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Abstract
Traditionally, web applications have been written as HTML pages with embedded JavaScript

code that implements dynamic and interactive features by manipulating the Document Object
Model (DOM) through a low-level browser API. However, this unprincipled approach leads to code
that is brittle, difficult to understand, non-modular, and does not facilitate incremental update of
user-interfaces in response to state changes.

React is a popular framework for constructing web applications that aims to overcome these
problems. React applications are written in a declarative and object-oriented style, and consist
of components that are organized in a tree structure. Each component has a set of properties
representing input parameters, a state consisting of values that may vary over time, and a render
method that declaratively specifies the subcomponents of the component. React’s concept of
reconciliation determines the impact of state changes and updates the user-interface incrementally by
selective mounting and unmounting of subcomponents. At designated points, the React framework
invokes lifecycle hooks that enable programmers to perform actions outside the framework such as
acquiring and releasing resources needed by a component.

These mechanisms exhibit considerable complexity, but, to our knowledge, no formal specification
of React’s semantics exists. This paper presents a small-step operational semantics that captures the
essence of React, as a first step towards a long-term goal of developing automatic tools for program
understanding, automatic testing, and bug finding for React web applications. To demonstrate that
key operations such as mounting, unmounting, and reconciliation terminate, we define the notion of
a well-behaved component and prove that well-behavedness is preserved by these operations.
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1 Introduction

A web application is a program where the user-interface runs in a web browser. Traditionally,
such applications have been written as HTML pages that contain embedded JavaScript
code that implements dynamic and interactive features, such as input validation or data
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visualization, by manipulating the Document Object Model (DOM) through a low-level
browser API. Using the DOM, the programmer can add, remove, or mutate HTML elements
directly. While expressive, this unprincipled approach has several disadvantages. First, direct
mutation of the DOM leads to brittle and difficult to understand code. Second, using this
approach, it is difficult to design reusable user-interface components and libraries. Third, this
approach does not easily lend itself to designs where the user-interface of a web application
is updated incrementally in response to user input or new data received from a server. As a
result, traditional web applications are often buggy and difficult to maintain [5, 6, 19, 20, 18].

The React framework [9] was developed to address these concerns. A React application
does not manipulate the DOM directly but instead operates on a “virtual DOM”, by
constructing React components that are rendered incrementally as their properties and state
change. Such components are written in a declarative and object-oriented programming
style, where classes represent components, and reusing a component is as simple as creating
an instance of a class. A React application is structured as a tree, where a root component
represents the top-level element of the user-interface, and where a (possibly dynamically
varying) set of subcomponents correspond to widgets within that page. A React component
has three key constituents: (i) a set of properties representing input parameters needed
to configure the component, (ii) an internal state consisting of values that may vary over
time, and (iii) a render method that specifies how a component is rendered by returning a
subtree composed of a mix of subcomponents and HTML elements. The process of creating
and updating the user-interface of a React application is defined in terms of mounting and
unmounting operations, corresponding to the addition and removal of subcomponents. A key
feature of React is its concept of reconciliation, which entails determining those parts of a page
that are affected by state changes and updating them incrementally by selectively mounting
and unmounting subcomponents. At key points during this process (e.g., when components
are mounted or unmounted), the React framework invokes lifecycle hooks—callback methods
that enable programmers to perform actions, e.g., to fetch data from a remote server or to
store data locally in localStorage.

Today, React is one of the world’s most popular web frameworks. On StackOverflow,
a popular question-and-answer forum for programmers, more than 181,554 questions are
tagged reactjs. In comparison, the reactjs tag is more popular than the perl, scala, swing, or
typescript tags. On GitHub, React is the fourth most starred repository, with more than
142,000 stars. On NPM, the package manager for Node.js, React has more than 20,000,000
downloads per month.

While React helps programmers structure their web application as a collection of modular
components, it comes with its own set of challenges and bug patterns that new programmers
must learn to avoid. For example, the intricate control- and dataflow can make it exceedingly
difficult to understand how state changes in one component affect other components. As
another example, the complex interplay between the component lifecycle methods and the
reconciliation algorithm can be difficult to understand.

To enable the construction of tools for reasoning about the behavior of React applications,
for automatic testing, and for bug finding, a precise understanding of the semantics of React
is required. This paper establishes such an understanding, in the form of a formal semantics
that captures the essence of React. Our semantics is based on λjs [11], and precisely models
the key aspects of React:

(i) mounting and unmounting of components,
(ii) reconciliation of component descriptors and mounted components, and
(iii) the semantics of state changes.
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To demonstrate that key operations such as mounting, unmounting, and reconciliation
terminate, we define the notion of a well-behaved component by imposing a ranking function on
components, and requiring that the render method of a component only returns components
of strictly smaller rank. We then prove that well-behavedness is preserved by these operations.

In this paper, we focus on the core of React version 16.x. In the 16.x series, React has
undergone some changes in the supported lifecycle methods, but those are mostly orthogonal
to our work. React 16.8 introduced React hooks, a new, optional mechanism for state
management in a functional style that avoids the use of classes. To our knowledge, there is
no plan to change or remove the current mechanism for state management, and is is unclear
to what extent the community will be adopting React hooks. In the paper, we focus on
traditional state management as used in current React applications.

The remainder of this paper is organized as follows. Section 2 uses a small React
application as an example to illustrate the key concepts and terminology associated with
React. Section 3 presents a small-step operational semantics for the essence of React.
Section 4 defines a well-behavedness property for components and demonstrates that well-
behavedness is preserved by the key operations. Section 5 discusses how lifecycle hooks can
be modeled. Related work is discussed in Section 6. Finally, Section 7 presents conclusions
and directions for future work.

2 React

We will review the key concepts and terminology of React using a small React application
that illustrates some of the typical requirements that a modern web developer must deal with.
This includes fetching data and periodically receiving updates from the server, updating the
browser’s Document Object Model (DOM) to reflect the latest data, and filtering data based
on user input. In pure JavaScript these steps can be difficult to manage, but React makes
these steps easy to express.

Our example application receives RSS feeds from several news sites and, for each feed,
displays the title of each news article. Clicking on the title will navigate the user to the
full article on newspaper website. To focus on a specific news topic, the user may enter a
keyword in the box at the top of the window to remove from the view any news items that
do not contain the specified keyword. Figure 1 shows a screenshot of the application after
the user has typed the word “brexit” in the box. The news feeds are polled every 5 seconds
and the display is updated when existing news items disappear, and when additional news
items appear. Note that such updates are performed incrementally, i.e., only the changed
parts of the web page’s DOM representation are updated and re-rendered.

In general, a React application is organized as as a tree of React components, each of which
is self-contained UI widget that may be composed of subcomponents. React components are
either instances of classes or they are HTML elements such as buttons or text fields. Our
example application consists of a root component App that has 4 subcomponents: a text field
and one subcomponent for each news feed, which is an instance of the RssFeed class. Each
React component has three central constituents: A set of properties, an internal state, and a
render method. The properties are a form of input parameters typically used to configure
the component. The state holds time-varying values, e.g., the values of input fields. The
render method is used to draw the component by returning a subtree composed of a mix of
subcomponents and HTML elements. In the case of our example application, the number of
subcomponents is fixed because it depends on the number of news feeds being monitored,
which is fixed. However, in general the component tree is not static, as a render method can
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Figure 1 Screenshot of our example React application. The screenshot shows the set of articles
from news feeds from The Guardian, Reuters, and BBC World News after the user has entered the
search term “Brexit”.

vary the tree returned based on a component’s properties and state. For example, one can
easily imagine adding a feature that would allow the user to subscribe to additional news
feeds, so that the number of components would vary dynamically as well.

The process of creating and updating the user-interface of a React application is defined
in terms of mounting and unmounting operations. Here, mounting an application involves
instantiating the class corresponding to its root component, rendering it by calling its render
method, and recursively mounting its subcomponents. The React framework automatically
takes care of all of this. To do so, React must be informed explicitly when state changes
occur, by invoking the setState method with an object that specifies the state changes.
When state changes occur, React will invoke the render method of the affected components
to update the user-interface appropriately. However, changes are applied incrementally:
React’s reconciliation mechanism ensures that state changes do not require recomputation
and re-rendering of the entire component tree, but only of those components affected by
the state change. If a state change has the effect of removing a subcomponent, such a
subcomponent is unmounted, i.e., the subcomponent is removed from its parent, and cleanup
actions are performed as necessary. At designated points in the execution of a React
application (e.g., prior to and upon completion of mounting and unmounting operations and
when state changes occur), so-called lifecycle methods are invoked by the React framework.
Lifecycle methods are declared in classes corresponding to React components and can perform
any programmer-specified action. Typically, lifecycle methods are used to initiate network
requests to fetch data or initialize resources when a component is mounted, and to free
resources when a component is unmounted.

