Predicates × N → N

For example, given a program with the declaration:

p1(a : τ1, implicitb : τ1, c : τ2)

and the atom:
p1(x , z)

the offset of x , the variable at index 0, is offset(p1, 0) = 0
whereas the offset of z, the variable at index 1, is offset(p1, 1) =
2. Intuitively, x corresponds to the first attribute of p1, the
second attribute of p1 is left implicit, and z corresponds to
the last attribute of p1.

3.5 Translation Scheme

Given a rule R, we consider three sets:
• The set of variables V in the rule, i.e. the variables
written by the programmer.

• The set of types T in the rule, i.e. the types of the
attributes of the predicates in the rule.

• The set of attribute slots S of the rule, i.e. the set in-
troduced by slots(R).
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We want to compute a total map ζ from attribute slots S
to variables V and types T :

ζ : S → V ∪ T

The function ζ assigns every attribute slot to a variable or
type. Intuitively, two slots mapped to the same variable (or
type) become the same parameter in the translated rule.
We construct the ζ map as a set of edges E in a bipartite

graph between the attribute slots S on one side and the
variablesV and types T on the other side. We infer edges
in this bipartite graph based on the rules shown in Figure 3
and discussed below:

• [E-Complete] If there is a complete atomAi = p(· · · , x j , · · · ),
then we introduce an edge from the attribute slot sij to x j .
Intuitively, in a complete atom, every variable corresponds
to exactly one attribute slot of the atom.

• [E-Partial] If there is a partial atomAi = p(· · · , xk , · · · ),
then we introduce an edge from the attribute slot sij to xk
where j = offset(p,k). Intuitively, in a partial atom, a vari-
able corresponds to an attribute slot with some offset from
the position of the variable. Informally, we must “skip” the
attribute slots that correspond to implicit attributes which
are omitted from a partial atom.

• [E-Implicified] If there is an implicified atom @Ai =

p(· · · , xk , · · · ) with a variable xk , then we introduce an edge
from xk to the attribute slot sij if there is some other existing
edge si′j′ to xk and si′j′ has the same type as sij . Intuitively, the
variable xk appears in some complete or partial atom and
some edge is introduced according to either [E-Complete]
or [E-Partial]. This gives us the type of xk , and we use
this type to determine which of the attribute slots of the
implicified atom Ai the variable xk should be linked to.

• [E-Implicit] For each attribute slot sij which is not paired
to any variable x by the former rules, we introduce an edge
from sij to its type τ . Intuitively, this rule links attribute
slots to their types if they have not already been linked to a
variable by one the previous rules.

The rules are stratified. The rules [E-Complete], [E-Partial],
[E-Implicified], and [E-VarSlots] do not contain any oc-
currences of negation, so they can be fully applied in the
first stratum until the graph is saturated. The [E-Implicit]
rule needs to be computed in a second stratum because it
involves negation of Sv , which is in the goal of [E-VarSlots].
The goal of [E-Implicit] is E, which does not occur in the
body of any of the rules in the first stratum, and thus this
stratification is valid. It is valid to apply the [E-Vars] rule
in either the first or the second stratum because it does not
involve negation and E does not occur in its premises (body).
We choose to apply it in the second stratum so that both of
the rules with goal E, [E-Implicit] and [E-Vars], are in the
same stratum. The final set of edges E define the ζ map. We

R = A0 ⇐ A1, · · · ,An
Ai = p(· · · , x j , · · · ) Ai is complete

sij ∈ S x j ∈ V

(sij , x j ) ∈ Ev
[E-Complete]

R = A0 ⇐ A1, · · · ,An
Ai = p(· · · , xk , · · · ) Ai is partial
sij ∈ S xk ∈ V j = offset(p,k)

(sij , xk ) ∈ Ev
[E-Partial]

R = A0 ⇐ A1, · · · ,An
Ai = @p(· · · , xk , · · · ) Ai is implicified

(si
′

j′ , xk ) ∈ Ev type(sij ) = type(si
′

j′ )

sij ∈ S si
′

j′ ∈ S xk ∈ V

(sij , xk ) ∈ Ev
[E-Implicified]

