
Tail Call Elimination and Data Representation for
Functional Languages on the Java Virtual Machine

Magnus Madsen
Aalborg University, Denmark

magnus@cs.aau.dk

Ramin Zarifi
University of Waterloo, Canada

rzarifi@uwaterloo.ca

Ondřej Lhoták
University of Waterloo, Canada

olhotak@uwaterloo.ca

Abstract
The Java Virtual Machine (JVM) offers an attractive run-
time environment for programming language implementors.
The JVM has a simple bytecode format, excellent perfor-
mance, multiple state-of-the art garbage collectors, robust
backwards compatibility, and it runs on almost all platforms.
Further, the Java ecosystem grants access to a plethora of
libraries and tooling, including debuggers and profilers.

Yet, the JVM was originally designed for Java, and its rep-
resentation of code and data may cause difficulties for other
languages. In this paper, we discuss how to efficiently im-
plement functional languages on the JVM. We focus on two
overall challenges: (a) how to efficiently represent algebraic
data types in the presence of tags and tuples, option types,
newtypes, and parametric polymorphism, and (b) how to
support full tail call elimination on the JVM.
We present two technical contributions: A fused repre-

sentation of tags and tuples and a full tail call elimination
strategy that is thread-safe. We implement these techniques
in the Flix language and evaluate their performance.

CCS Concepts • Software and its engineering→ Func-
tional languages;
Keywords tail call elimination, tag tuple fusion, jvm, java
ACM Reference Format:
Magnus Madsen, Ramin Zarifi, and Ondřej Lhoták. 2018. Tail Call
Elimination and Data Representation for Functional Languages
on the Java Virtual Machine. In Proceedings of 27th International
Conference on Compiler Construction (CC’18). ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3178372.3179499

1 Introduction
The Java Virtual Machine (JVM) has proven to be a popular
runtime environment for a multitude of languages invented
after Java, e.g. Ceylon, Clojure, Kotlin and Scala.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CC’18, February 24–25, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5644-2/18/02. . . $15.00
https://doi.org/10.1145/3178372.3179499

The popularity of the JVM is due to several factors: (i) the
Java platform comes with an extensive standard library and
the Java ecosystem offers a very large collection of libraries
and frameworks, (ii) the JVM is available for most platforms
and has excellent backwards compatibility, (iii) the JVM byte-
code format, the low-level instructions for the JVM, is easy to
understand and to generate, (iv) the JIT compiler in the JVM
emits fast machine code, (v) the JVM comes with state-of-the-
art garbage collectors, a vital feature for object-oriented and
functional languages, and finally (vi) the JVM offers excellent
tooling for debugging and profiling.
Despite these numerous advantages, the JVM also has

several limitations: Originally designed for Java, the JVM
lacks several features that are important for languages that
do not follow the object-oriented paradigm, although re-
cently, some progress has been made to accommodate other
languages [Wimmer and Würthinger 2012].

In this paper, we study the compilation of statically typed
functional languages to JVM bytecode. Functional program-
ming promotes a programming style that emphasizes the
use of algebraic data types, closures, higher-order functions,
pattern matching, and recursion, as opposed to mutable data
structures and control-flow based on loops.
We identify two overall challenges for functional lan-

guages that wish to target the JVM: (A) How to efficiently rep-
resent algebraic data types?With the specific sub-challenges:
(A1) how to represent tagged tuples? (A2) how to represent
optional values? (A3) how to represent new type values?,
(A4) how to represent polymorphic data types and functions?,
and (A5) how to compile pattern matches? and (B) How to
support full tail call elimination? In typical functional pro-
grams, iteration is expressed through the use of recursion
and without full tail call elimination such programs may
exhaust the available stack and crash.
In this work, we implement and evaluate compilation

strategies for the above challenges in the compiler for the
Flix programming language [Madsen et al. 2016a,b].
In summary, the contributions of this paper are:
• We present two technical contributions: A technique
to fuse the representation of tags and tuples at run-
time (challenge A1) and a technique for thread-safe
full tail call elimination on the JVM (challenge B).

• We implement these two techniques, alongwith known
techniques for the challenges A2–A5, in the Flix lan-
guage and evaluate their performance impact.

139

https://doi.org/10.1145/3178372.3179499
https://doi.org/10.1145/3178372.3179499

CC’18, February 24–25, 2018, Vienna, Austria Magnus Madsen, Ramin Zarifi, and Ondřej Lhoták

2 Motivation
We begin with a discussion of the challenges we face in
supporting common functional programming idioms and
features on the JVM. We give examples in Flix code, but
the challenges are equally applicable to any statically-typed
functional programming language.

Algebraic Data Types. Most functional languages offer at
least three categories of data types: primitive types (e.g. inte-
gers), tagged unions (i.e. sum types), and tuples. From these
types, more interesting types can be constructed. In Flix, we
can use a pair of integers, a 2-tuple, to represent a point:

def point(x: Int, y: Int): (Int, Int) = (x, y)

The empty tuple is called Unit and is denoted by (). In Flix,
a tagged union is defined with the enum keyword:

enum Color {
case Red,
case Blue,
case Green

}

The three cases Red, Blue, and Green are the tags of the
enum Color. Each tag has an inner type. If the inner type is
omitted, it is implicitly assumed to be Unit. Tags and tuples
are orthogonal features, but we can combine them to express
richer data types such as a list data type:

enum List[a] {
case Nil,
case Cons(a, List[a])

}

The List[a] type is polymorphic in the type variable a.
As usual, a value of type List[a] is either the empty list
denoted by the tag Nil or a cons cell denoted by Cons which
is a pair, i.e. a 2-tuple, of an element of type a and the tail
of the list of type List[a]. It is instructive to compare this
definition to the Scala equivalent:

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[A](x: A, xs: List[A]) extends List[A]

Here, the trait keyword defines a common super-type for
the Nil object and the Cons case class. In Scala, a case class
combines several concepts into one: A case class is both
its own distinct type, a record type with named fields, and
a product type. However, a case class is not a tuple. The
consequence is that the value of the case class cannot be
treated separately. For example, the following code is legal
in Flix, but cannot be expressed in Scala:

enum Shape {
case Point(Int, Int),
case Polygon(List[(Int, Int)])

}

def rotatePoint(p: (Int, Int)): (Int, Int) =
(−snd(p), fst(p))

def rotateShape(s: Shape): Shape = match p with {
case Point(p) => Point(rotatePoint(p))
case Polygon(ps) => Polygon(List.map(rotatePoint, ps))

}

Here the rotatePoint function takes a point and rotates it
90 degrees. The rotateShape takes a shape and rotates the
points associated with the shape using rotatePoint.
As the example illustrates, the conceptual separation of

tags and tuples is useful and less restrictive than the case
classes in Scala. It is straightforward to compile tags and
tuples to JVM bytecode. However, if we compile tags to one
set of classes and tuples to another set of classes, then the
runtime representation of a cons cell will require two objects:
one for the tag and one for the pair! This causes additional
memory allocation and garbage collection churn compared
to the case classes in Scala. This leads us to the first challenge:

Challenge A1: How can we efficiently repre-
sent tagged tuples while keeping tags and tuples
distinct at the language level?