Figure 2 shows the complete source code for the React application shown in Figure 1. The
application consists of two classes: App (lines 7–27) and RSSFeed (lines 28–60). Each React
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1 import React, {Component} from ’react’;
2 import ’./App.css’;
3
4 let Parser = require(’rss-parser’);
5 let parser = new Parser();
6
7 class App extends Component {
8 constructor() {
9 super();
10 this.state = {filter: ""};
11 }
12 feeds = [
13 { title: "The Guardian", url: "https://www.theguardian.com/world/zimbabwe/rss" },
14 { title: "Reuters", url: "http://feeds.reuters.com/Reuters/worldNews"},
15 { title: "BBC World News", url: "http://feeds.bbci.co.uk/news/world/rss.xml"}
16 ];
17 render = () => {
18 return <div>
19 <input type="text" onChange={this.notifyChange}/>
20 { this.feeds.
21 map((feed) => <RssFeed title={feed.title} url={feed.url} filter={this.state.filter}/>)}
22 </div>
23 }
24 notifyChange = (e) => {
25 this.setState({filter: e.target.value});
26 }
27 }
28 class RssFeed extends Component {
29 constructor() {
30 super();
31 this.state = {items: []};
32 }
33 componentWillMount = () => {
34 this.doUpdate()
35 this.timer = setInterval(this.doUpdate, 5000)
36 }
37 componentWillUnmount = () => {
38 clearInterval(this.timer)
39 }
40 doUpdate = () => { // use "cors-anywhere" proxy to add CORS headers to the proxied request
41 (async () => {
42 let url = "https://cors-anywhere.herokuapp.com/" + this.props.url
43 let feed = await parser.parseURL(url);
44 this.setState({items: feed.items});
45 })();
46 }
47 matchesKeyword = (newsItem) =>
48 (this.props.filter === "") || newsItem.title.includes(this.props.filter);
49 render = () => {
50 return (
51 <div className="feed">
52 <h1>{this.props.title}</h1>
53 <ul>
54 {this.state.items.filter(this.matchesKeyword).
55 map(item => <li><a href={item.link}>{item.title}</a></li>)}
56 </ul>
57 </div>
58 );
59 }
60 }
61 export default App;

Figure 2 Example of a React web application.
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class has a constructor method that is responsible for initializing the component’s state. The
state of the root component App includes a field1 filter that will be used to determine which
items should be selected from the newsfeeds. The constructor of the root component App
(line 8–11) initializes the filter field to the empty string, reflecting that, by default, no news
items should be filtered out. Next, on lines 12–16, a field feeds is initialized with an array
that contains the URLs for the news feeds. Lines 17–23 show the render method for class
App. In general, a render method of a React class produces a component descriptor, i.e., a
declarative description of the component’s subcomponents that are to be mounted/reconciled
by React. Here, the render method returns a <div> tag containing a text field (line 19),
and a sequence of RSSFeed components (lines 20–21). Line 19 specifies that entering or
changing the text in the text field will cause the method notifyChange (lines 24–26) to be
invoked with the current text as an argument. Lines 20–21 map a function over the feeds
array to create an array of RSSFeed components, passing each field’s URL and title, and the
current value of the filter property. The notifyChange method on lines 24–26 specifies that
React’s setState function should be invoked, passing in an object with a property filter
that is bound to the current value of the filter. This illustrates how React merges a form
of declarative and object-oriented programming: The render methods return a declarative
description of subcomponents that React then instantiates and maintains as objects.

The state of an RSSFeed component consists of a field items that represents the current
items of the corresponding news feed, and the constructor (lines 29–32) initializes this field
with an empty array. Next, the lifecycle methods componentWillMount (lines 33–36) and
componentWillUnmount (lines 37–39) are defined. The former specifies that, when an RSSFeed
component mounts, the doUpdate method should be invoked (line 34) immediately, and then
invoked periodically (line 35) every 5 seconds. The latter specifies that, upon unmounting an
RSSFeed component, the timer should be cleared (line 38). The doUpdate method (lines 40–46)
asynchronously requests content from an RSS feed on line 42, using a proxy to enable
cross-origin requests that would otherwise be disallowed due to browser’s same-origin policy.
The contents of the feed are parsed on line 43, and the RSSFeed component’s state is updated
on line 44 by invoking setState to set the items property to the news items in the feed’s
contents. The RSSFeed component’s render method (lines 49–59) makes use of an auxiliary
method matchesKeyword (lines 47–48) to determine if a given newsfeed item matches the filter
if a filter is specified (if no filter is specified, all items match). The render method returns
a div element (line 51) containing a title (line 52) and a list of news items extracted from
the feed (line 55). The latter is constructed by filtering the items using the matchesKeyword
function and creating an li (list item) tag for each item containing a hyperlink that is created
using the title and URL obtained from the news feed.

We conclude from this example that React enables the construction of sophisticated
interactive web applications, for which the user-interface is modular and incrementally
maintained in response to property and state changes. React applications are remarkably
concise due to a powerful combination of declarative and object-oriented programming. While
the behavior of React applications can be understood in terms of a small number of key
operations, thus far these operations have only been defined informally. To our knowledge,
our paper presents the first approach that places the essence of React on a formal foundation.

1 In this paper, we will use the term “field” to refer to object fields and the term “property” to refer to
the inputs provided to React components.
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3 Semantics

We now present a small-step operational semantics, named λreact, that captures the essence
of React. We formulate the semantics as an extension of the λjs calculus [11]. Using λjs
as a foundation allows us to focus on the core issues without being distracted by complex
JavaScript features such as prototype-based inheritance, dynamic property access, implicit
coercions, and so on, which are handled by λjs.

The calculus aims to capture three central aspects of React:

(i) the mounting and unmounting of components,
(ii) the reconciliation of component descriptors and mounted components, and
(iii) the semantics of state changes.

3.1 Design Decisions
We briefly outline the major design choices we made in the formulation of the semantics.

React is a huge framework and our aim to distill it down to its essence. We want to
describe the primary concepts of React in as little formalism as possible. It is not our
goal to provide a complete formal specification of the entire React framework.
React relies on classes, which are supported in EcmaScript 6, but λjs is based on an
earlier version of EcmaScript. We believe that λjs could be extended with classes, but
that is beyond the scope of the current paper. In the λreact semantics, we side-step this
issue by direct modeling of the React constructs.
We extend the syntax of λjs with explicit terms for mounting, unmounting, and reconcili-
ation of components. In React, the programmer cannot use these terms directly; they are
part of the internals.
We model the registration of event listeners since they are the main driver of execution
once a React application has started. We simulate the execution of these event listeners
in a non-deterministic fashion with a special ‘●’ term that represents the event loop.
React places a strong emphasis on performance. For the most part, we ignore such
considerations, however our specification of object equivalence and merging does reflect
these underlying concerns.
We omit lifecycle hooks from the λreact semantics. Although they play an important role
in any realistic React application they are not particularly interesting from a semantic
point of view, and adding them would be straightforward, if tedious. Nevertheless, in
Section 5 we give some ideas of how to incorporate lifecycle hooks into the semantics.

3.2 Components, Component Descriptors, and Mounted Components
A React component is a class that extends the React.Component class. Each React component
has a set of properties and an internal state. The properties are a form of input parameters
used to configure the component, whereas the state holds time-varying values.

Every component has a render method that returns fragments that are either React
component descriptors or HTML elements. This tree fragment represents the “view” of the
component and is used by React to “draw” the component in the DOM. For example, a com-
ponent could return the HTML element <h1>Hello</h1>, which React would simply display.
On the other hand, it could also return a component descriptor <RssFeed title="..."
url="..." /> whose view would depend on the render method inside RssFeed.
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Component Descriptors and Mounted Components

In React terminology, the process of creating a React component is called mounting. A
mounted component is an object that is currently part of the virtual (and real DOM). When
a component is taken out of the virtual DOM (and real DOM) it is unmounted and eventually
garbage-collected. A component descriptor is tag-like structure that carries a name of a class
and optionally several properties. A component descriptor can be turned into a mounted
component. To illustrate these concepts, consider the following render method:

62 class App extends React.Component {
63 render() {
64 if (this.state.progress < 100) {
65 return <ProgressBar value={this.state.progress} />
66 } else {
67 return <Game />
68 }
69 }
70 ...
71 }

Here the render method consists of an if-then-else statement. If the current progress,
kept in the internal state of the App component, is less than 100 then the method returns
the component descriptor <ProgressBar value=... /> passing the current progress as a
property. Otherwise, the method returns the <Game /> component descriptor.

When the App component is mounted, its initial progress is zero. Hence the render method
returns the <ProgressBar /> descriptor. React then mounts and displays this component.
Over time, the progress might change, as assets for the game are downloaded. When this
happens, React will re-invoke the render method. Let us say that the progress changes from
0% to 20%. Before the change, React knows that the last component descriptor it mounted
underneath App was:

<ProgressBar value=0 />

when the progress is changed, render returns the component descriptor:

<ProgressBar value=20 />

At this point, React observes that the two component descriptors are of the same type
(ProgressBar and ProgressBar), but that one of the properties has changed. Since the com-
ponents are the same, React simply updates the property value in the mounted component
ProgressBar and calls its render method. This is called reconciliation.

Now, let us consider what happens when the progress reaches 100%. React knows that
the last component descriptor it mounted underneath App was:

<ProgressBar value=20 />

when the progress is changed to 100%, render returns the component descriptor:

<Game />

At this point, React observes that the two component descriptors are not of the same type
(ProgressBar and Game), hence it unmounts ProgressBar (destroying it) and then it mounts
Game in its place and calls its render method.

In summary, a component descriptor is a value that is a static description of a component
that can be turned into a mounted component React. The goal of React is to ensure that
whatever component descriptors are returned by render, they are kept consistent with the
currently mounted components, and that render is invoked whenever a change happens that
might change its output.
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3.3 Component State and Properties
Each React component has a set of properties and an internal state. The properties are
accessed through the this.props field inside the component, whereas the state is accessed
through this.state. Importantly, neither field should be changed directly! The properties
of a component are always derived from the properties described in a component descriptor,
e.g., <ProgressBar value=20 />. To change the state of a component, the programmer
must explicitly call setState on the component. These two patterns ensure that React
always knows when changes occur to the properties or state of a mounted component. If
properties or state were to be changed through other means, the component might become
out of sync with its visual representation in the virtual DOM (and real DOM).

In React, the data flow of properties and state can be quite complex. In general, the
state of a component can be passed as a property to another component. However, it is also
possible, to use a property as part of a component’s own internal state (e.g., by passing it
to setState), or to derive state from a property. For example, in the motivating example,
the filter is a part of the state of the App component, but it is passed as a property to the
RssFeed component.