(sij , x) ∈ Ev

sij ∈ Sv
[E-VarSlots]

(sij , x) ∈ Ev

(sij , x) ∈ E
[E-Vars]

sij < Sv
type(sij ) = τ sij ∈ S x ∈ V τ ∈ T

(sij , τ ) ∈ E
[E-Implicit]

Figure 3: Inference Rules for Partitioning

use the ζ map to translate a rule with implicit parameters
into one where every parameter has been made explicit. Con-
cretely, we define two functions trRule : Rule × Z → Rule
and trAtom : Atom × Z → Atom:

trRule(A0 ⇐ A1, · · · ,An , ζ ) =

trAtom(A0, ζ ) ⇐ trAtom(A1, ζ ), · · · , trAtom(An , ζ )

and

trAtom(Ai (t1, · · · tn), ζ ) = p(ζ (s
i
0), · · · , ζ (s

i
m))

wherem = totalArity(p)

The trRule function applies trAtom to every atom in the rule.
The trAtom computes the attribute slots of the predicate p
with atom index i and then applies the zeta function to each
attribute slot. Here ζ yields either a variable or type; if it
yields a type we consider that type as a variable name.

Example I. Given a program with the declarations:

p1(a : τ1, b : τ1), p2(c : τ1, implicitd : τ2)

then the rule:

p1(x ,y) ⇐ p2(x ,w), p2(y,w).
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has three complete atomsp1(x ,y),p2(x ,w), andp2(y,w). This
rule has no implicit parameters since every atom is complete
(and hence no parameters are absent). The attribute slots
introduced by this rule and placed at their proper locations
are:

p1(s
0
0 , s

0
1) ⇐ p2(s

1
0 , s

1
1), p2(s

2
0 , s

2
1).

In this rule, the edges between the attribute slots and the
variables are determined fully syntactically. By the rule [E-
Complete], we infer the edges:

{s00 , s
1
0} 7→ x , {s01 , s

2
0} 7→ y, and {s11 , s

2
1} 7→ w

Applying this substitution to the attribute slots yields the
original rule, as expected.

Example II. Given a program with the declarations:

p1(implicita : τ1, b : τ2), p2(implicita : τ1, b : τ2), p3(b : τ2)

then the rule:

p1(x) ⇐ p1(x), p2(x), p3(x).

has three partial atoms p1(x), p1(x), p2(x) and one complete
atom p3(x). Intuitively, the attributes a of the predicates p1
and p2 are intended to be passed implicitly. The attribute
slots of this rule at their proper locations are:

p1(s
0
0 , s

0
1) ⇐ p1(s

1
0 , s

1
1), p2(s

2
0 , s

2
1), p3(s

3
0).

By the rules [E-Partial] and [E-Implicit], we infer:

{s01 , s
1
1 , s

2
1 , s

3
0} 7→ x and {s00 , s

1
0 , s

2
0} 7→ τ1

If we give the type τ1 the variable name yτ1 , then the rule is
translated to:

p1(yτ1 , x) ⇐ p1(yτ1 , x), p2(yτ1 , x), p3(x).

where every parameter is explicit.

Example III. Given a program with the declarations:

p1(a : τ1, b : τ2, c : τ3,d : τ4),
p2(a : τ1, b : τ2, c : τ3,d : τ4), p3(b1 : τ2, b2 : τ2)

then the rule:

@p1(y) ⇐ @p2(x), p3(x ,y).

has two implicified atoms @p1(y) and @p2(x) and one com-
plete atom p3(x ,y). Intuitively, the implicified atoms are used
to implicitly pass the attributes a, c , and d between the pred-
icates p1 and p2. The attribute slots introduced by this rule
and placed at their proper locations are:

@p1(s
0
0 , s

0
1 , s

0
2 , s

0
3) ⇐ @p2(s

1
0 , s

1
1 , s

1
2 , s

1
3), p3(s

2
0 , s

2
1).