Optional Values. Many languages support null values. In
Java, null is a subtype of any type τ and can be used when-
ever a value of type τ is expected. Programmers use null
values to represent uninitialized values, absent values, or
illegal values. At first sight, null values may seem like a con-
venient feature, but they come at a high cost: Accessing a
field or invoking amethod on a null value throws the dreaded
NullPointerException. Such crashes are often difficult to
debug since it is hard to determine from where the null value
originated. Tony Hoare famously described null values as his
“billion dollar mistake”. Functional languages tend to eschew
null values and instead rely on the Option type. In Flix, this
type is defined as the algebraic data type:

enum Option[a] {
case None,
case Some(a)

}

Here the None tag represents an absent value, whereas the
Some(a) tag represents the presence of a value of type a.
Option types are good for safety, but come with a perfor-
mance cost: Every use of Some(x) requires allocation of an
object and later its garbage collection, thus slowing down
execution. This leads us to the second challenge:

Challenge A2: How can we efficiently repre-
sent optional values?

New Types. In typed functional programming, it is consid-
ered good style to encode as much information as possible
in the type system. For example, if we wanted to represent
temperatures in both Celsius and Fahrenheit we should in-
troduce a data type for each unit of measure:

type Celsius = Celsius(Int)
type Fahrenheit = Fahrenheit(Int)

In Flix, such a type declaration is syntatic sugar for:
enum Celsius {

case Celsius(Int)
}

The use of such “new types” ensures that we can never
confuse a temperature in Celsius with one in Fahrenheit.

140

Tail Call Elimination and Data Representation for ... CC’18, February 24–25, 2018, Vienna, Austria

However, as in the previous challenges, this design requires
additional memory allocation and garbage collection, thus
slowing down execution. This leads us to the third challenge:

Challenge A3: How can we efficiently repre-
sent new type values?

Parametric Polymorphism. Generic programming, in the
form of parametric polymorphism, is common in typed func-
tional languages. The List[a] type is an example of a poly-
morphic data type and its operations are polymorphic func-
tions. The JVM only supports primitive types (e.g. integers)
and reference types (i.e. objects). This means we cannot just
emit a single JVMmethod that works for both primitive types
and reference types. This leads us to the fourth challenge:

Challenge A4: How can we efficiently repre-
sent polymorphic data types and functions to
avoid boxing of primitive values?

PatternMatching. Algebraic data types are useful, but their
real power comes when combined with pattern matching.
For example, if we wanted to determine whether a list ends
with the integers 1, 2, and 3, we could write:

def endsWith123(l: List[Int]): Bool = match l with {
case Nil => false
case Cons(_, Nil) => false
case Cons(_, Cons(_, Nil)) => false
case Cons(1, Cons(2, Cons(3, Nil))) => true
case Cons(_, xs) => endsWith123(xs)

}

As pattern matching is not expressible in JVM bytecode, a
functional language compiler must translate pattern matches
to a sequence of lower-level instructions. This leads us to
the fifth and final challenge related to algebraic data types:

Challenge A5: How should pattern matches be
compiled to JVM bytecode?

Tail Call Elimination. Functional languages tend not to
rely on imperative control-flow structures such as while- and
for-loops, but instead use recursion. For example, consider
the two functions:

def odd(n: Int): Bool = match n with {
case 0 => false
case 1 => true
case n => even(n − 1)

}
def even(n: Int): Bool = match n with {

case 0 => true
case 1 => false
case n => odd(n − 1)

}

The two functions computewhether an integer is odd or even.
The functions are mutually recursive and each performs a
tail call to the other. A function call is a tail call if the calling
function immediately returns after the call.
We can compile functions, like odd and even, to regular

JVM methods, and compile function calls to regular JVM
method calls. However, each JVM method call requires a
stack frame, and in a program like the above, all stack space
would be quickly exhausted leading to a crash.

The purpose of tail call elimination is to avoid the creation
of new stack frames whenever a tail call occurs. Runtime
environments typically offer instructions to perform tail calls,
but unfortunately the JVM does not.
The lack of tail calls on the JVM is not just a theoretical

problem, but a real-world issue. At best, functional languages
without tail call elimination force programmers to manu-
ally rewrite their code using imperative loops, trampolines,
or worklists. At worst, such problems become ticking time
bombs waiting for an input that will exhausts the available
stack space and crash the program.

For Scala, a quick look through mailing lists, forum posts,
and issue trackers shows that the lack of tail call elimination
is a real pain point. The books Functional Programming in
Scala by Chiusano and Bjarnason and Programming Scala by
Wampler and Payne both acknowledge this issue, but rather
meekly suggest the use of trampolines or a tail recursive
monad! The documentation for Cats, a popular Scala library
for functional programming, states:

In addition to requiring flatMap and pure, Cats
has chosen to require tailRecM which encodes
stack safemonadic recursion, [...]. Becausemonadic
recursion is so common in functional program-
ming but is not stack safe on the JVM, Cats has
chosen to require this method of all monad im-
plementations as opposed to just a subset. [...]

This shows that the lack of tail call elimination imposes
a real burden on functional programmers who use the JVM.
This leads us to the last major challenge:

Challenge B: How can we support full tail call
elimination on the JVM?

In 1998, Benton et al. [1998] optimistically suggested that:

“We have reason to believe that JVMs which do
tail call elimination may appear soon, ...”

Almost twenty years later, the JVM instruction set still lacks
support for tail calls.

3 Implementation
In the previous section, we described several features that
are essential to functional programming and the challenges
they present. In this section, we describe how we address
these challenges in the compiler for Flix.
We will not follow the same structure as in the previous

section, but instead present things in an order that makes
sense from an implementation point of view. We will devote
the majority of the space to the tag and tuple fusion and
tail call elimination strategies, as these are the two major
technical contributions of the paper. The remainder of the
challenges, which have known solutions, we touch on briefly.

We begin with a discussion of tail call elimination, as this
turns out to be quite involved.

141

CC’18, February 24–25, 2018, Vienna, Austria Magnus Madsen, Ramin Zarifi, and Ondřej Lhoták

3.1 Tail Call Elimination (Challenge B)
Over the years, several strategies for tail call elimination on
the JVM have been proposed, including trampolines [Bjar-
nason 2012; Stadler et al. 2009], stack shrinking [Schinz and
Odersky 2001], and impure functional objects [Tauber et al.
2015]. We briefly discuss some of these, before we describe
our technique which is a thread-safe variant of impure func-
tional objects. We will proceed by example. Assume we want
to implement the factorial function shown below:

public int factorial(int num, int acc) {
if (num == 0) {

return acc;
}
return factorial(num − 1, num * acc);

}

We will focus on the general case of tail call elimination,
ignoring for the moment that this function is tail recursive.
We now discuss how to express this function using trampo-
lines and impure functional objects. Other techniques are
discussed in Section 5.