3.4 Render and Child Components
The render method is at the heart of each React component. It determines the subcompon-
ents of a component by returning component descriptors. A small, but important detail is that
it only determines one level of components. For an example, consider the following program:

72 class Component extends React.Component {
73 render() {
74 return (
75 <Subcomponent>
76 <Button>Click Me</Button>
77 </Subcomponent>
78 );
79 }
80 }
81 class Subcomponent extends React.Component {
82 render() {
83 return (<h1>Hello World!</h1>);
84 }
85 }

Here, the render method of the Component class returns a
<Subcomponent>...</Subcomponent> descriptor with a Button component descriptor
inside it. Our intuition tells us that Subcomponent should have a button somewhere
inside it, but this is not necessarily so. In fact, there is no guarantee that the Button
component descriptor is ever mounted. To understand why, consider the render method
of the Subcomponent. This method unconditionally returns an h1 tag. Hence if we were
to render Component all we would see would be a h1 tag. In React, nested component
descriptors are simply treated as a special property called children. A component must
explicitly refer to this property to use any component descriptors that may be nested within
it. For example, we could change the subcomponent to:

86 class Subcomponent extends React.Component {
87 render() {
88 return (
89 <div>
90 <h1>Goodbye World!</h1>
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91 {this.props.children}
92 </div>
93 );
94 }
95 }

In this case, the subcomponent would also mount the Button component descriptor passed
by its parent component. Hence, in the semantics we will write component descriptors as
<C props.../> ignoring any nested component descriptors, as these are simply passed as a
special property called children.

3.5 Syntax of λreact

We are now ready to present the syntax of λreact. We assume a base language with support
for objects and references such as λjs [11], shown in Figure 3.

Values

We extend the values of λjs with two new central concepts: component descriptors and
mounted components. Figure 4 and Figure 5 show the extended grammar of values in λreact.
A component descriptor is written as <C props/> where C is an identifier and props is an
object literal, i.e., a set of key-value pairs. In React, C is a class, but for our purposes it is
sufficient that C is an identifier. A mounted component is written as <C@aprops/> and is
similar to a component descriptor, except that it is associated with an object in the heap
stored at address a. A component descriptor is just that; a “dead” description, whereas a
mounted component is a “live” object. We will write π to refer to component descriptors and
Π to refer to mounted components. The mnemonic is that mounting a component descriptor
changes it from π to Π.

Expressions

We extend the syntax of λjs with React constructs for mounting, unmounting, and recon-
ciliation of components. Figure 6 shows the grammar of the new constructs. We briefly
explain each new expression; their semantics are explained in-depth in the following sub-
section. Mount(e) is used to mount a component descriptor. Unmount(e) is used to
unmount a mounted component. MountSeq(e) and UnmountSeq(e) are variants of these
that operate on sequences of component descriptors and mounted components, respectively.
Mounted(e) and Unmounted(e) are used to perform cleanup after a mount or unmount
operation has completed. Reconcile(e, e) is used to reconcile a component descriptor with
a mounted component. Reconciliation, as will be explained, is the process of updating a
mounted component with new data; either through an incremental re-render of the affected
subcomponents or through unmounting/mounting. ReconcileSeq(e, e) is similar, but
reconciles a sequence of component descriptors with a sequence of mounted components.
Finally, the ● expression represents the event-loop, which marks when an event listener can
be executed.

Evaluation Context

We extend λreact with the evaluation contexts shown in Figure 7.
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c ∈ Cst = bool ∣ num ∣ str ∣ null ∣ undef [constant]

v ∈ Val = c [literal]
∣ a [address]
∣ {str ∶ v⋯} [object]
∣ λ (x⋯) e [function]

e ∈ Exp = v [value]
∣ x [variable]
∣ e ; e [sequence]
∣ e = e [assignment]
∣ let (x = e) e [binding]
∣ e (e⋯) [call]
∣ e.f [field load]
∣ e.f = e [field store]
∣ ref e [address of]
∣ deref e [value at]

x ∈ Var = is a finite set of variable names.
f ∈ Fld = is a finite set of field names.

a ∈ Addr = is an infinite set of memory addresses.
λ ∈ Lam = is the set of all lambda expressions.

Figure 3 Syntax of λjs.

π ∈ Component Descriptor = <C props/>

Π ∈Mounted Component = <C@aprops/>

props = {k1 = v1,⋯, kn = vn}
C = is a set of identifiers.

Figure 4 Component Descriptors and Mounted Components.

v ∈ Val = ⋯ ∣ π ∣ Π

Figure 5 Values of λreact.
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e ∈ Exp = ⋯
∣ SetState(e, e) ∣ Render(e) ∣ ReRender(e)
∣ Mount(e) ∣ MountSeq(e) ∣ Mounted(e, e)
∣ Unmount(e) ∣ UnmountSeq(e) ∣ Unmounted(e)
∣ Reconcile(e, e) ∣ ReconcileSeq(e, e)
∣ ●

Figure 6 Syntax of λreact.

E = �

∣ SetState(E, e) ∣ SetState(v,E) ∣ Render(E) ∣ ReRender(E)
∣ Mount(E) ∣ MountSeq(E) ∣ Mounted(E, e) ∣ Mounted(v,E)
∣ Unmount(E) ∣ UnmountSeq(E) ∣ Unmounted(E, e) ∣ Unmounted(v,E)
∣ Reconcile(E, e) ∣ Reconcile(v,E) ∣ ReconcileSeq(E, e) ∣ ReconcileSeq(v,E)

Figure 7 Evaluation Contexts for λreact.

Notation

We will write a for a sequence of addresses, π for a sequence of component descriptors, and
Π for a sequence of mounted components. We will write the empty sequence as Nil. We use
pattern matching π ∶∶ π to deconstruct a sequence into its head (π) and its tail (π). Given a
partial map f ∶ A↪ B, we write f − a for the same map, but with the binding for a removed.
We write the empty map as ∅.

3.6 Runtime of λreact

The runtime of λreact is conceptually similar to λjs, but extended with several additional
aspects to keep track of React components. Figure 8 shows the runtime of λreact. A config-
uration χ ∈ Configuration is a 5-tuple ⟨σ, δ, ζ, `, e⟩ consisting of the heap σ, the component
state map δ, the component shape map ζ, the listener map `, and an expression e. A heap σ
is a partial map from addresses to values. A component state map δ is a partial map from
(component) addresses to objects. The component state map does not hold the current state
of a component, but rather its next state which will become the current state through the
process of reconciliation. (The current state of a component is always available through the
state field on the component object.) A component shape map ζ is a partial map from
(component) addresses to pairs of a mounted component and a sequence of addresses. The
component shape map records the current “shape” of a mounted component along with its
currently mounted subcomponents. Intuitively, the component shape map can be thought
of as the "Virtual DOM"; what the browser is currently displaying. A listener map ` is a
partial map from (component) addresses to a set of lambda expressions. The map holds the
currently registered event listeners associated with a mounted component. Finally, every
configuration has an expression e.
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σ ∈ Heap = Addr↪ Val
δ ∈ ComponentState = Addr↪ Obj
ζ ∈ ComponentShape = Addr↪Mounted Component × (Address)⋆

` ∈ Listeners = Addr↪ P(Lam)
χ ∈ Configuration = Heap ×ComponentState ×ComponentShape × Listeners ×Exp

Figure 8 Runtime of λreact.

keys(o1) = keys(o2)
∀k ∈ keys(o1). o1(k) is primitive⇒ o1(k) == o2(k)
∀k ∈ keys(o1). o1(k) is reference⇒ o1(k) === o2(k)

o1 ≡ o2
[≡-Props]

Figure 9 React Object Equivalence.

3.7 Initial State
A λreact program consists of a single root component descriptor π (e.g., <App props/>).
We define a function, inject, to insert the component descriptor into an empty, initial
configuration:

inject(π) = ⟨∅,∅,∅,∅,Mount(π); ●⟩

The initial configuration starts with an empty heap (σ = ∅), an empty component state map
(δ = ∅), an empty component shape map (ζ = ∅), and an empty map of listeners (` = ∅).
The initial expression is Mount(π); ● which will trigger a mount of the root component
descriptor, recursively mounting its subcomponents, and registering event listeners on all
mounted components. Once the root component is mounted, the expression enters the event
loop, and begins to execute event listeners non-deterministically.

3.8 Semantics of Object Equality
A key React operation is to determine when two objects are equal. React uses this to
determine when property- and state objects are unchanged during reconciliation, as discussed
later. Figure 9 defines two objects to be equal if

(i) they share the same keys,
(ii) the values of primitive types are compared by equality, and
(iii) the references are compared using reference equality.

For example,

{a ∶ 21, b ∶ 42} ≡ {a ∶ 21, b ∶ 42}

and

{a ∶ 21, b ∶ `} ≡ {a ∶ 21, b ∶ `}

where ` is some address in the heap.
This shallow notion of equality can be checked efficiently, since we never have to recursively

descend into the object structure.
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∀ki ∈ keys(o1). o1(ki) = vi

∀k′i ∈ (keys(o2) − keys(o1)). o2(k′i) = v′i
o3 = {k1 ∶ v1,⋯, kn ∶ vn, k

′

1 ∶ v′1,⋯, k′n ∶ v′n}
o1 ⊗ o2 = o3

[⊗-State]

Figure 10 The State Merge Operator ⊗.

3.9 Semantics of State Merges
Another key React operation is to merge two objects. Like equivalence, merging is also a
shallow operation. Specifically, two objects are merged in a left-biased manner where the
returned object is obtained by taking all keys and values from the left object and adding
those keys and values from the right object that did not appear in the left object. Figure 10
captures this notion.

For example,

{a ∶ 21, b ∶ 42}⊗ {b ∶ 84} = {a ∶ 21, b ∶ 42}

and

{a ∶ 21, b ∶ 42}⊗ {c ∶ 84} = {a ∶ 21, b ∶ 42, c ∶ 84}

Note that the procedure is not recursive:

{o ∶ {a ∶ 21}}⊗ {o ∶ {b ∶ 42}} = {o ∶ {a ∶ 21}}

which is common source of bugs.

Both object equality and merging play vital roles in the reconciliation of components.

3.10 Semantics of Mounting and Unmounting
We now discuss the process of mounting and unmounting components. A component is
mounted when a λreact application starts and it may cause subcomponents to be mounted, and
so on recursively. Components are also mounted and unmounted as part of the reconciliation
process, which will be described later. Figure 11 shows the semantics of mounting and
unmounting components. We now discuss each evaluation rule in greater detail:

[E-Mount]

The rule states that to mount a component descriptor π = <C props/> the following steps
are taken: A fresh address a ∉ dom(σ) is chosen. An object is stored at that address in the
heap with a copy of the props object. The component state map δ is updated with a binding
for a, binding it to the empty object (since the next pending state is currently empty). The
event listeners are extracted from the props object and registered in the event listener map `.
These steps are sufficient to mount the component, but we must also recursively mount its
subcomponents as determined by its render method.