By the rules [E-Complete] and [E-Implicit] we infer:

{s11 , s
2
0} 7→ x , {s01 , s

2
1} 7→ y, {s00 , s

1
0} 7→ τ1,

{s02 , s
1
2} 7→ τ3, and {s03 , s

1
3} 7→ τ4

A1 = p1(x1, · · · , xn ) A2 = p2(y1, · · · ,ym )

A1 and A2 are complete or partial
xi = yj ⇒ termType(p1, i) = termType(p2, j)

[WF-Types-1]

R = A0 ⇐ A1, · · · ,An Ai = @pi (· · · , x , · · · )

∃j . Aj = pj (· · · , x , · · · )
Aj is partial or complete

[WF-Types-2]

Figure 4:Well-FormednessRequirements: Type Safety

If we give the types τ1, τ3, and τ4 the variable names uτ1 , vτ3 ,
andwτ4 , then the rule is translated to:

p1(uτ1 ,y,vτ3 ,wτ4 ) ⇐ p2(uτ1 , x ,vτ3 ,wτ4 ), p3(x ,y).

where every parameter is explicit.
In the next section, we present well-formedness require-

ments for programs with implicit parameters. But before
that, we introduce a function to return the type of a term
given its index in a partial or complete atom:

termType : Predicate × Bool × Int → Type

Intuitively, given a partial or complete atom p(t1, · · · , tn) the
termType function returns the type of the term ti according
to the declared attributes of p. If the atom is complete, the
type of ti is simply the type of the declared attribute ai . If,
however, the atom is partial then the type of ti is aj where
j = offset(p, i). The boolean argument tells us whether the
atom is partial or complete and the integer argument tells us
the index of the term in the atom. We will omit the boolean
argument whenever it is clear from the context if the atom
is partial or complete.
We now discuss the well-formedness requirements for

implicit parameters. Our ultimate goal is to prove that the
design satisfies the properties stated in Section 3.2.

3.6 Well-Formedness: Type Safety

We use the well-formedness requirements, [WF-Types-1]
and [WF-Types-2], shown in Figure 4, to ensure that the
programs are well-typed. The [WF-Types-1] requirement
states that if the same variable appears in two or more atoms,
then it must have the same type in each of those atoms.
The [WF-Types-2] requirement states that every variable
that appears in an implicified atom must also appear in a
non-implicified atom.

For example, consider a program with the declarations:

p1(implicita : τ1, b : τ2), p2(implicita : τ1, c : τ3)

with the rule:
p1(x ,y) ⇐ p2(x ,y).

The variable y does not have the same type in p1 as in p2.
Hence this program is not well-formed. The [WF-Types-1]
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@p(· · · , x , · · · )
decl(p) = ident : τ1, · · · , ident : τn

varType(x) ∈ {τ1, · · · , τn }
[WF-Type-Compatible]

A = @p(· · · , x , · · · ,y, · · · )
varType(x) = varType(y)

x = y
[WF-Ambiguity]

Figure 5: Well-Formedness Requirements: Type Com-

patibilty and Ambiguity

well-formedness requirement ensures that such programs
are rejected.

As another example, consider a program with the declara-
tions:

p1(a : τ1,b : τ2), p2(a : τ1,b : τ2), p3(a : τ1,b : τ2)

and with the rule:

@p1(x) ⇐ @p2(x), @p3(x).

Since x does not occur in any complete or partial atom, it
is impossible to determine if its type should be τ1 or τ2. The
[WF-Types-2] well-formedness requirement ensures such
programs are rejected.

If either of [WF-Types-1] or [WF-Types-2] is not satisfied,
the program is rejected. Otherwise, we can define a function
from variables to types:

varType : Variable → Type

that uniquely assigns a type to every variable based on its
occurence in a complete or partial atom.