Trampolines. A trampoline is a classic technique to imple-
ment tail call elimination. The idea is that each function is
modified to return a continuation, i.e. an object that repre-
sents either the next tail call or holds the result of the entire
computation. The trampoline is itself a loop that evaluates
the continuation until the result is available. We can imple-
ment the factorial function using a trampoline:

First, we define an interface to capture the continuation:
interface Continuation {

int getResult();
Continuation apply();

}

We invoke the continuation by calling the apply method.
This call either returns a new continuation or null, in which
case the result is available by calling the getResult method.
Second, we define a class for the body of the factorial

function which implements the Continuation interface:
class Factorial implements Continuation {

private int arg0, arg1, res;
public Factorial(int num, int acc) { ... }
public int getResult() { ... }
public Continuation apply() {

int num = this.arg0;
int acc = this.arg1;
if (num == 0) {

this.res = acc;
return null;

}
return new Factorial(num − 1, num * acc)

}
}

The arguments to the factorial function are passed as param-
eters to the constructor which stores them into two fields:
arg0 and arg1. The apply method performs the computa-
tion and either stores the result in the res field or returns a
new continuation object.

Third, and finally, to call the factorial functionwe create an
instance of the factorial class with the appropriate arguments
and repeatedly invoke the apply method:

Continuation next = new Factorial(inputNumber);
Continuation prev = null;
do {

prev = next;
next = next.apply();

} while (next != null);
int result = prev.getResult();

The trampoline repeatedly invokes the current continuation
until the result is available. The disadvantage of trampolines
is that each tail call allocates a new object (which is later
garbage collected) and on the JVM a single object allocation
is more expensive than a single method call.

A key insight is that we do not actually need to allocate
an object for the continuation, but instead we can reuse the
same continuation objects over and over. This is the idea
behind impure functional objects of Tauber et al. [2015].

Impure Functional Objects. The main idea behind impure
functional objects (IFOs) is to create only a single mutable
continuation object for each function in the program, and
reuse that same object for every tail call to that function.

Here is how to express the factorial function using IFOs:
class Factorial implements Continuation {

private static Factorial INSTANCE = new Factorial();
private int num, acc, res;

void setArg0(int arg0) { ... }
void setArg1(int arg1) { ... }
int getResult() { ... }

public void apply() {
if (this.num == 0) {

this.res = this.acc;
return;

}
Factorial c = Factorial.INSTANCE;
int arg0 = this.num − 1;
int arg1 = this.num * this.acc;
c.setArg0(arg0);
c.setArg1(arg1)
Global.continuation = c

}
}

The Factorial class has only one instance, stored in the static
field INSTANCE. The body of the applymethod performs the
same computation as before, but instead of returning a new
continuation object, it sets the arguments of the singleton
factorial instance, and it sets the static continuation field
to point to the factorial instance.

The Global class is simply defined as:
class Global {

public static Continuation continuation = null;
}

It holds the next continuation to evaluate, or null if all tail
calls have been evaluated. To call the factorial function, and
to ensure that all tail calls are evaluated, we use the loop:

Continuation prev = null;
do {

prev = Global.continuation;
Global.continuation = null;
prev.apply();

} while (Global.continuation != null);
int result = prev.getResult();

142

Tail Call Elimination and Data Representation for ... CC’18, February 24–25, 2018, Vienna, Austria

The loop repeatedly evaluates the static continuation field
of the Global class until it becomes null. At this point, all
tail calls have finished and the result is prev.getResult().
As shown by Tauber et al. [2015], IFOs are significantly

faster than trampolines, since they are allocation free. How-
ever, an important challenge remains: Unlike trampolines,
IFOs are not thread-safe. Each function is represented by one
object and multiple threads may call the same function at the
same time. If they do, then there is a data race on the argu-
ments and result values of that function. Even worse, there
is a data race on the globally shared static field that holds the
next continuation. In the original paper, the authors allude
to these issues with the comment:

[...], we will adopt the thread-safe version of our
translation – one main difference is that IFOs
should be allocated at their call sites rather than
at their definition sites.

It is not clear (to us) what is meant by “allocated at their call
sites”, since one of the main strengths of the IFO technique
is that it is allocation free. In fact, the whole idea of IFOs was
to have a single mutable object for each function.
We propose two thread-safe and allocation free variants

of IFOs. The idea in both is that each thread should have its
own continuation pointer and set of IFOs. Before we present
the two proposals, it is worth stating explicitly that simply
sprinkling enough synchronized keywords or adding man-
ual locks to the IFOs would not achieve the desired effect:
Any locking scheme would be totally disastrous for multi-
threaded performance and would not even be safe, unless a
single global lock was used.

ThreadLocal IFOs. A straightforward way to ensure that
each thread has its own continuation pointer and set of
IFOs is to use ThreadLocal, a Java class that allows each
thread to maintain its own version of a (static) field. We
can wrap every static field in a ThreadLocal object and
use its getters and setters to access the underlying value.
Using ThreadLocal is simple to understand and implement.
Unfortunately, as we shall see in Section 4, it is not very
performant. It turns out that internally ThreadLocal relies
on a hash map and consequently every access operation
requires some indirection through this map.

Contextual IFOs. We propose a solution where every call is
explicitly passed a context object with the IFOs. Each thread
has its own context object and hence there are no data races
nor any need for synchronization.
We introduce a Context class which has a field for the

continuation and a field for every IFO instance:

class Context {
Continuation continuation = null;
Factorial factorial = new Factorial();
// ...

}

We pass an instance of the Context class to every IFO which
provides access to other IFOs and the ability to set the contin-
uation. In reality, our implementation is significantly more
complex since: (i) we split the Context class into multiple
namespaces since a single class can hold at most 65,536
fields, (ii) we specialize every type to avoid boxing, and
(iii) we have to represent closures.

We now describe this implementation in greater detail.

3.1.1 Continuation Interfaces
We emit a continuation interface for every primitive Java type
and one for reference types. For example:

interface Cont$Bool {
boolean getResult();
void apply(Context c);

}

As shown, we explictly pass an instance of the Context class
to the apply method.

3.1.2 Function Interfaces
We emit a function interface for each function type in the
program. For example, for the type Int → Bool, we emit:

interface Fn1IntBool extends Cont$Bool {
void setArg0(int v);

}

For the type (Option[Int], Int) → Int, we emit:
interface Fn2ObjInt$Int extends Cont$Int {

void setArg0(Object v);
void setArg1(int v);

}

The function interfaces extend the continuation interfaces
and add methods to set the arguments of the IFO. We need
the function interfaces to support closures where the exact
IFO being invoked is not statically known.
We must keep the continuation and function interfaces

separate since they are used at different places in the code.
The function interface is used to pass the arguments of a call
at a tail call site, whereas the continuation interface is used
for evaluation of tail calls at a non-tail call site.

3.1.3 Function Classes
We emit a function class for each function in the program.
The instances of these classes are the IFOs of the program.

For example, for the function List.length specialized to
the type List[Int] → Int, we emit the class:

package List;
class Def$length extends Fn1$Obj$Int {

private Object arg0;
private int res;
void setArg0(Object v) { this.arg0 = v; }
int getResult() { return this.res; }
void apply(Context c) { ... }

}

At runtime, we will arrange for each instance of the Context
class to have one instance of each function class. Thus the
memory overhead is constant: We have one function object
per context object of which we have one per thread.