We achieve this by having the mount expression reduce to:

Mounted(<C@aprops/>,MountSeq(Render(π)))
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π = <C props/> a ∉ dom(σ)
σ′ = σ[a↦ {props ∶ props}] δ′ = δ[a↦ {}] `′ = `[a↦ listenersOf(props)]

⟨σ, δ, ζ, `,Mount(π)⟩→ ⟨σ′, δ′, ζ, `′,Mounted(<C@aprops/>,MountSeq(Render(π)))⟩
(E-Mount)

ζ ′ = ζ[a↦ (<C@aprops/>, a)]

⟨σ, δ, ζ, `,Mounted(<C@aprops/>, a)⟩→ ⟨σ, δ, ζ′, `, a⟩
(E-Mounted)

⟨σ, δ, ζ, `,MountSeq(Nil)⟩→ ⟨σ, δ, ζ, `,Nil⟩
(E-Mount-Seq-1)

⟨σ, δ, ζ, `,MountSeq(π ∶∶ π)⟩→ ⟨σ, δ, ζ, `,Mount(π) ∶∶ MountSeq(π)⟩
(E-Mount-Seq-2)

ζ(a) = (<C@aprops/>, a)

⟨σ, δ, ζ, `,Unmount(a)⟩→ ⟨σ, δ, ζ, `,UnmountSeq(a); Unmounted(a)⟩
(E-Unmount)

`′ = ` − a

⟨σ, δ, ζ, `,Unmounted(a)⟩→ ⟨σ, δ, ζ, `′,Nil⟩
(E-Unmounted)

⟨σ, δ, ζ, `,UnmountSeq(Nil)⟩→ ⟨σ, δ, ζ, `,Nil)⟩
(E-Unmount-Seq-1)

⟨σ, δ, ζ, `,UnmountSeq(a ∶∶ a)⟩→ ⟨σ, δ, ζ, `,Unmount(a) ; UnmountSeq(a)⟩
(E-Unmount-Seq-2)

Figure 11 Semantics of mounting and unmounting components.

which can be understood as follows: The inner Render(π) will reduce to a sequence of
subcomponent descriptors. We will then mount each of these in turn. This will reduce to
a sequence of mounted component addresses a. Finally, the Mounted(<C@aprops/>, a)
expression will register that the mounted components addresses a are subcomponents of the
current component a.

[E-Mounted]

The rule states that the expression Mounted(<C@aprops/>, a) reduces to the address a
of the mounted component <C@aprops/> with the component shape map ζ updated to
reflect the current shape of the component a and that a are the current subcomponents of a.
Intuitively, once the Mounted expression is evaluated, the component a and its subcomponents
have been fully mounted, and we have recorded their shape so that, in the future when
we re-render the component, we are able to compare the current shape to the component
descriptors returned by render.

[E-Mount-Seq-1]

The rule states that mounting the empty sequence of component descriptors results in the
empty sequence of mounted component addresses.
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[E-Mount-Seq-2]

The rule states that to mount a sequence of component descriptors π ∶∶ π we mount the
first component π and then we mount the remaining component descriptors π. Mounting a
component descriptor π returns a mounted component address a and since our goal is to
produce a sequence of mounted component addresses, we prepend the result of mounting π
with the result of mounting the remaining component descriptors π. Thus, MountSeq always
reduces to a sequence of mounted component addresses.

For example, if we mount the two component descriptors:

⟨σ, δ, ζ, `,MountSeq(<TextField props1/> ∶∶ <Button props2/> ∶∶ Nil)⟩

we obtain a new configuration with the two mounted components:

⟨σ′, δ′, ζ ′, `′, a1 ∶∶ a2 ∶∶ Nil⟩

where

ζ ′(a1) = <TextField@a1 props1/> and ζ ′(a2) = <Button@a2 props2/>

[E-Unmount]

The rule states that to unmount a mounted component address a, we must first unmount its
subcomponents, which are known from the component shape map ζ, and afterwards we can
consider the component Π to be unmounted.

[E-Unmounted]

The rule states that once the subcomponents of a component a have been unmounted, all
listeners are removed from the event listener map `. We do not remove the address a from
the heap σ since there could still be a reference to the component object somewhere nor do
we remove it from the component shape map ζ. A garbage collector can be used to clean
these maps, if desired.

[E-Unmount-Seq-1]

The rule states that unmounting the empty sequence of mounted component addresses results
in the empty sequence.

[E-Unmount-Seq-2]

The rule states that to unmount a sequence of mounted component addresses a ∶∶ a we must
unmount the first component a and then we can unmount the remaining components a.

It is easy to see how the structure of the [E-Mount], [E-Mounted], [E-Mount-Seq-
1], and [E-Mount-Seq-2] mirror the structure of [E-Unmount], [E-Unmounted], [E-
Unmount-Seq-1], and [E-Unmount-Seq-2]. Mounting is essentially a recursive traversal
of a tree that is gradually being computed by the render methods. Unmounting is the
reverse process, using the component shape map to recursively remove subcomponents.
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⟨σ, δ, ζ, `,ReconcileSeq(Nil,Nil)⟩→ ⟨σ, δ, ζ, `,Nil⟩
(RC-Empty)

⟨σ, δ, ζ, `,ReconcileSeq(π,Nil)⟩→ ⟨σ, δ, ζ, `,MountSeq(π)⟩
(RC-Extend)

⟨σ, δ, ζ, `,ReconcileSeq(Nil, a)⟩→ ⟨σ, δ, ζ, `,UnmountSeq(a)⟩
(RC-Truncate)

⟨σ, δ, ζ, `,ReconcileSeq(π ∶∶ π, a ∶∶ a)⟩→ ⟨σ, δ, ζ, `,Reconcile(π, a) ∶∶ ReconcileSeq(π, a)⟩
(RC-Sequence)

π = <C1 nextProps/> ζ(a) = (<C2@aprevProps/>,_) C1 ≠ C2

⟨σ, δ, ζ, `,Reconcile(π, a)⟩→ ⟨σ, δ, ζ, `,Unmount(a) ; Mount(π)⟩
(RC-Diff-Root)

π = <C nextProps/> ζ(a) = (<C@aprevProps/>, a) nextState = δ(a)
o = σ(a) o′ = o[props↦ nextProps][state↦ nextState] σ′ = σ[a↦ o′]

⟨σ, δ, ζ, `,Reconcile(π, a)⟩→
⟨σ′, δ, ζ, `,Reconciled(<C@anextProps/>,ReconcileSeq(ReRender(a), a))⟩

(RC-Same-Root)

ζ ′ = ζ[a↦ (<C@aprops/>, a)]

⟨σ, δ, ζ, `,Reconciled(<C@aprops/>, a)⟩→ ⟨σ, δ, ζ ′, `, a⟩
(RC-Reconciled)

Figure 12 Semantics of reconciliation

3.11 Semantics of Reconciliation
The purpose of reconciliation is to merge a component descriptor (or sequence of component
descriptors) with a mounted component (or sequence of mounted components). At a high level,
there are two broad cases to consider: (i) a mounted component is updated with new properties
and state, and (ii) a mounted component is replaced by another component. We introduce
two expressions: Reconcile(e, e) and ReconcileSeq(e, e) to model reconciliation. The
former reconciles a component descriptor with a mounted component address, whereas the
latter deals with sequences of component descriptors and mounted component addresses.
Figure 12 shows the semantics of reconciliation. We now discuss each rule in greater detail:

[RC-Empty]

The rule states that reconciliation of the empty sequence of component descriptors with the
empty sequence of mounted component addresses simply results in the empty sequence of
mounted component addresses.

[RC-Extend]

The rule states that reconciliation of a sequence of component descriptors π with the empty
sequence of mounted component addresses Nil results in each of the π component descriptors
being mounted. For example, if we were to reconcile the component descriptors:

<RssFeed title="..."/> :: <RssFeed title="..."/>

with the empty sequence of mounted component addresses then we would simply mount the
two <RssFeed>s. This is a common occurrence when the render method of a component
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returns additional component descriptors. The rule is called extend because it extends a
sequence of subcomponents with additional components.

[RC-Truncate]

The rule states that reconciliation of the empty sequence of component descriptors with a
sequence of a of mounted component addresses results in each of the a components being
unmounted. For example, if we were to reconcile the empty sequence of component descriptors
with the sequence of mounted component addresses:

a1 ∶∶ a2 ∶∶ Nil

where

ζ(a1) = <a1@RssFeed title="..."/> ζ(a2) = <a2@RssFeed title="..."/>

then the mounted components a1 and a2 would be unmounted. The rule is called truncate
because its truncates a sequence of subcomponents. Intuitively, this is the dual of the
[RC-Extend] rule.

[RC-Sequence]

The rule states that reconciliation of a sequence of component descriptors π ∶∶ π with a
sequence of mounted component addresses a ∶∶ a requires pairwise reconciliation, i.e., we have
to reconcile π with a and then reconcile the rest of the two sequences π and a. For example,
if we were to reconcile the sequence of component descriptors:

<RssFeed title="The Guardian"/> :: <RssFeed title="Reuters"/>

with the sequence of mounted component addresses:

a1 ∶∶ a2 ∶∶ Nil

where

ζ(a1) = <a1@RssFeed title="BBC World"/> ζ(a2) = <a2@RssFeed title="Reuters"/>

the first component descriptor would be reconciled with the first mounted component a1 and
similarly the second component descriptor would be reconciled with the second mounted
component a2. In this case, the first component a1 would be re-rendered and recursively
reconciled since one of its properties changed.

We now turn to the more interesting question of how to reconcile a single component
descriptor with a single mounted component. As stated previously, there are two cases to
consider: (i) a mounted component is being updated with new properties and state, or (ii) a
mounted component is being replaced by another component. We begin with the latter.