3.7 Additional Requirements

We introduce two additional well-formedness requirements
to ensure the existence of a translation from a program
with implicit parameters to one without. The [WF-Type-
Compatible] requirement states that if the variable x is one
of the terms of an implicified atom with predicate symbol p,
then the type of x must match one of the declared attribute
types of p. The [WF-Ambiguity] requirement states that if
two explicit variables x and y occur in the same implicified
atom and they have the same type then x and y must be the
same variable.

For example, consider a program with the declarations:

p1(a : τ1, b : τ2), p2(c : τ3, d : τ4)

and with the rule:

p1(x , _) ⇐ @p2(x).

Here, the variable x appears in a complete and in an impli-
cified atom. The complete atom assigns x the type τ1. How-
ever, the attribute types of p2 are τ3 and τ4, so it is impossible

for x to have a consistent type in both atoms. The [WF-
Type-Compatible] well-formedness requirement ensures
that such programs are rejected.

As another example, consider the declarations:

p1(a : τ ,b : τ ) p2(a : τ ,b : τ )

with the rule:
p1(x ,y) ⇐ @p2(x ,y).

Here, the problem is that x and y both have the type τ , but
then it is ambiguous whether x corresponds to the first or
second attribute slot in the implicified atom with predicate
symbol p2. The [WF-Ambiguity] well-formedness require-
ment ensures that such programs are rejected.

3.8 Theoretical Properties

We can now present the main theoretical properties of our
design. For brevity, we include only the most important lem-
mas here. All lemmas and their proofs are available in the
appendix.

Lemma A.3. If a rule R is well-formed, the edge set E de-
fines a total function ζ .

Lemma A.5. The ζ function is type safe; in other words, if
the ζ function maps two slots s1 and s2 to the same variable
or type, i.e. ζ (s1) = ζ (s2), then the type of the slots s1 and s2
is the same.

Lemma A.6. A well-formed rule R without any implicit
parameters is translated to itself.

These results ensure that our design satisfies the require-
ments stated in Section 3.1, i.e. type-safety, consistency, de-
terminism, and predictability.

4 PRACTICAL APPLICATIONS

In this section, we describe some envisioned practical appli-
cations of implicit parameters for logic programs.

4.1 Dataflow and Points-To Analysis

The original motivation for adding implicit parameters to
a logic programming language came from our experience
with implementing points-to and dataflow analyses in Flix.
In this line of work, which can involve thousands of lines
of code, we discovered that many rules require contextual
information that rarely changes within the rule. As shown
in Section 2, a context- and flow-sensitive analysis tracks
information for every program point typically identified by
a context and statement. However, most rules operate on
the same context and statement. Only a few rules actually
change the context and statement, e.g. upon method entry or
exit, or to propagate dataflow information to the successor
nodes in the control-flow graph.
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4.2 Global Variables

We can use implicit parameters to thread global variables
through a program. The Mercury compiler is an interesting
case study. Mercury is a functional and logic programming
language [15, 16].

The compiler uses a global object named Globals which is
manually threaded through many of its rules. For example,
here is a code fragment from mercury_compile_middle_passes.m:

middle_pass(!HLDS, !DumpInfo, !IO) :−
module_info_get_globals(!.HLDS, Globals),
globals.lookup_bool_option(Globals, verbose, Verbose),
globals.lookup_bool_option(Globals, statistics, Stats),
maybe_read_experimental_complexity_file(!HLDS, !IO),
tabling(Verbose, Stats, !HLDS, !IO),
maybe_dump_hlds(!.HLDS, 105, "tabling", !DumpInfo, !IO),
expand_lambdas(Verbose, Stats, !HLDS, !IO),
maybe_dump_hlds(!.HLDS, 110, "lambda", !DumpInfo, !IO),
expand_stm_goals(Verbose, Stats, !HLDS, !IO),
maybe_dump_hlds(!.HLDS, 113, "stm", !DumpInfo, !IO),
expand_equiv_types_hlds(Verbose, Stats, !HLDS, !IO),
maybe_dump_hlds(!.HLDS, 115, "equiv_types", ...),
// ...