143

CC’18, February 24–25, 2018, Vienna, Austria Magnus Madsen, Ramin Zarifi, and Ondřej Lhoták

3.1.4 Namespace Classes
We could put all instances of the function classes, i.e. the
IFOs, into the Context object, but a class is limited to 65,536
fields and methods which would limit a Flix program to the
same number of functions. Instead, we organize the function
definitions into a set of namespaces classes. This limits us
to 65,536 functions per namespace. Each namespace class
holds references to all IFOs that appear in it. For example, if
we have a program with the two namespaces:

namespace Option {
def isEmpty[a](o: Option[a]): Bool = ...

}
namespace List {

def length[a](l: List[a]): Int = ...
}

we emit the two namespace classes:
package Option;
class Ns {

final Fn1ObjBool isEmpty = new Def$isEmpty()
}
package List;
class Ns {

final Fn1ObjInt length = new Def$length()
}

3.1.5 The Context Class
All namespace classes are instantiated by the Context class
which also holds the current continuation:

class Context {
final Option.Ns Option = new Option.Ns();
final List.Ns List = new List.Ns();
Object continuation = null;

}

The namespaces are flat. For example, the namespace A.B.C
becomes a field named ABC. This ensures that to lookup an
IFO requires at most two field dereferences: First, lookup the
namespace object on the Context object. Second, lookup the
IFO on the namespace object. The namespace fields of the
Context class and the IFO fields of the namespace classes
are all final. Hence, the JVM has the opportunity to inline
these lookups and avoid the overhead of the indirections.

3.1.6 Function Calls
We emit code for five different types of function calls:

• ApplyClo(clo, args): An indirect call to the closure ex-
pression clo with the arguments args.

• ApplyDef(sym, args): A direct call to the function with
symbol sym with the arguments args.

• ApplyCloTail(clo, args): An indirect tail call to the clo-
sure expression clo with the arguments args.

• ApplyDefTail(sym, args): A direct tail call to the func-
tion with symbol sym with the arguments args.

• ApplySelfTail(sym, args): A tail recursive call to the
function with symbol sym with the arguments args.

We now discuss how to emit code for each node. In our
presentation, we will treat ApplyClo and ApplyDef together,
and similarly for ApplyCloTail and ApplyDefTail.

ApplyClo and ApplyDef. Assume we want to call a func-
tion in non-tail position of type Int → Bool. Assume further
that the local variables t, a, and c hold the closure object, the
argument, and the Context object. We then emit the code:

c.continuation = t;
t.setArg0(a);

Cont$Bool f = null;
do {
f = (Cont$Bool) c.continuation;
c.continuation = null;
f.apply(c);

} while (c.continuation != null)

We first set the continuation field of the Context object
to the IFO stored in the local variable t. Next, we set the
argument of t to the value of a. Note that the type of t is
Fn1IntBool and hence we are allowed to call setArg0
with an integer argument. Then, since this is a non-tail call,
we repeatedly call the IFO stored in c.continuation until
all tail calls inside t have been evaluated. Finally, the result
is available in f.getResult(). If we were calling a function
instead of a closure, i.e. in the ApplyDef case, we would
simply retrieve the IFO from the context object. For example,
if we wanted to call List.length we would emit:

Fn1IntBool t = c.List.length;

immediately before the code shown above.

ApplyCloTail and ApplyDefTail. Assume we want to call
a closure in tail position of type Int → Bool. In this case,
we emit the code:

c.continuation = t
t.setArg0(a)

where, as before, the local variables t, a, and c are assumed to
hold the IFO, the integer argument, and the Context object.

We do not need to perform any other actions, as to perform
a tail call, we simply need to configure the continuation and
its arguments, and then the loop further down the call stack
will take care of calling the IFO.

ApplySelfTail. Assume we want a function to call itself tail
recursively and that it has type Int → Bool. In this case, we
can rewrite the entire call into a loop. We emit the code:

this.arg0 = v
goto entry

where the local variable v is assumed to hold the argument
to the recursive call. The code assigns v to the argument field
of the current IFO, i.e. this, and jumps to a label placed at
the entry of the apply method.

3.1.7 Representation of Closures
Closures are straightforward to support in the current design.
We introduce a closure class for each closure type. A closure
class captures its free variables as fields and implements the
appropriate function interface which allows it to operate
as any other IFO. For example, here is the representation

144

Tail Call Elimination and Data Representation for ... CC’18, February 24–25, 2018, Vienna, Austria

we would emit for a closure of type Int → Bool that has
captured a variable of type Char:

class Clo$f implements Fn1$Int$Bool {
// fields for captured variables ...
private char cv0;
// fields for formal arguments and return value ...
// methods defined by Cont$Bool and Fn1$Int$Bool ...

}

A potential issue is that a closure can be passed from one
thread to another. If that happens, a closure could inadver-
tently use the wrong Context object. We can avoid this
situation by having each closure capture its Context object.
When a closure is called, it compares its own Context ob-
ject to the one passed as an argument. If they are the same,
nothing is to be done, because the closure is on the same
thread. Otherwise, the closure is copied with the appropri-
ate Context object and execution continues as before. An
alternative solution is to copy each closure when it is passed
from one thread to another.

3.2 Tag and Tuple Fusion (Challenge A1)
It is simple to represent tags and tuples as classes. Each tag
becomes a class and each arity of a tuple becomes a class.
Figure 1 shows such a representation for the List algebraic
data type, instantiated for integers. The two tags Nil and
Cons are represented as the two classes Nil and Cons$Obj.
The Nil class has a value field that points to the Unit value,
and the Cons$Obj class has a value field that points to a
pair. The pair, i.e. the 2-tuple, is represented by the class
Tuple2IntObj which holds the integer value directly and
a reference to the rest of the list.

The problemwith this design is that to represent a cons cell
requires both a tag object (an instance of the Cons$Obj class)
and a tuple object (an instance of the Tuple2IntObj class.)
This wastes not only memory, but also puts extra pressure
on the garbage collector. Ideally each cons cell should be
represented by a single object. We can achieve this with
what we call tag and tuple fusion.

Figure 2 shows such a representation. The hierarchy is
conceptually similar to before, except we introduce a new
interface for each tuple type. Here we have the interface
ITuple2IntObjwhich is implemented by the class Tuple2-
IntObj. Instead of the class Cons$Obj, we introduce the
fused class Cons$T2$Int$Obj which represents both the
Cons tag and a pair of an integer and an object. Hence this
class implements both the IList$Int and ITuple2$Int$Obj
interfaces. We still need the class Tuple2IntObj to repre-
sent tuples that are not tagged.

At compile time, when the compiler emits code for tagged
expressions, it distinguishes two cases: If a tag has an in-
ner tuple and the elements of the inner tuple are statically
known, then the compiler can directly use the fused class
representation. However, if the elements of the tuple are un-
known, e.g. if the tuple is passed as a parameter, the compiler

Figure 1. Standard Representation of Tags and Tuples.

Figure 2. Fused Representation of Tags and Tuples.

must emit code to construct the fused class and copy over
the fields of the tuple.

For example, consider the two functions:
def f(): List[Int] = Cons(42, Nil)
def g(p: (Int, List[Int])): List[Int] = Cons(p)

For the function f, the compiler emits bytecode to immedi-
ately construct an instance of the fused class, since both the
tag and tuple elements are statically known. For the func-
tion g, on the other hand, the compiler has to emit code to
construct the fused class by copying the fields of the tuple
object passed into g.