[RC-Diff-Root]

The rule states that reconciliation of a component descriptor π = <C1 nextProps/> with a
mounted component address a where ζ(a) = <a@C2 prevProps/> and where the descriptor
and the mounted components have different kinds, i.e., C1 ≠ C2, is a two-step process. First,
the currently mounted component C2 is unmounted, which as we have seen, will recursively
unmount its subcomponents. Second, the C1 component descriptor is mounted.
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π = <C props/> ⟨σ, δ, ζ, `,props.render()⟩→ ⟨σ, δ, ζ, `, π⟩

⟨σ, δ, ζ, `,Render(π)⟩→ ⟨σ, δ, ζ, `, π⟩
(E-Render)

ζ(a) = (<C@aprops/>,_) ⟨σ, δ, ζ, `,props.render()⟩→ ⟨σ, δ, ζ, `, π⟩

⟨σ, δ, ζ, `,ReRender(a)⟩→ ⟨σ, δ, ζ, `, π⟩
(E-ReRender)

Figure 13 Semantics of Rendering and Re-Rendering

For example, if we were to reconcile the component descriptor:

<Alert color="secondary">Submitted!</Alert>

with the mounted component address a where:

ζ(a) = <a@Button color="primary">Submit</Button>

The mounted Button component would be unmounted, and the Alert component descriptor
would be mounted in its place. One component being replaced by another component is a
common occurence in the implementation of form dialogs and page navigation.

[RC-Same-Root]

This rule states that reconciliation of a component descriptor π = <C nextProps/> with
a mounted component address a where ζ(a) = <C@aprevProps/> and the descriptor and
mounted component have the same kind requires multiple steps: The props field of the
component object is updated to nextProps. Similarly, the state field is updated to the value
of the next state as specified by the component state map δ. Finally, the expression reduces
to the expression:

Reconciled(Π,ReconcileSeq(ReRender(a), a))

since we must re-render the component and reconcile the returned component descriptors
(which could have changed) with the currently mounted subcomponents a. Once this is done,
we must update the component shape map of a to store its newly mounted / reconciled
subcomponents, hence we wrap the result in Reconciled which is similar to Mounted
and Unmounted.

A variant of the [RC-Same-Root] rule, closer to React semantics, would use React’s
object equivalence to determine whether the prevProps and nextProps are equivalent, and
whether nextState and the current state are equivalent. If all were found to be equivalent
then there is no need to do anything, and we could simply skip the updates and re-rendering.
This is a performance consideration, hence we have omitted it from the rules.

[Rc-Reconciled]

The rule states that once reconciliation is complete for the mounted component address a
with (possibly new) subcomponents a then we update the component shape map ζ to store
the subcomponents and then return the component address a itself.

3.12 Semantics of Rendering
The semantics of rendering, shown in Figure 13, are straightforward. As mentioned earlier,
there are two types of rendering: rendering a component descriptor for the first time and
re-rendering an already mounted component.
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nextState = δ(a) δ′ = δ[a↦ newState⊗ nextState] ζ(a) = (<C@aprops/>, a)
⟨σ, δ, ζ, `,SetState(a,newState)⟩→

⟨σ, δ′, ζ, `,Reconciled(a,ReconcileSeq(Render(a), a))⟩

[E-Set-State]

Figure 14 Semantics of Set-State

a ∈ Addr λ ∈ `(a)
⟨σ, δ, ζ, `, ●⟩→ ⟨σ, δ, ζ, `, λ(a); ●⟩

[E-Loop]

Figure 15 Semantics of Events

[E-Render] and [E-ReRender]

The [E-Render] rule states that to render a component descriptor we invoke the render
method of the props object. We assume that such a method always exists on props. The
[E-ReRender] is similar but for a mounted component where we use the address a to
retrieve the component from the component shape map ζ and then we call its render method
of its props object.

An interesting observation about [E-Render] and [E-ReRender] is that, once a com-
ponent has been mounted, overwriting its props.render will not have any effect, since the
props object itself is stored in the component shape map ζ. While this may seem overly
complicated (and to some extent it is), it (i) is consistent with actual React semantics, and
(ii) it allows us to prove key properties of λreact. Specifically, in these proofs, we need to
know that the render method is not suddenly changed underneath us. Note that calling
render by itself has no effect in our semantics; it is only when it is called from within e.g.,
MountSeq and ReconcileSeq that mounting or reconciliation is triggered.

As mentioned earlier, the render method must return a sequence of component descriptors.
Each component descriptor carries its own properties with a render method inside it. For
this process to terminate, at some point a component will not have any subcomponents and
simply return the empty sequence of component descriptors.

3.13 Semantics of State Changes
The semantics of state changes, shown in Figure 14, are also straightforward:

[E-Set-State]

The rule states that if the mounted component a is passed an object newState with some
new state then we must retrieve the nextState from the δ map and merge the current next
state with the new state. Finally, we must trigger a reconciliation wrapped in a Reconciled
since changing the state of a component could change what is returned by its render.

3.14 Semantics of Events
As mentioned earlier, the properties of a component descriptor may contain fields that
correspond to various event listeners. For example, if there is a field onClick then it should
be registered as an event listener when the component descriptor is mounted (and unregistered
when the component is unmounted). In a real React application, such event listeners are
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executed in response to user events. In the λreact semantics, we add a rule, shown in Figure 15,
which states that once we are in the event loop ● then we may select any (component) address
a and pick any of its event listeners λ ∈ `(a), execute it, and then return to the event loop.

In the semantics, as well as in real React applications, execution of an event listener
may invoke setState which in turn may cause a component to re-render and trigger the
process of reconciliation. Thus, at a high-level, the execution of a React application can be
understood as an initial mount (as defined by the inject function) followed by a sequence of
reconciliations caused by calls to setState from event listeners.

4 Properties of λreact

We want to show that mounting, unmounting, and reconciliation terminate. However, in
general, these processes may not terminate if the user-defined render function is badly
behaved. Trivially, if render does not terminate then mounting a component descriptor
will not terminate. But even if we assume that render terminates, it could return a list of
“recursive” component descriptors. That is, the render function of a component descriptor
<C props/> could return a list that includes C itself. This would cause an execution where
an infinite tree of component descriptors is mounted (which obviously never terminates).

To overcome these issues, we define the notion of a well-behaved component. Simply put,
the render function of a well-behaved component must always return a list of component
descriptors where each comment descriptor is strictly “smaller” than the component itself.
Under the assumption that components are well-behaved, we can prove properties about
mounting, unmounting, and reconciliation.

We now formalize the notions of rank and well-behavedness:

4.1 Definitions
I Definition 1 (Rank). A ranking function rank ∶ Identifier→ Nat is a map from identifiers
(component names) to natural numbers.

I Definition 2 (k-Well-Behaved Expressions). An expression e is k well-behaved if it evaluates
to a list of component descriptors π such that for each component descriptor πi = <C props/>
in the list it is the case that rank(C) < k. If k = 0 then e must evaluate to the empty list.

I Definition 3 (k-Well-Behaved Component Descriptors). A component descriptor π =

<C props/> is k well-behaved if rank(C) = k and the render function props.render is k
well-behaved.

That is to say, the render function can only return component descriptors with a strictly
lower rank than the rank of the component.

IDefinition 4 (k-Well-Behaved Mounted Components). A mounted component Π = <C@aprops/>
is k well-behaved if rank(C) = k and the render function props.render is k well-behaved.

That is to say, the render function can only return component descriptors with a strictly
lower rank than the rank of the mounted component.

I Definition 5 (Well-Behaved Component Shape Maps). A component shape map ζ is well-
behaved if:

For every a ∈ dom(ζ) where ζ(a) = (Π, a), Π is k well-behaved for some k and for every
address ai ∈ a, ζ(ai) = (Π′,_), Π′ is k′ well-behaved for some k′ where k′ < k. That is to
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say, every mounted component is well-behaved, its children are well-behaved, and they
have strictly lower rank.
For every pair of addresses a1 and a2 with a1 ≠ a2 it is the case that if ζ(a1) = (_, a1)

and ζ(a) = (_, a2) then the two lists a1 and a2 have disjoint elements. That is to say,
every mounted component has exactly one parent.

As before, if k = 0 then the children a of a mounted component must be the empty list.

4.2 Theorems
We can now state the main theoretical results of the paper.

I Theorem 6 (Mount Preserves Well-Behavedness). If π is a k well-behaved component
descriptor and ζ is a well-behaved component shape map then:

⟨σ, δ, ζ, `,E[Mount(π)]⟩→⋆ ⟨σ′, δ′, ζ ′, `′,E[a]⟩

and:

ζ ′ is a well-behaved component shape map,
ζ ′(a) is k well-behaved mounted component, and
a is not the child of any mounted component, i.e. there does not exist an address a2 such
that ζ(a2) = (_, a2) where a ∈ a2.

I Corollary 7 (Inject is Well-Behaved). If π is a k well-behaved component then:

inject(π)→⋆ ⟨σ, δ, ζ, `, ●⟩

where ζ is well-behaved.

I Theorem 8 (Unmount Preserves Well-Behavedness). If a is an address in dom(ζ) and ζ is
a well-behaved component shape map then:

⟨σ, δ, ζ, `,E[Unmount(a)]⟩→⋆ ⟨σ, δ, ζ, `′,E[Nil]⟩

I Theorem 9 (Reconciliation Preserves Well-Behavedness). If π is a k well-behaved component
descriptor, ζ is a well-behaved component shape map, a ∈ dom(ζ), ζ(a) = (Π,_), Π is k′
well-behaved then

⟨σ, δ, ζ, `,E[Reconcile(π, a)]⟩→⋆ ⟨σ′, δ′, ζ ′, `′,E[a′]⟩

and ζ ′ is well-behaved and ζ ′(a′) is k well-behaved.

I Lemma 10 (ReconcileSeq Preserves Well-Behavedness). If ζ is a well-behaved component
shape map, π = π1,⋯, πn, each πi is ki well-behaved, a = a1,⋯, am, and each ai ∈ dom(ζ) then

⟨σ, δ, ζ, `,E[ReconcileSeq(π, a)]⟩→⋆ ⟨σ′, δ′, ζ ′, `′,E[a′1,⋯, a
′

n]⟩

and ζ ′ is well-behaved and every ζ ′(a′i) is ki well-behaved.