In this file, which is 1424 lines of source code, the Globals
parameter appears a total of 116 times, on average an oc-
curence on every 12th line. The Verbose object, which is used
to track the level of verbosity, occurs 242 times, an average
occurence on every 6th line. With implicit parameters this
tedius repetition can be avoided.

As another example, in the mercury_compiler_main.m file,
which is 1879 lines of code, the Globals parameter appears
247 times, on average an occurence on every 7th line.
As a third and final example, the compiler often needs

to perform I/O which is handled with access to a special
parameter named !IO. In the bytecode.m file, which is 1028
lines of source code, the !IO parameter appears a total of 548
times, on average an occurence on every 2nd line!

As these three examples demonstrate, implicit parameters
can significantly help reduce the tediousness and repetition
of passing global parameters through a logic program.

4.3 Monotonic Timestamps

The inspiration for implicit parameters partly came from
temporal logic programming languages where every predi-
cate is equipped with a timestamp and some systems allow
this timestamp to be omitted.

Dedalus is one such system which extends Datalog with
timestamps [1]. In Dedalus, every fact is associated with a
timestamp T that represents the time at which the fact is
true.Dedalus enables a form of stateful programming where
facts can be added or retracted over time. Monotonicity re-
quirements on the timestamps ensure that the semantics of
Dedalus are well-defined.

In Dedalus, a fact p(t1, · · · , tn ,T) is interpreted as a fact
p(t1, · · · , tn) which is true at time T .

We classify the behaviour of Dedalus rules into three types:
deductive, inductive, and persistent.

A deductive rule, such as

p1(x , z,T) ⇐ p2(x ,y,T), p3(y, z,T).

is instantaneous in the sense that the head predicate holds
in the same time instant T as the body predicates.

An inductive rule, such as

p1(x , z,S) ⇐ p2(x ,y,T), p3(y, z,T), successor(T ,S).

is temporal in the sense that the head predicate holds in the
next time instant T of the body predicates.

We can use implicit parameters to significantly simplify a
Dedalus program. In a deductive rule, the timestamp does
not change and so can be left entirely implicit. This is al-
ready supported by our design. In an inductive rule, the
timestamp is the same in the body predicates and advances
to the next time instant in the head predicate. To support this,
the current time should be declared implicit in the successor
predicate:

rel successor(implicit t : Time, s : Time)

The current time can then be omitted from inductive rules:

p1(x , z, t) ⇐ p2(x ,y), p3(y, z), successor(t).

The current time is now implicit, and the future time t is
explicit.

Finally, a persistence rule, such as

p(x ,y, z,S) ⇐ p(x ,y, z,T), successor(T ,S).

propagates facts from one time instant T to the next S. In
other words, the rule ensures that a fact continues to exist
as the time advances.

A persistence rule is reminiscent of the dataflow propagation
rule we showed in Section 2. We can simplify persistence
rules with implicified predicates.

@p(t) ⇐ @p(), successor(t).

This rule copies facts from one time instant to the next. Note
that this rule is amenable to refactoring: If an attribute is
added to or removed from p, the rule does not have to be
changed. In some sense, this rule is themost concise encoding
of the property that every fact in p is preserved over time.
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4.4 Information Flow

We can use an interesting combination of implicit parame-
ters and the lattice semantics of Flix to automatically track
the secrecy of information computed by a logic program
reminiscent of policy-agnostic programming [17].
Imagine that we have a logic program with public and

secret information about a company. The program has public
information such as the names of its employees, the addresses
of its buildings and so forth, and secret information such as
its payroll. An ordinary logic program would be unrestricted
in mixing and matching public and secret information. In
particular, we would not know whether a derived fact should
be considered public or private information.