3.3 Optional Values (Challenge A2)
In the previous section, we discussed how the Option type
can be used to safely represent the absence of a value. In some
cases, the compiler can represent optional values compactly
by using null values internally. Thus we get the best of both
worlds. For example, if we have a type Option[List[Int]]
we can represent the None tag of the Option type as null
and the Some tag as simply the list List[Int] itself.

Unfortunately, we cannot always use this representation.
For example, if the type is Option[Int]we cannot represent
the tag None as null since null is not a legal primitive int.

3.4 New Types (Challenge A3)
We can easily avoid the runtime overhead associated with
type safe wrappers such as Celcius and Fahrenheit:

type Celsius = Celsius(Int)
type Fahrenheit = Fahrenheit(Int)

Every time we encounter an expression that constructs or
destructs an algebraic data type which has a single tag, we
simply use the underlying type. Hence the type only exists
at compile time. A little care has to be taken to ensure that
equality and toString work correctly on such types.

145

CC’18, February 24–25, 2018, Vienna, Austria Magnus Madsen, Ramin Zarifi, and Ondřej Lhoták

3.5 Polymorphic Code and Data (Challenge A4)
As we have seen, Flix supports generic programming with
parametric polymorphism. This leads to the question of how
to represent polymorphic code and data at runtime. The JVM
supports primitive types (e.g. booleans, floats, and integers)
and reference types (e.g. objects). Java and Scala typically
compile polymorphic functions to bytecode that works on
references. That way, for example, a list can be used to hold
both objects and boxed primitive values. The advantage is
that each polymorphic data type and function is only repre-
sented once. The disadvantage is that primitive values must
be boxed, which imposes additional runtime overhead.

Flix follows in the footsteps ofMLton and performswhole-
programmonomorphization. That is, each polymorphic func-
tion is fully specialized to its instantiated types. In other
words, List[Int] and List[String] have their own rep-
resentation and each function is specialized to operate on
that representation. Internally the three types List[Int],
List[Option[Int]], and List[List[Int]] are all distinct.
However, the JVM backend knows that the representation of
List[Option[Int]] and List[List[Int]] can be shared,
since both lists hold an object. Hence these two types are
erased to List[Object]. The result is the best of bothworlds:
primitive values are never boxed, but reference types share
the same representation.

3.6 Pattern Matching (Challenge A5)
Flix implements pattern matching expressions by compila-
tion to a sequence of lower-level instructions. For example,
consider the match expression:

match l with {
case Nil => exp1
case Cons(x, r) => exp2

}

Such an expression can be compiled into a sequence of nested
lambda expressions [Jones and Lester Jones and Lester]:

let default = xs −> throw MatchError;
let lambda2 = xs −>

if (xs Is Cons) {
let tmp = Untag(xs);
let x = Index(tmp, 0);
let r = Index(tmp, 1);

exp2
} else default()

let lambda1 = xs −>
if (xs Is Nil) exp1 else lambda2(xs);

lambda1(l)

Each case is compiled to a lambda expression that checks
whether the pattern matches, and if not, calls the lambda for
the next case. The lower-level operations Is, Tag, and Untag
are used to check the tag of a value, create a tagged value,
and to retrieve the inner value of a tagged value, respectively.
The Index operation retrieves a value from a tuple offset.

An alternative representation is to compile patternmatches
to a sequence of labels and jumps, as shown below:

label1:
if (xs Is Nil) exp1 else goto label2

label2:
if (xs Is Cons) {

let tmp = Untag(xs);
let x = Index(tmp, 0);
let r = Index(tmp, 1);

exp2
} else goto default

default:
throw MatchError

Here each case gives rise to a labelled piece of code. When a
value fails to match a case, the control jumps to the label for
the next case or eventually falls through to the default.

We now briefly discuss the advantages and disadvantages
of each approach. Compilation to lambda expressions and
function calls is easy since it maps pattern matches to con-
structs that already exist in the abstract syntax tree. The
disadvantage is that the additional lambdas and calls lead to
code with many small closures. On one hand, small methods
are good for the JVM. On the other hand, many of these
closures are needlessly passed around and may obscure the
control flow for the JVM. When using labels and jumps, ev-
erything is kept in the same method, which may grow large
and inhibit some JVM optimizations, but it avoids redundant
closure allocation.

4 Evaluation
We now evaluate the performance impact of the proposed
data representations and tail call elimination strategies.

4.1 Research Questions
We consider three research questions to guide our evaluation:
Q1: What is the performance cost of the various proposals

for full tail call elimination on the JVM?
Q2: What is the performance impact of each proposed data

representation strategy?
Q3: How does the performance of Flix programs compare

to that of equivalent programs written in Scala?

4.2 Benchmarks
We perform four separate experiments to answer Q1–Q3.
First, we use a micro benchmark to evaluate the likely per-
formance cost of each proposed tail call elimination strategy,
including our own proposal. Second, we compare the old
Flix backend, which does not support tail call elimination, to
the new backend which supports contextual IFOs. Third, we
implement 20 small benchmarks in Flix and Scala to measure
the performance impact of each proposed optimization and
to compare the performance of the two languages. Fourth, we
compare the performance of Flix and Scala on 4 programs
ported from the Computer Language Benchmarks Game.1
We wrote the 20 small benchmarks to be representative

of typical computations in functional languages. We used
three criteria when crafting these programs, specifically we
wanted: (i) programs that use features such as algebraic data

1at http://benchmarksgame.alioth.debian.org/

146

Tail Call Elimination and Data Representation for ... CC’18, February 24–25, 2018, Vienna, Austria

types, pattern matching, and tail calls, (ii) programs that
perform many function calls to make the impact of the tail
call elimination strategy clear, and (iii) programs that were
short and would be easy to write in Flix and Scala. Thus,
we ended up with simple benchmarks such as: (i) filtering a
list of integers, (ii) folding a function over a list of integers,
(iii) zipping two lists of integers, and so on.

All benchmarks are available in the GitHub repository:
https://github.com/flix/benchmarks/

4.3 Experimental Setup
We implemented the techniques in the Flix compiler which
is open source and freely available online2. The Flix compiler
is currently 45,000 lines of Scala code and the Flix test suite
is 35,000 lines of Flix code. The new JVM backend required
approximately 6,000 lines of code.

All experiments were performed on an Intel Core i5-4300U
CPU@ 2.49GHz with 12GB of main memory onWindows 10.
We used Java (JRE) version 1.8 (8u151) and Scala version
2.12.3. We warmed up the JVM and then ran each benchmark
1,000 times to measure the median execution time.

4.4 Results and Analysis
We now address each research question.

4.4.1 Q1: Tail Call Elimination (Challenge B)
In this paper, we described several tail call elimination strate-
gies. We briefly recall each and how they work:

• Trampolines. Every function returns a continuation
object or null if the computation is complete.

• Impure Functional Objects (IFO). Every function is
represented as a mutable object where the arguments
and result values are accessed via getters and setters.