The detailed proofs of these properties are available in the appendix.
In summary, we have proved that as long as the render functions terminate and the

component descriptors form a hierarchy that rules out infinite component trees, then the
processes of mounting, unmounting, and reconciling components all terminate. The theorems
show that these restrictions expressed in terms of React programs are reflected in the runtime
state of these programs, and are preserved in the runtime state by all the operations. The
theorems also show that these restrictions are sufficient to ensure termination of each of the
operations that manipulate components.
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Lifecycle Hook Use setState? Deprecated?

constructor(props) No No
componentDidMount() Yes No
componentDidUpdate(prevProps, prevState, snapshot) Yes⋆ No
componentWillReceiveProps(nextProps) Yes Yes
componentWillMount() Yes Yes
componentWillUnmount() No No
componentWillUpdate(nextProps, prevProps) No Yes
shouldComponentUpdate() - No
getDerivedStateFromProps() n/a No
getSnapshotBeforeUpdate(prevProps, prevState) - No

Table 1 Summary of React Lifecycle Hooks. (⋆ only under certain conditions.)

5 Lifecycle Hooks

Lifecycle hooks are an important part of React. A lifecycle hook is a callback executed by
React in response to changes to a component’s properties and state, and when it is mounted
or unmounted. Lifecycle hooks are frequently used to acquire (and release) resources, to
retrieve data over the internet, and so on. Table 1 shows an overview of the lifecycle hooks
available in React. As the figure shows, the design of lifecycle hooks has gone through
several iterations, and some lifecycle hooks are now deprecated. Another important aspect
of lifecycle hooks is whether they are allowed to call setState. This turns out to be quite
tricky, because it is easy to accidentally construct infinite loops where a lifecycle hook calls
setState which in turn triggers a lifecycle hook, and so on. This is source of bugs in React.

The semantics of λreact does not include lifecycles, but we can extend it to accommodate
them. For example:

The componentWillMount() method is invoked immediately before a component is moun-
ted. In the semantics, this corresponds to the [E-Mount] rule, which we could update
to trigger a call to componentWillMount().
The componentDidMount() method is invoked immediately after a component has been
mounted. In the semantics, this corresponds the [E-Mounted] rule, which we could
update to trigger a call to componentDidMount() immediately before returning the
mounted component.
The componentWillUnmount() method is invoked immediately before a component is
unmounted. In the semantics, this corresponds to the [E-Unmount] rule, which we
could update to trigger a call to componentWillUnmount(). There is no correspond-
ing componentDidUnmount() because changes should not be made to an unmounted
component.
The componentDidUpdate() method is invoked immediately after a component has been
updated. In the semantics, this corresponds approximately to the [Rc-Same-Root]
reconciliation rule, which we could update to trigger a call to componentDidUpdate().

Note that many of the lifecycle hooks receive the previous properties, the previous state,
the new properties, and/or the new state. Since the λreact semantics meticulously models
properties and state, these objects are readily available.
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6 Related Work

We are not aware of any prior work on formally defining the semantics of React. In this
related work section, we focus on previous research on formally specifying the semantics of
JavaScript, and on related frameworks for defining user-interfaces declaratively.

Semantics of JavaScript

Many proposals have been made for a formal semantics of JavaScript. Herman and
Flanagan [12] presented an implementation of an interpreter for EcmaScript 4 written
in ML. Being an interpreter, the specification was executable. However, EcmaScript 4 was
never adopted as a standard. Maffeis et al. [17] presented the first small-step operational
semantics for JavaScript as a basis for formalization of security properties in web applications.

Guha et al. [11] presented λjs, a minimal semantics for JavaScript. A key aspect of their
work is to formalize a semantics that is as small as possible, while still being expressive
enough to allow compilation of all JavaScript constructs into it. In this way, λjs supports all
ugly features of JavaScript, such as prototype-based inheritance, dynamic property access,
and implicit coercions.

Gardner et al. [10] presented a program logic based on separation logic for reasoning
about a large subset of the ECMAScript 3 language. The subset under consideration
includes features such as prototype inheritance and the with construct, which interacts with
JavaScript’s scoping rules in intricate ways.

Park et al. [21] presented KJS, a complete formalization of ECMAScript 5.1 implemented
in the K Framework [21]. Being specified in the K framework, the semantics is executable
and has been tested against all 2,782 tests in the ECMAScript 5.1 conformance test suite.
By specifying all of JavaScript, and executing all test cases, the authors were able to find
evaluation rules not covered by any existing test, add tests for these rules, and then running
them on different browsers, which ultimately revealed several implementation bugs.

Bodin et al. [7], presented JSCert, a formal semantics for the ECMAScript 5 version
of JavaScript that is formalized and proven correct using the Coq proof assistant. Their
work also includes a reference interpreter, JSRef, that can be used to execute test cases and
compare results against standard JavaScript interpreters. As is typical in formalizations,
JSCert excludes a number of pragmatic details such as certain native library functions, and
relies on an external parser to implement eval. Also, the for-in construct has not been
formalized because the standard defines it very loosely. Bodin’s dissertation [8] explored the
challenges associated with the formalization in greater detail.

The semantics of asynchronous JavaScript has been tackled by several authors. Madsen
et al. [16] proposed an extension of λjs that models events, event listeners, and the event
loop. Based on this semantics, the authors developed a static analysis to discover simple
bugs in event-driven JavaScript programs. Loring et al. [14] and Madsen et al. both [15]
proposed semantics to specify the behavior of JavaScript promises. Later work by Alimadadi
et al. [4] presented a tool for finding bugs in promise-based JavaScript code based on [15].

Other Frameworks

A discussion about the design of React and how it evolved can be found in CACM [1]. Since
the introduction of React, many other framework have appeared that emulate its declarative
and object-oriented programming style. React Native [13] lets programmers write native
mobile applications using JavaScript and React. React Native uses the React model, but with
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the UI components of the underlying OS, e.g. iOS or Android. Preact [2] is a light-weight
“close to the metal” React-style library with a focus on performance. Preact aims to provide
the thinnest possible “virtual DOM” on top of the real DOM. Vue.js [3] is another React-like
library with a focus on the view-layer and on easy integration with other existing libraries.

We believe our semantics offers a solid foundation for understanding and potentially
modeling these React-inspired libraries. We think that the popularity of React and the
adoption of the “React model” by many other frameworks is a sign of its importance for the
future of web development.

7 Conclusions and Future Work

React is a framework that enables programmers to write web applications in a declarative
and object-oriented style that facilitates reuse. Each component of a React application
has a set of properties representing input parameters, a state consisting of values that may
vary over time, and a render method that specifies its subcomponents. When state changes
occur, React’s reconciliation mechanism determines their impact and updates the user-
interface incrementally by mounting, unmounting, or reconciling subcomponents selectively.
At designated points in this process, the React framework invokes lifecycle methods that
enable programmers to perform actions outside the framework such as acquiring and releasing
resources. Since these mechanisms exhibit considerable complexity, programmers would
benefit from program analyses and tools that can reason precisely about React programs.

It is our long-term goal to develop program understanding and bug finding tools for
React applications. To our knowledge, this paper presents the first formal specification of a
semantics that captures the essence of React, thus establishing a foundation for such tools. Our
small-step operational semantics extends the λjs calculus [11] and models three key concepts
of React: (i) mounting and unmounting of components, (ii) reconciliation of component
descriptors and mounted components, and (iii) the semantics of state changes. To demonstrate
that key operations such as mounting, unmounting, and reconciliation terminate, we define
the notion of a well-behaved component by imposing a ranking function on components, and
requiring that the render method of a component only returns components of strictly smaller
rank. We then prove that well-behavedness is preserved by these operations.

For future work, we plan to conduct a case study to identify and classify common bug
patterns in React web applications. Then, with a formal semantics of React in place, we
will develop static analysis techniques to detect instances of these bug patterns in React
applications. Another avenue for future work is the development of a type system that is
sufficiently expressive to capture the lifecycle of React components and ensure that properties
and state are not accessed or modified incorrectly.
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A Appendix

We now give three examples that demonstrate the semantics in action. The first two examples
demonstrates how a component is mounted. The last example demonstrates are program
that is not well-behaved, recursively mounts the same component descriptor, and where
mounting never terminates.

A.1 Example I
We begin by considering the component descriptor π = <Button props/> where props =
{render = λ(x)Nil}. That is, π is a component whose render function returns the empty list
of component descriptors.

We can inject the component descriptor π into a program:

inject(π) = ⟨∅,∅,∅,∅,Mount(π); ●⟩

By the evaluation contexts, we can now apply [E-Mount] to obtain:

⟨σ, δ, ζ, `,Mounted(<Button@aprops/>,MountSeq(Render(a))); ●⟩

where

σ = [a↦ {props ∶ props}] δ = [a↦ {}] ζ = ∅ ` = ∅

By the evaluation contexts, we can now evaluate the inner render. The render function has
no side-effects and returns Nil. By applying [E-Render], we obtain:

⟨σ, δ, ζ, `,Mounted(<Button@aprops/>,MountSeq(Nil)); ●⟩

By the evaluation contexts, we can now evaluate the mount sequence. By applying [E-
MountSeq-1] (because the list is empty), we obtain:

⟨σ, δ, ζ, `,Mounted(<Button@aprops/>,Nil); ●⟩

We must now apply [E-Mounted] from which we obtain:

⟨σ, δ, ζ ′, `, a; ●⟩

where

ζ ′ = [a↦ (<Button@aprops/>,Nil)]

We can now apply the rule for sequencing and we enter the event loop:

⟨σ, δ, ζ ′, `, ●⟩

Evaluation is now complete. The final configuration has:

σ = [a↦ {props ∶ props}] δ = [a↦ {}] ζ ′ = [a↦ (<Button@aprops/>,Nil)] ` = ∅

which can be understood as: the heap has an object for the mounted component with address
a, the component state is unchanged, the component shape represents that the component
has no children, and finally the mounted component has no listeners.
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A.2 Example II
We now turn to a more complicated example. Consider the component descriptors:

π1 = <Form props1/> props1 = {render = λ(x).π2 ∶∶ Nil}
π2 = <Button props1/> props2 = {render = λ(x).Nil}

Intuitively, the form component contains a button component.
We can inject π1 into a program:

inject(π1) = ⟨∅,∅,∅,∅,Mount(π1); ●⟩

As before, we must apply the [E-Mount] rule to obtain:

⟨σ, δ, ζ, `,Mounted(<Form@a1 props1/>,MountSeq(Render(a1))); ●⟩

where

σ = [a1 ↦ {props ∶ props1}] δ = [a1 ↦ {}] ζ = ∅ ` = ∅

We now apply [E-Render], but this time, the result is not the empty list, but rather a list
with one element: the button descriptor:

⟨σ, δ, ζ, `,Mounted(<Form@a1 props1/>,MountSeq(π2 ∶∶ Nil)); ●⟩

By the evaluation contexts, we must now apply [E-Mount-Seq-2] to obtain:

⟨σ, δ, ζ, `,Mounted(<Form@a1 props1/>,Mount(π2) ∶∶ MountSeq(Nil)); ●⟩

By the (implicit) evaluation contexts of list cons, we must now evaluate the inner mount.
We apply [E-Mount] to obtain:

⟨σ′, δ′, ζ, `,Mounted(<Form@a1 props1/>,

Mounted( <Button@a2 props2/>,

MountSeq(Render(a2))) ∶∶ MountSeq(Nil)); ●⟩

where σ′ and δ′ has been updated appropriately.
The inner most expression here is the render of the button component. Recall that render

of button returns an empty list, so applying [E-Render] we obtain:

⟨σ′, δ′, ζ, `,Mounted(<Form@a1 props1/>,

Mounted( <Button@a2 props2/>,

MountSeq(Nil)) ∶∶ MountSeq(Nil)); ●⟩

We can apply [E-Seq-1] to the inner most mount sequence, to obtain:

⟨σ′, δ′, ζ, `,Mounted(<Form@a1 props1/>,

Mounted(<Button@a2 props2/>,Nil) ∶∶ MountSeq(Nil)); ●⟩

We are now almost done mounting the button. We can apply [E-Mounted] to obtain:

⟨σ′, δ′, ζ ′, `,Mounted(<Form@a1 props1/>, a2 ∶∶ MountSeq(Nil)); ●⟩
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where ζ ′ = [a2 ↦ (<Button@a2 props2/>,Nil)].
Next, we apply [E-MountSeq-1] to obtain:

⟨σ′, δ′, ζ ′, `,Mounted(<Form@a1 props1/>, a2 ∶∶ Nil); ●⟩

We can now apply [E-Mounted] to obtain:

⟨σ′, δ′, ζ ′′, `, a1; ●⟩

where ζ ′ = [a1 ↦ (<Form@a1 props1/>, a2 ∶∶ Nil), a2 ↦ (<Button@a2 props2/>,Nil)]
And then we enter the event loop:

⟨σ′, δ′, ζ ′′, `, ●⟩

A.3 Example III
We will now consider an example of a component that recursively mounts itself ad infinitum.
This component descriptor is not well-behaved. Consider:

π = <C props/> where props = {render = λ(x). π ∶∶ Nil}

That is, a component descriptor that returns itself in its render method.
We begin as usual:

inject(π) = ⟨∅,∅,∅,∅,Mount(π); ●⟩

We apply [E-Mount] to obtain:

⟨σ, δ, ζ, `,Mounted(<C@aprops/>,MountSeq(Render(a))); ●⟩

where

σ = [a↦ {props ∶ props}] δ = [a↦ {}] ζ = ∅ ` = ∅

Next, we apply [E-Render] to obtain:

⟨σ, δ, ζ, `,Mounted(<C@aprops/>,MountSeq(π ∶∶ Nil)); ●⟩

Next, we apply [E-Mount-Seq-2] to obtain:

⟨σ, δ, ζ, `,Mounted(<C@aprops/>,Mount(π) ∶∶ MountSeq(Nil)); ●⟩

Our next step is to apply [E-Mount] on π, but are already in the process of doing so, and
this will cycle forever.
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A.4 Proofs
I Definition 1 (Rank). A ranking function rank ∶ Identifier→ Nat is a map from identifiers
(component names) to natural numbers.

I Definition 2 (k-Well-Behaved Expressions). An expression e is k well-behaved if it evaluates
to a list of component descriptors π such that for each component descriptor πi = <C props/>
in the list it is the case that rank(C) < k. If k = 0 then e must evaluate to the empty list.

I Definition 3 (k-Well-Behaved Component Descriptors). A component descriptor π =

<C props/> is k well-behaved if rank(C) = k and the render function props.render is k
well-behaved.

That is to say, the render function can only return component descriptors with a strictly
lower rank than the rank of the component.

IDefinition 4 (k-Well-Behaved Mounted Components). A mounted component Π = <C@aprops/>
is k well-behaved if rank(C) = k and the render function props.render is k well-behaved.

That is to say, the render function can only return component descriptors with a strictly
lower rank than the rank of the mounted component.

I Definition 5 (Well-Behaved Component Shape Maps). A component shape map ζ is well-
behaved if:

For every a ∈ dom(ζ) where ζ(a) = (Π, a), Π is k well-behaved for some k and for every
address ai ∈ a, ζ(ai) = (Π′,_), Π′ is k′ well-behaved for some k′ where k′ < k. That is to
say, every mounted component is well-behaved, its children are well-behaved, and they
have strictly lower rank.
For every pair of addresses a1 and a2 with a1 ≠ a2 it is the case that if ζ(a1) = (_, a1)

and ζ(a) = (_, a2) then the two lists a1 and a2 have disjoint elements. That is to say,
every mounted component has exactly one parent.

As before, if k = 0 then the children a of a mounted component must be the empty list.
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I Theorem 6 (Mount Preserves Well-Behavedness). If π is a k well-behaved component
descriptor and ζ is a well-behaved component shape map then:

⟨σ, δ, ζ, `,E[Mount(π)]⟩→⋆ ⟨σ′, δ′, ζ ′, `′,E[a]⟩

and:

ζ ′ is a well-behaved component shape map,
ζ ′(a) is k well-behaved mounted component, and
a is not the child of any mounted component, i.e. there does not exist an address a2 such
that ζ(a2) = (_, a2) where a ∈ a2.

Proof. By induction on k.
We have the configuration:

⟨σ0, δ0, ζ0, `0,E[Mount(π)]⟩ (1)

where π = <C props/> is some k well-behaved component descriptor.
By the rule [E-Mount], the configuration steps to:

⟨σ1, δ1, ζ, `1,E[Mounted(<C@aprops/>,MountSeq(Render(π)))]⟩ (2)

where σ1, δ1 and `1 are updated as specified in the premises of the rule.
We want to apply the [E-Render] rule. We know that props.render is an expression e

that is k well-behaved because π is k well-behaved. By induction on k, we know:
Base Case (k = 0). If k = 0 then e evaluates to the empty list and we step to:

⟨σ1, δ1, ζ, `1,E[Mounted(<C@aprops/>,MountSeq(Nil))]⟩ (3)

By the rule [E-Mount-Seq-1] the configuration steps to:

⟨σ1, δ1, ζ, `1,E[Mounted(<C@aprops/>,Nil)]⟩ (4)

By the rule [E-Mounted] the configuration steps to:

⟨σ1, δ1, ζ
′, `1,E[a]⟩ (5)

where ζ ′ = ζ[a↦ (<C@aprops/>,Nil)].
From [E-Mount], we know that a fresh. Thus, ζ ′ extends ζ with a new binding, leaving in

place all other bindings. We also know that a cannot be the child of any mounted component
in ζ ′ because a was fresh. Finally, we know that ζ ′(a) is k well-behaved, since (i) π is k
well-behaved, and (ii) the mounted component a it has no children. Thus ζ ′ is well-behaved.

Inductive Step. In the induction case, e evaluates to a list of component descriptors π
such that for each πi ∈ π, πi is k′ well-behaved for some k′ < k. Thus we step to:

⟨σ1, δ1, ζ, `1,E[Mounted(<C@aprops/>,MountSeq(π1,⋯, πn))]⟩ (6)

By the rule [E-Mount-Seq-2] the configuration steps to:

⟨σ1, δ1, ζ, `1,E[Mounted(<C@aprops/>,Mount(π1) ∶∶ MountSeq(π2,⋯, πn))]⟩ (7)

By the induction hypothesis:

⟨σ1, δ1, ζ, `1,Mount(π1)⟩→ ⟨σ′1, δ
′

1, ζ
′, `′1, a1⟩
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where a1 and ζ ′ satisfy the properties of the theorem. Thus we have:

⟨σ′1, δ
′

1, ζ
′, `′1,E[Mounted(<C@aprops/>, a1 ∶∶ MountSeq(π2,⋯, πn))]⟩ (8)

Applying the same reasoning to π2,⋯, πn we obtain:

⟨σ′′, δ′′, ζ ′′, `′′,E[Mounted(<C@aprops/>, a1,⋯, an)]⟩ (9)

where each ai and ζ ′′ satisfies the properties of the theorem.
By the rule [E-Mounted] the configuration steps to:

⟨σ′′, δ′′, ζ ′′′, `′′,E[a]⟩ (10)

where ζ ′′′ = ζ ′′[a↦ (<C@aprops/>, a1,⋯, an)].
From [E-Mount], we know that a fresh. Thus, ζ ′′′ extends ζ ′′ with a new binding,

leaving in place all other bindings. We also know that a cannot be the child of any mounted
component in ζ ′′′ because a was fresh. Finally, we know that ζ ′′′(a) is k well-behaved, since
(i) π is k well-behaved, and (ii) each of the mounted components a1,⋯, an are ki well-behaved
with ki < k. Thus ζ ′′′ is well-behaved.

J

I Corollary 7 (Inject is Well-Behaved). If π is a k well-behaved component then:

inject(π)→⋆ ⟨σ, δ, ζ, `, ●⟩

where ζ is well-behaved.