We can use implicit parameters to automatically and trans-
parently determine the secrecy of every derived fact in the
program. For this purpose, we introduce a lattice Secrecy

with the two elements Secret and Public ordered by Secret @
Public. The least upper bound and greatest lower bound are
defined in the obvious way. We can then define lattices that
hold the public and secret information of the company:
lat Employee(name: Str, bldg: Str, implicit s: Secrecy)
lat Building(bldg: Str, addr: Str, implicit s: Secrecy)
lat Salary(name: Str, amount: Int, implicit s: Secrecy)

Notice that every extensional fact is associated with an el-
ement of the secrecy lattice. Let us assume we have some
employees and buildings:
Employee("Peter Gibbons", "Initech", Public).
Employee("Stephen Root", "Initech", Public).
Building("Initech", "4120 Freidrich Lane", Public).
Salary("Peter Gibbons", 42, Secret).
Salary("Stephen Root", 43, Secret).

We can compute the address of an employee, leaving the
Secrecy parameter implicit, with the rule:
AddressOf(name, address) :−
Employee(name, building),
Building(building, address).

This rule is equivalent to:
AddressOf(name, address, s) :−
Employee(name, building, s),
Building(building, address, s).

The implicit parameter s occurs in the lattice position of the
predicates. In Flix semantics, this means that the value of s
in the head predicate AddressOf is the greatest lower bound
of the value(s) of s in the predicates Employee and Building.
In other words, we derive the facts:
AddressOf("Peter Gibbons", "4120 Freidrich Lane", Public).
AddressOf("Stephen Root", "4120 Freidrich Lane", Public).

since the secrecy of the employee fact(s) and the building
fact(s) are both Public and the greatest lower bound of these
is Public. On the other hand, if we compute the salaries of
employees in a specific building,

SalaryOf(name, amount) :−
Employee(name, "4120 Freidrich Lane"),
Salary(name, amount).

we get the result:
SalaryOf("Peter Gibbons", 42, Secret).
SalaryOf("Stephen Root", 43, Secret).

since the Employee information is Public, but the Salary

information is Secret, and the result is the greatest lower
bound of the two. Note that the computation is per employee.
Hence, if the salary of Stephen was public then the derived
salary would be public for Stephen, but not for Peter.

If two rules derive the same fact, but with different levels
of secrecy, then the Flix semantics computes the least upper
bound of the two. In other words, if a fact can be inferred
from public information exclusively or with some secret
information, then the fact is still considered public. This
makes intuitive sense, since if there is a way to derive a
fact from public information there is no reason it should be
classified as secret.

This scheme is not limited to public and secret information.
We can use any arbitrary privilege lattice. Similarly, we can
use the same scheme to compute other meta data about
derived facts. For example, we could express a notion of
“confidence” or “correctness” as a lattice and automatically
compute it for any derived facts.

4.5 Discussion

We have presented several examples of how implicit param-
eters are useful for logic programming. The extension of
object-oriented and functional programming languages with
implicit parameters have borne rich fruit, and we hope to
spur similar developments for logic programming languages.
Implicit parameters are undoubtedly a powerful feature

that should be used with care. A common complaint from
Scala programmers is that implicit parameters can lead to
code that is fragile and hard to understand. We are sympa-
thetic to these arguments, but we believe that appropriate
use can significantly simplify code and reduce boiler-plate.
Ultimately, striking the right balance is the responsibility of
the programmer.

5 RELATEDWORK

Implicit Parameters. Implicit parameters were originally
proposed by Lewis et al. [8] as an extension of the Hugs
Haskell interpreter. In their work, the authors studied the
problem of how to elegantly pass a parameter through sev-
eral levels of recursive calls. For example, a command line
argument or an environment variable, which are both acces-
sible from main, must be passed to somewhere deep down in
the call stack. The authors considered two existing solutions,
neither satisfactory: (a) modifying every function to carry
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the extra parameter, or (b) storing the value in a global vari-
able. As a better alternative, the authors proposed implicit
parameters: a dynamically scoped value that the compiler
automatically threads through the program.
After the work of Lewis et al., but before its publication,