• IFOs + ThreadLocal. A thread-safe variant of IFOs
where each IFO is stored in a static ThreadLocal field.

• IFOs + Context. A thread-safe variant of IFOs where
each IFO is stored in a Context object.

To evaluate the relative performance of these strategies,
we implemented variants of the odd and even program using
each strategy. We ran the programs on inputs of increasing
sizes and compared the performance to a baseline implemen-
tation based on regular method calls. Figure 3 shows the
result of this experiment. The x-axis is the input number.
The y-axis is the execution time normalized to the program
with regular method calls.

The trampoline approach has a slow-down of between
3.1x and 7.2x, which decreases as the call depth increases.
The original IFOs fares significantly better with a slow-down
of between 1.4x and 3.3x. This confirms that IFOs are faster
than trampolines, as reported by Tauber et al. [2015]. The
performance of ThreadLocal IFOs is muchworse. The graph
is clipped at 8.0x, and the slow-down of ThreadLocal IFOs
2at http://flix.github.io and http://github.com/flix

Figure 3. Performance of Tail Call Elimination Strategies.

is actually between 10.0x and 22.0x! Contextual IFOs have a
slow-down of between 1.3x and 4.8x. For shallow call stacks,
contextual IFOs are a bit slower than regular IFOs, but as the
call depth grows, contextual IFOs become competitive.
Based on these results, we decided to implement a new

backend for Flix based on contextual IFOs so that we could
measure their performance on a wider range of programs.
The old backend was based on regular method calls. The left
part of Table 1 compares the performance of the old and new
backends. The results show that the switch to contextual
IFOs typically impose a slowdown of between 1.2x and 2.0x.
This is towards the better end of the range suggested by the
micro benchmark, which was between 1.3x and 4.8x.
The comparison between the old and new backend was

performed with pattern matches compiled to labels and
jumps for both backends. This was important since the new
backend, with contextual IFOs, benefitted significantly more
from this optimization than the old backend.

4.4.2 Q2: Data Representation (Challenges A1–A5)
We evaluate the performance impact of each data represen-
tation optimization. The results are shown in the right part
of Table 1. The Baseline column shows the execution time
of each benchmark with the new backend with every opti-
mization disabled. The PM column shows the speed up with
pattern matches compiled to labels and gotos. The next three
columns, marked with ⋆, show the speed-up relative to PM.

Pattern Match Compilation (A5). The PM column shows
the speed-up when pattern matches are compiled to labels
and jumps. We observe a typical speed-up of 1.6x to 2.4x. It
turns out that this speed-up is most significant with contex-
tual IFOs compared to the old backend with regular method
calls. This makes intuitive sense, since calls are slightly more
expensive with IFOs, and hence any optimization that re-
duces the number of calls is most beneficial to IFOs.

Tag and Tuple Fusion (A1). The TTF column shows the
speed-up when tag and tuple fusion is enabled. We see a
significant performance increase with speed-ups typically

147

https://github.com/flix/benchmarks/
http://flix.github.io
http://github.com/flix

CC’18, February 24–25, 2018, Vienna, Austria Magnus Madsen, Ramin Zarifi, and Ondřej Lhoták

Table 1. Impact of Performance Optimizations.

Name Old New Baseline PM TTF⋆ OV⋆ NT⋆ All

Bench01 3.6ms 1.4x 7.4ms 1.8x 1.2x 1.0x 1.0x 2.3x
Bench02 7.5ms 1.4x 9.5ms 1.9x 1.3x 1.0x 1.0x 2.5x
Bench03 3.4ms 2.0x 7.4ms 1.9x 1.5x 1.1x 1.0x 2.7x
Bench04 4.7ms 1.4x 12.0ms 2.4x 1.3x 1.0x 1.0x 3.0x
Bench05 8.0ms 0.9x 10.8ms 1.8x 1.2x 1.0x 1.0x 2.3x
Bench06 10.1ms 1.4x 23.2ms 2.0x 1.3x 1.0x 1.1x 2.7x
Bench07 6.3ms 1.4x 14.7ms 2.0x 1.4x 1.0x 1.0x 2.8x
Bench08 3.7ms 1.4x 10.9ms 2.4x 1.2x 1.0x 1.0x 3.0x
Bench09 4.5ms 1.4x 6.3ms 1.9x 1.4x 1.0x 1.0x 2.5x
Bench10 3.7ms 2.3x 10.1ms 1.9x 0.5x 1.0x 1.0x 0.9x
Bench11 10.9ms 1.2x 19.2ms 1.7x 1.3x 1.0x 1.0x 2.3x
Bench12 14.4ms 1.5x 31.1ms 2.0x 1.4x 1.0x 1.0x 2.8x
Bench13 5.5ms 0.5x 16.0ms 6.7x 1.5x 1.0x 1.0x 10.0x
Bench14 5.0ms 2.4x 35.5ms 3.2x 1.0x 1.0x 1.0x 3.6x
Bench15 11.9ms 1.2x 22.1ms 1.8x 1.4x 1.0x 1.0x 2.5x
Bench16 17.1ms 1.3x 34.1ms 1.8x 1.4x 1.1x 1.0x 2.7x
Bench17 3.1ms 1.2x 4.6ms 1.4x 1.4x 1.1x 1.0x 2.0x
Bench18 5.2ms 2.7x 12.9ms 1.0x 0.7x 1.0x 1.0x 0.7x
Bench19 10.8ms 1.2x 19.6ms 1.6x 1.2x 1.0x 1.2x 2.2x
Bench20 7.2ms 1.9x 21.9ms 1.7x 1.2x 1.0x 1.2x 2.4x

between 1.2x and 1.4x. Interestingly, in two cases, the tag and
tuple fusion optimization causes a slow down of between
0.5x and 0.7x. We plan to investigate this further in the future.

Optional Values (A2). The OV column shows the speed-
up when the optional values representation is enabled. As
it turns out, the optimization is not applicable to most of
the benchmarks. For the few benchmarks where it makes a
difference, the performance increase is very modest, around
a 1.1x speed-up.

New Types (A3). The NT column shows the speed-up when
the new type optimization is enabled. As with the optional
values representation, this optimization is rarely applicable.
For the few benchmarks where it makes a difference, the
performance increase is modest, around a 1.2x speed-up.

Polymorphic Code and Data (A4). We did not directly
evaluate the impact of monomorphization as we do not have
a version of the Flix compiler that supports erasure.

All Optimizations. The All column shows the speed-up,
over the baseline, with all optimizations enabled. The typical
speed-up is between 2.3x to 2.8x. In two cases, the optimiza-
tions cause a slow down of 0.7x to 0.9x. We attribute this to
the slow-down caused by tag and tuple fusion.

4.4.3 Q3: Performance Comparison
We wanted to compare the performance of Flix, with its
contextual IFOs and optimizations, to Scala, an established
programming language widely used in industry.

Let us briefly describe how Scala addresses the challenges
(A1–A5) and (B). For (A1), Scala does not have algebraic
data types per se but rather case classes which fuse the rep-
resentation of tags and tuples, but are less flexible than our

Table 2. Performance Comparison for Flix and Scala.