Proof. Immediate from the above proof. J

I Theorem 8 (Unmount Preserves Well-Behavedness). If a is an address in dom(ζ) and ζ is
a well-behaved component shape map then:

⟨σ, δ, ζ, `,E[Unmount(a)]⟩→⋆ ⟨σ, δ, ζ, `′,E[Nil]⟩

Proof. By induction on k.
We know that ζ is well-behaved and ζ(a) = (Π, a) where Π is a k well-behaved mounted

component for some k.
The initial configuration is:

⟨σ, δ, ζ, `,E[Unmount(a)]⟩ (11)

By the rule [E-Unmount] we step to the configuration:

⟨σ, δ, ζ, `,E[UnmountSeq(a); Unmounted(a)]⟩ (12)

Base Case (k = 0). If k = 0 then a = Nil. Thus the configuration is:

⟨σ, δ, ζ, `,E[UnmountSeq(Nil); Unmounted(a)]⟩ (13)

By the rule [E-Unmount-Seq-1] the configuration steps to:

⟨σ, δ, ζ, `,E[Nil; Unmounted(a)]⟩ (14)

By the sequencing rule, the configuration steps to:

⟨σ, δ, ζ, `,E[Unmounted(a)]⟩ (15)
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By the rule [E-Unmounted], the configuration steps to:

⟨σ, δ, ζ, `′,E[Nil]⟩ (16)

as required.
Inductive Step. In the induction case, we have that a = a1,⋯, an such that for each ai,

ζ(ai) = (Π′i,_) where we know that Π′i is k′ well-behaved for k′ < k. Thus the configuration
is:

⟨σ, δ, ζ, `,E[UnmountSeq(a1,⋯, an); Unmounted(a)]⟩ (17)

By the rule [E-Unmount-Seq-2], the configuration steps to:

⟨σ, δ, ζ, `,E[Unmount(a1); UnmountSeq(a2,⋯, an); Unmounted(a)]⟩ (18)

By the induction hypothesis, the unmount expression steps to:

⟨σ, δ, ζ, `′,E[Nil; UnmountSeq(a2,⋯, an); Unmounted(a)]⟩ (19)

for some `′. By sequencing the configuration steps to:

⟨σ, δ, ζ, `′,E[UnmountSeq(a2,⋯, an); Unmounted(a)]⟩ (20)

Applying the same reasoning to a2,⋯, an, the configuration steps to:

⟨σ, δ, ζ, `′′,E[Unmounted(a)]⟩ (21)

for some `′′. By the rule [E-Unmounted] the configuration steps to:

⟨σ, δ, ζ, `′′,E[Nil]⟩ (22)

as required.
J
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I Theorem 9 (Reconciliation Preserves Well-Behavedness). If π is a k well-behaved component
descriptor, ζ is a well-behaved component shape map, a ∈ dom(ζ), ζ(a) = (Π,_), Π is k′
well-behaved then

⟨σ, δ, ζ, `,E[Reconcile(π, a)]⟩→⋆ ⟨σ′, δ′, ζ ′, `′,E[a′]⟩

and ζ ′ is well-behaved and ζ ′(a′) is k well-behaved.

I Lemma 10 (ReconcileSeq Preserves Well-Behavedness). If ζ is a well-behaved component
shape map, π = π1,⋯, πn, each πi is ki well-behaved, a = a1,⋯, am, and each ai ∈ dom(ζ) then

⟨σ, δ, ζ, `,E[ReconcileSeq(π, a)]⟩→⋆ ⟨σ′, δ′, ζ ′, `′,E[a′1,⋯, a
′

n]⟩

and ζ ′ is well-behaved and every ζ ′(a′i) is ki well-behaved.

Proof. By mutual induction:

For Theorem 9, by induction on k.
For Lemma 10, by induction on the structure of the lists.

J

A.5 Proof of Theorem 9
Proof. By induction on k.

We have the configuration:

⟨σ, δ, ζ, `,E[Reconcile(π, a)]⟩ (23)

where ζ, π, and a satisfy the properties of the theorem.
We know that π = <C1 nextProps/> and ζ(a) = (<C2@aprevProps/>, a) thus either

[RC-Diff-Root] or [RC-Same-Root] apply depending on whether C1 = C2.

Case 1: Diff Root

We have that C1 ≠ C2. Thus we step to the configuration:

⟨σ, δ, ζ, `,E[Unmount(a); Mount(π)]⟩ (24)

By Theorem 8 (Unmount Preserves Well-Behavedness), the configuration steps to:

⟨σ, δ, ζ, `′,E[Nil; Mount(π)]⟩ (25)

By sequencing, the configuration steps to:

⟨σ, δ, ζ, `′,E[Mount(π)]⟩ (26)

By Theorem 6 (Mount Preserves Well-Behavedness), the configuration steps to:

⟨σ′, δ′, ζ ′, `′′,E[a′]⟩ (27)

where ζ ′ is well-behaved and ζ ′(a′) is k well behaved.
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Case 2: Same Root

We have that C1 = C2 therefore k′ = rank(C2) = rank(C1) = k which implies that ζ(a) is k
well-behaved. Thus we step to the configuration:

⟨σ, δ, ζ, `,E[Reconciled(<C@anextProps/>,ReconcileSeq(ReRender(a), a))]⟩ (28)

By the rule [E-ReRender] (and because render is total), the configuration steps to:

⟨σ, δ, ζ, `,E[Reconciled(<C@anextProps/>,ReconcileSeq(π, a))]⟩ (29)

where π = π1,⋯, πn is a sequence of component descriptors and each πi is ki well behaved for
some ki < k since ζ(a) is k well-behaved.

By Lemma 10 (ReconcileSeq Preserves Well-Behavedness), the configuration steps to:

⟨σ′, δ′, ζ ′, `′,E[Reconciled(<C@anextProps/>, a′)]⟩ (30)

where ζ ′ is well-behaved and each a′i ∈ a′ is ki well behaved.
By the rule [RC-Reconciled], the configuration steps to:

⟨σ′, δ′, ζ ′′, `′,E[a]⟩ (31)

where ζ ′′ = ζ ′[a↦ (<C@anextProps/>, a′)] as required. J

A.6 Proof of Lemma 10
Proof. By structural induction on the two lists.

We have the configuration

⟨σ, δ, ζ, `,E[ReconcileSeq(π, a)]⟩ (32)

where ζ and each πi satisfy the properties of the lemma.
By induction on the structure of π and a there are four cases to consider:

Base Case I

We have that π = Nil and a = Nil. That is, the configuration is:

⟨σ, δ, ζ, `,E[ReconcileSeq(Nil,Nil)]⟩ (33)

By the rule [RC-Empty], the configuration steps to:

⟨σ, δ, ζ, `,E[Nil]⟩ (34)

and we are done.

Base Case II

We have that π = π1, π2,⋯, πn and a = Nil. That is, the configuration is:

⟨σ, δ, ζ, `,E[ReconcileSeq(π1, π2,⋯, πn,Nil)]⟩ (35)

By the rule [RC-Extend], the configuration steps to:

⟨σ, δ, ζ, `,E[MountSeq(π1, π2,⋯, πn)]⟩ (36)
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By the rule [Mount-Seq-2], the configuration steps to:

⟨σ, δ, ζ, `,E[Mount(π1) ∶∶ MountSeq(π2,⋯, πn)]⟩ (37)

By Theorem 6 (Mount Preserves Well-Behavedness), the configuration steps to:

⟨σ′, δ′, ζ ′, `′,E[a′1 ∶∶ MountSeq(π2,⋯, πn)]⟩ (38)

where ζ ′ is k well-behaved and ζ ′(a′1) is k well-behaved. Applying similar reasoning for
π2,⋯, πn we obtain:

⟨σ′′, δ′′, ζ ′′, `′′,E[a′1,⋯, a
′

n]⟩ (39)

where ζ is well-behaved and for each a′i, ζ ′′(a′i) is k well-behaved.

Base Case III

We have that π = Nil and a = a1, a2,⋯, an. That is, the configuration is:

⟨σ, δ, ζ, `,E[ReconcileSeq(Nil, a1, a2,⋯, an)]⟩ (40)

By the rule [RC-Truncate], the configuration steps to:

⟨σ, δ, ζ, `,E[UnmountSeq(a1, a2,⋯, an)]⟩ (41)

By the rule [E-Unmount-Seq-2], the configuration steps to:

⟨σ, δ, ζ, `,E[Unmount(a1); UnmountSeq(a2,⋯, an)]⟩ (42)

By Theorem 8 (Unmount Preserves Well-Behavedness), the configuration steps to:

⟨σ, δ, ζ, `′,E[Nil; UnmountSeq(a2,⋯, an)]⟩ (43)

By the sequencing rule, the configuration steps to:

⟨σ, δ, ζ, `′,E[UnmountSeq(a2,⋯, an)]⟩ (44)

Applying similar reasoning for a2,⋯, an we obtain:

⟨σ, δ, ζ, `′′,E[Nil]⟩ (45)

where ζ is well-behaved.

Induction Step

We have that π = π1, π2,⋯, πn and a = a1, a2,⋯, am. That is, the configuration is:

⟨σ, δ, ζ, `,E[ReconcileSeq(π1, π2,⋯, πn, a1, a2,⋯, am)]⟩ (46)

By the rule [RC-Sequence], the configuration steps to:

⟨σ, δ, ζ, `,E[Reconcile(π1, a1) ∶∶ ReconcileSeq(π2,⋯, πn, a2,⋯, am)]⟩ (47)

By Theorem 9 (Reconciliation Preserves Well-Behavedness), the configuration steps to:

⟨σ′, δ′, ζ ′, `′,E[a′1 ∶∶ ReconcileSeq(π2,⋯, πn, a2,⋯, am)]⟩ (48)

where ζ ′ is well behaved and ζ ′(a′1) is k1 well-behaved.
By the induction hypothesis, the configuration steps to:

⟨σ′′, δ′′, ζ ′′, `′′,E[a′1, a
′

2,⋯, a
′

n]⟩ (49)

where ζ ′′ is well behaved and each a′i is ki well-behaved.
J
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