Jones [7] discusses the relationship between implicit param-
eters and type classes in a technical report.
Devriese and Piessens [5] present a design of instance

arguments for the Agda programming language. Instance
arguments are intended to support the implementation of
type classes in Agda. Like in Scala, but unlike in Haskell, the
idea is that instance arguments provide a useful mechanism
to support overloadable type classes, without requiring the
language itself to be extended with type classes. Where Scala
relies on traits and objects to model type classes, Agda uses
its own dependently-typed records.
Oliveira et al. [12] present the implicit calculus λ⇒ for

generic programming with implicit parameters. In the view
of the authors, generic programming techniques typically
consist of two high-level components: (a) a special type of
interface and (b) a mechanism to implicitly instantiate that
interface. For example, the Haskell type class Ord is an in-
terface and the mechanism to instantiate the interface is the
use of a qualified type like Ord ⇒ a ... which instructs
the compiler to provide an instance of Ord to the generic
function. An important feature of the implicit calculus is to
get rid of the first component, i.e. the need for a special type
of interface. Instead, the implicit instantiation is generalized
to work for any type. In other words, an implicit parameter
can be of any type, not just those types that belong to some
type class, and the compiler will use a resolution mechanism
to find the appropriate instance.

Practical Applications. Implicit parameters have played a
major role as a means to support or implement many other
programming language features, including type classes [11],
capability and effect systems [6, 13], software transactional
memory [3], language virtualization [10], and macros [4].

Oliveira et al. [11] propose implicit parameters as a mecha-
nism to implement type classes in Scala. In their work, a type
class is expressed as a trait, with a type parameter, which
declares the operations supported by the type class. A type
class instance is an object that implements the trait. A poly-
morphic function uses a type class by declaring an implicit
parameter which is the type class name parameterized by
the type variable. To call the function, the type class is either
explicitly passed by the programmer or resolved through
the implicit scope. For example, to sort the elements of a
polymorphic list with elements of type A, a sort function
would require that its elements are members of the Ord[A]

type class if the elements are of type A.

Osvald et al. [13] use implicit parameters as a mechanism
to propagate capabilities. A capability is a value that rep-
resents a permission to perform some action. For example,
reading a file may require a capability token of type CanRead,
writing a file may require another token of type CanWrite,
and throwing an exception may require yet another token
of type CanThrow. Unless a token is passed to a function, we
can rest assured that it cannot perform the associated action.
Implicit parameters are a useful mechanism to propagate
capabilities since they automatically allow the permissions
of a caller to propagate to all of its callees.
Haller and Loiko [6] use implicit parameters to control

access to protected objects in an actor-based system.
Logic languages occasionally deal with resources such

as files and streams. A capability system with implicit pa-
rameters could be useful to control and propagate access to
these resources. Moreover, as discussed in Section 4, implicit
parameters can help control access to sensitive information.
Burmako [4] proposes a macro system for Scala. An in-

teresting feature of his system is its ability to automatically
generate type class instances based onmacro invocations. For
example, if a method requires a specific type class instance,
specified as an implicit parameter, the implicit resolution pro-
cedure finds an implicit macro of the appropriate type and
invokes it to automatically generate the required instance.

Implicit parameters were originally introduced in Haskell
to solve a specific problem, but turned out to be useful with
many diverse applications. After adding implicit parameters
to Datalog, it will be interesting to see what applications
carry over and whether any interesting new features arise.

6 CONCLUSION

We have proposed implicit parameters for logic program-
ming languages. Implicit parameters allow the programmer
to omit certain arguments from predicates in logic rules and
have them automatically inferred by the compiler based on
their types. We have presented several practical applications
and shown how implicit parameters simplify logic program-
ming. Our proposed design introduces two notions of implicit
parameters: implicit attributes and implicified predicates to
support different use cases that arise in logic programming.
We have presented a translation scheme that given a logic
program with implicit parameters, computes another pro-
gram where every parameter is explicit. Finally, we have
proven that our design satisfies a range of desirable proper-
ties, including type-safety, consistency, and determinism.
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A APPENDIX

A.1 Proofs

Lemma A.1. The rules shown in Figure 3 are a stratified
Datalog program.