Scala Flix
Name Imperative Functional Unoptimized Optimized

Bench01 2.1ms 1.3x 3.6x 1.5x
Bench02 2.4ms 1.4x 4.0x 1.6x
Bench03 2.1ms 1.2x 3.6x 1.3x
Bench04 2.7ms 1.2x 4.4x 1.5x
Bench05 2.8ms 1.4x 3.9x 1.8x
Bench06 6.1ms 1.2x 3.9x 1.5x
Bench07 3.3ms 1.6x 4.5x 1.7x
Bench08 3.1ms 0.7x 3.5x 1.2x
Bench09 2.7ms 1.1x 2.3x 0.9x
Bench10 3.1ms 1.2x 3.3x 3.5x
Bench11 5.3ms 1.5x 3.7x 1.6x
Bench12 6.7ms 1.5x 4.7x 1.7x
Bench13 1.3ms 1.5x 12.2x 1.2x
Bench14 2.9ms 0.9x 12.2x 3.7x
Bench15 - - - -
Bench16 7.6ms 1.5x 4.5x 1.7x
Bench17 1.9ms 1.2x 2.4x 1.3x
Bench18 - - - -
Bench19 4.0ms 1.4x 5.0x 2.2x
Bench20 4.0ms 1.4x 5.5x 2.2x

design, as described earlier. For (A2) and (A3), optional and
new types values are always boxed. For (A4), Scala generally
performs type erasure for polymorphic code and data. For
(A5), both Flix and Scala compile pattern matches to labels
and jumps. And finally, for (B) Scala does not support full
tail call elimination.

As described earlier, we implemented 20 small benchmarks
in Flix and Scala. We implemented two versions of the Scala
benchmarks, an apples-to-apples version and an apples-to-
oranges version. The apples-to-apples version is written in
idiomatic functional style whereas the apples-to-oranges
version uses the Scala standard library which internally uses
impure features, such as mutation and loops.

The results of this experiment are shown in Table 2. The ta-
ble is divided into Scala and Flix. For Scala, the two columns
Imperative and Functional correspond to the apples-to-
oranges and apples-to-apples implementations. For Flix, the
two columns are without and with all optimizations. We
use the Imperative column as the baseline, since it is the
fastest. Two benchmarks had to be omitted due to missing
functionality in the Scala standard library.

For example, for benchmark 1, the impure Scala program
took 2.1ms, the functional Scala program took 1.3x times
longer, the unoptimized Flix program took 3.6x times longer,
and the optimized Flix program took 1.5x times longer.
The data shows two interesting things: imperative Scala

programs are faster than their functional counterparts and
the overhead of optimized Flix programs is comparable to
functional Scala programs. Moreover, the overhead of Flix
programs to impure Scala programs is typically between
1.3x and 2.2x. We believe many programmers will accept this
overhead as an acceptable cost for full tail call elimination.

148

Tail Call Elimination and Data Representation for ... CC’18, February 24–25, 2018, Vienna, Austria

Table 3. The Computer Language Benchmarks Game.

Name Lines of Code Scala Flix Slowdown

Binary Trees 45 86ms 217ms 2.5x
Fibonacci 5 59ms 103ms 1.7x
Pi Digits 150 129ms 246ms 1.9x
NBody 35 48ms 48ms 1.0x

To further investigate the performance of Flix and Scala,
we ported 4 programs from the Computer Language Bench-
marks Game. We selected these benchmarks as they were
the easiest to implement in both languages. The programs
were ported over in a functional style, to enable an apples-
to-apples comparison.

Figure 3 shows the results of this experiment. We observe
slow-downs of between 1.0x to 2.5x. We make a few obser-
vations about these programs: The computation they per-
formed is mostly based on lots of function calls coupled with
various types of arithmetic, e.g. floating-point, integer, or
big-integer operations. For example, the Fibonacci and Bi-
nary Trees programs perform lots of function calls and hence
experience the overhead of IFOs. The other benchmarks ex-
perience less of a slow-down as their execution time is not
only dominated by function calls, but also by the arithmetic.
Thus for the NBody experiment the cost of function calls
becomes so insignificant that Flix and Scala are on par.

5 Related Work
We discuss two types of related work: (a) compilation of
functional programming languages to the JVM, and (b) tail
call elimination strategies for the JVM.

5.1 Funtional Languages on the JVM
Benton et al. [1998] present MLJ, a compiler from Standard
ML to JVM bytecode. The compiler is a whole-program opti-
mizing compiler that performs monomorphization, similar
to Flix. In their compiler, a major design goal and signifi-
cant challenge is to ensure that the generated code is small
such that it can be quickly transmitted over the internet. The
paper lists three reasons why monomorphization does not
blow up the code size: (i) the specialization is performed with
respect to JVM types and not ML types, (ii) the alternative, to
use boxing and unboxing requires additional code itself, and
(iii) polymorphic functions tend to be small and can often
be inlined and then removed. The MLJ compiler performs
several optimizations to improve performance, including un-
currying, expansion of functions that take or return tuples,
and elimination of the unit value. The compiler also uses
more efficient representations of algebraic data types. For ex-
ample, optional values are unboxed and pure enumerations
are compiled to a single integer. The paper does not evaluate
the performance impact of these choices.

Bothner [1998] presents Kawa, a framework for implemen-
tation of dynamic programming languages on the JVM. Kawa

has been used to implement ECMAScript and Scheme. The
work addresses two pain points for functional languages: the
representation of closures and continuations. Kawa repre-
sents closures with a single abstract class that defines several
apply methods apply1, apply2, and so on. Each closure and
function is implemented as a subclass that overrides the
appropriate apply method. The formal arguments of each
apply method are of type Object and hence primitives must
be boxed. Closures capture a reference to the current envi-
ronment, which is a function object, and unlike most other
approaches, these environments are linked. Hence, to re-
trieve a closure-captured variable may require traversal of
several function objects. Kawa supports a limited form of
continuations which are implemented using exceptions.

MacKenzie and Wolverson [2003] present Camelot, a func-
tional language in the ML-family with explicit heap man-
agement, and Grail, an intermediate representation for func-
tional programs with resource constraints. Camelot supports
diamonds which are annotations that inform the compiler
when a resource, typically a memory cell, can safely be
reused. For example, this allows reuse of cons cells when
mapping over a list, if the compiler knows that the orig-
inal input list will no longer be used. Camelot compiles
to JVM bytecode via Grail. An interesting design choice
is that tagged unions (i.e. sum types) are represented as a
single class to maximize the potential for memory reuse.
This makes sense, since if most data share the same repre-
sentation, then the chance that some representation can be
reused is much higher. The authors briefly mention tail call
elimination, writing: “. . .Unfortunately, all of these strategies
[trampolines, etc.] tend to require extra heap usage and thus
compromise the transparency of the compilation process. . . ”
which is a problem we can now overcome with IFOs or con-
textual IFOs, which are allocation free.

Clerc [2012] presents ocamlwrap, a compiler from OCaml
source code to JVM bytecode. The compilation strategy is
straightforward: Each OCaml value is represented as an ob-
ject of some class. Primitive values are boxed. Each tuple
is represented as an object of a class specialized to the ar-
ity of the tuple, similarly for functions and closures. Tags
are represented using a single class with an integer field to
distinguish the specific tag.

Wimmer andWürthinger [2012] present Truffle and Graal,
a programming language implementation framework for the
JVM. Using Truffle, the language implementor writes a sim-
ple AST-based interpreter. Truffle runs the interpreter and
collects profiling and type information about the program.
This information is then used to perform AST-rewritings to
optimize the execution. Once the AST, or a sub-AST, reaches
a stable state, Graal compiles the AST directly to JVM byte-
code. For future work, we think it would be interesting to
try to extend Truffle and Graal with tail call elimination
strategies, e.g. trampolines and contextual IFOs.

149

CC’18, February 24–25, 2018, Vienna, Austria Magnus Madsen, Ramin Zarifi, and Ondřej Lhoták

5.2 Tail Call Elimination
Tauber et al. [2015] present a technique for tail call elimina-
tion based on impure functional objects (IFOs). The idea is
that each function is represented as an object that has fields
for each of its arguments and a field for its return value. Each
of these objects, the IFOs, are allocated when the program be-
gins execution. In addition to IFOs, the program has a single
static field that holds a reference to the current continuation,
i.e. the next IFO to evaluate. At a tail call, the program writes
the arguments to the fields of the IFO and writes the IFO to
the continuation field. At a non tail call, the program works
like a trampoline and repeatedly evaluates the IFO stored
in the continuation field. The key benefit of the technique
is that tail calls do not require object allocation and hence
the memory usage is constant. A challenge with IFOs, not
adequately adressed in the original paper, is how to ensure
thread-safety. In this paper, we have proposed two thread-
safe variants of IFOs and evaluated their performance.
Schinz and Odersky [2001] present a technique for tail

call elimination on the JVM called stack shrinking. The idea
is that each method receives an extra argument, the tail call
counter (TCC), an integer which tracks the current number
of tail calls on the stack. Intuitively, every tail call increments
the current counter whereas every non-tail call passes zero.
Upon entering a method, the counter is checked against a
predefined limit, the tail call limit (TCL), if the counter ex-
ceeds the limit the stack is shrunk. The paper presents two
ways to shrink the stack, either of which must capture the
current continuation: (i) returning a special continuation
object down all calls on the stack, or (ii) throwing a special
exception object with the continuation. In either case, the
continuation is “caught” by a trampoline that sits at the bot-
tom of the current tail calls which can resume execution. We
can understand stack shrinking as a technique that is in the
design space between regular method calls and trampolines.
Conceptually, when the tail call limit (TCL) is infinite the
execution corresponds to regular method calls (which may
require unbounded stack size) whereas when the TCL is zero
the execution corresponds to trampolining. Stack shrinking
is a hybrid in between these two extremes. As one author
eloquently put it: “You can avoid making many small jumps
by occassionally jumping of a cliff.”

Techniques for tail call elimination have also been studied
for logic languages [Codognet et al. 1995; Morales et al. 2004,
2012; Ross et al. 1999]. Ross et al. present techniques for
tail call elimination for the Mercury language and Codognet
et al. discuss compilation of Prolog to C. A scheme similar
to IFOs, but realized for C, has been used in the Ciao Prolog
engine [Morales et al. 2004].

Acknowledgements
This research was supported by the Natural Sciences and
Engineering Research Council of Canada.

6 Conclusion
In this paper, we have worked on two overall challenges
for implementing functional programming languages on the
JVM: (A) how to represent algebraic data types, and (B) how
to support full tail call elimination on the JVM. For (A), we
identified five sub-challenges related to efficient representa-
tion and compilation of tagged tuples (A1), optional values
(A2), new type values (A3), polymorphic data types and func-
tions (A4), and pattern matches (A5).

We have proposed two novel techniques: tag tuple fusion,
which allows separation of tags and tuples at the language
level while compiling to a fused representation (challenge
A1) and contextual impure functional objects, a thread-safe
variant of [Tauber et al. 2015]’s IFO’s for full tail call elimi-
nation on the JVM (challenge B).

We have implemented these techniques along with known
techniques for the challenges (A2–A5) in the Flix compiler
and evaluated their performance. The results show that sig-
nificant speed-ups are attainable, the cost of full tail call
elimination is reasonable, and that for functional programs
the performance of Flix is not too far from Scala.

References
Nick Benton, Andrew Kennedy, and George Russell. 1998. Compiling Stan-

dard ML to Java Bytecodes. In ICFP.
Runar Oli Bjarnason. 2012. Stackless Scala With Free Monads.
Per Bothner. 1998. Kawa: Compiling Scheme to Java.
Paul Chiusano and Rúnar Bjarnason. Functional Programming in Scala.
Xavier Clerc. 2012. OCaml-Java: OCaml on the JVM. In TFP.
Philippe Codognet, Daniel Diaz, et al. 1995. WAMCC: Compiling Prolog to

C. In ICLP.
Simon Peyton Jones and David Lester. Implementing Functional Languages.
Kenneth MacKenzie and Nicholas Wolverson. 2003. Camelot and Grail:

Resource-aware Functional Programming for the JVM. In TFP.
Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016a. From Datalog to

Flix: A Declarative Language for Fixed Points on Lattices. In PLDI.
Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. 2016b. Programming a

Dataflow Analysis in Flix. In TAPAS.
J Morales, Manuel Carro, and Manuel Hermenegildo. 2004. Improved Com-

pilation of Prolog to C using Moded Types and Determinism Information.
PADL (2004).

Jose F Morales, Rémy Haemmerlé, Manuel Carro, and Manuel V
Hermenegildo. 2012. Lightweight compilation of (C)LP to JavaScript.
ICLP (2012).

Peter Ross, David Overton, and Zoltan Somogyi. 1999. Making Mercury
Programs Tail Recursive. In LOPSTR.

Michel Schinz and Martin Odersky. 2001. Tail Call Elimination on the Java
Virtual Machine. In BABEL.

Lukas Stadler, Christian Wimmer, Thomas Würthinger, Hanspeter Mössen-
böck, and John Rose. 2009. Lazy Continuations for Java Virtual Machines.
In PPPJ.

Tomáš Tauber, Xuan Bi, Zhiyuan Shi, Weixin Zhang, Huang Li, Zhenrui
Zhang, and Bruno Oliveira. 2015. Memory-Efficient Tail Calls in the JVM
with Imperative Functional Objects. In APLAS.

Dean Wampler and Alex Payne. Programming Scala: Scalability = Functional
Programming + Objects.

Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-
Optimizing Runtime System. In SPLASH.

150

	Abstract
	1 Introduction
	2 Motivation
	3 Implementation
	3.1 Tail Call Elimination (Challenge B)
	3.2 Tag and Tuple Fusion (Challenge A1)
	3.3 Optional Values (Challenge A2)
	3.4 New Types (Challenge A3)
	3.5 Polymorphic Code and Data (Challenge A4)
	3.6 Pattern Matching (Challenge A5)

	4 Evaluation
	4.1 Research Questions
	4.2 Benchmarks
	4.3 Experimental Setup
	4.4 Results and Analysis

	5 Related Work
	5.1 Funtional Languages on the JVM
	5.2 Tail Call Elimination

	6 Conclusion
	References