Proof. Each rule is a Horn clause. Each premise, in every
rule, is a finite relation (for any specific input program). The
offset function is also a finite relation. The [E-Implicit] rule
uses negation, but the program can be stratified as follows:
Ev and Sv are computed first using rules [E-Complete], [E-
Partial], [E-Implicified], and [E-VarSlots], and then E is
computed using [E-Vars] and [E-Implicit]. �

Lemma A.2. The minimal edge set E satisfying the rules
shown in Figure 3 exists and is unique.

Proof. By Lemma 1, the rules are a stratified Datalog
program, and any stratified Datalog program has a minimal
model. �

LemmaA.3. If a rule R is well-formed, the edge set E defines
a total function ζ .

Proof. We must show that every attribute slot of the rule
R is associated with exactly one variable or type according
to the edge set E. We split the proof into two parts:

Part I. : Emaps every attribute slot s to at least one variable
or type. Proof: If Ev maps the attribute slot s to variable x ,
then so does E by [E-Vars]. If Ev does not map the attribute
slot s to any variable, then s < Sv , so by rule [E-Implicit], E
maps s to type(s).

Part II:. Every attribute slot s is mapped to at most one
variable or type. Proof: We consider three cases: could a slot
be mapped to (i) more than one type?, (ii) both a variable
and a type?, and (iii) more than one variable? For (1), [E-
Implicit] maps a slot to its own type, and every slot has
exactly one type. Hence a slot cannot be mapped to two
types. For (2), [E-Implicit] will map a slot to a type, but only
if the slot is not already mapped to a variable. Hence a slot
cannot be mapped to both a type and a variable. For (3), we
observe that an attribute slot belongs to an atom which is
either complete, partial, or implicified. Hence we only need

to ensure that each of [E-Complete], [E-Partial], and [E-
Implicified] do not map the same attribute slot to multiple
variables. For [E-Complete] and [E-Partial], this follows
immediately from the fact that there is exactly one variable
at every position in the atom. For [E-Implicified], the well-
formedness requirement [WF-Ambiguity] ensures that if the
slot s has type τ , then there is at most one explicit variable x
of type τ in the implicified atom. Hence [E-Implicified] can
only map an attribute slot to at most one variable. �

Lemma A.4. For every variable x in a rule R, there exists an
attribute slot s such that ζ (s) = x .

Proof. If the variable x occurs in a complete or partial
atom, this follows directly from [E-Complete] and [E-Partial].
If, on the other hand, the variable x occurs in an implicified
atom, then by [WF-Types-2] it also occurs in a partial or
complete atom, and hence the former argument applies. �

Lemma A.5. The ζ function is type safe; in other words, if
the ζ function maps two slots s1 and s2 to the same variable
or type, i.e. ζ (s1) = ζ (s2), then the type of the slots s1 and s2 is
the same.

Proof. We consider two cases: (i) if ζ maps the two slots
to the same type, and (ii) if ζ maps the two slots to the same
variable. In the former case, by the rule [E-Implicit], the
two attribute slots must have the same type. In the latter
case, the well-formedness requirement [WF-Types-1] en-
sures that variables have consistent types in complete and
partial atoms, hence [E-Complete] and [E-Partial] preserve
type safety. Finally, the [E-Implicified] rule preserves type
safety through an explicit type check. �

Lemma A.6. A well-formed rule R without any implicit pa-
rameters is translated to itself.

Proof. If a rule has no implicit parameters, then it has no
partial or implicified atoms. Hence the rules [E-Partial] and
[E-Implicified] are not applicable. Instead, the [E-Complete]
rule is applicable for every atom. Consequently, every slot of
every atom is mapped to its explicit variable. Thus the trans-
lation substitutes every attribute slot for its explicit variable,
reproducing the original rule. �
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