
String Analysis for Dynamic Field Access

Magnus Madsen and Esben Andreasen

Aarhus University
{magnusm,esbena}@cs.au.dk

http://cs.au.dk/~{magnusm,esbena}

Abstract. In JavaScript, and scripting languages in general, dynamic
field access is a commonly used feature. Unfortunately, current static
analysis tools either completely ignore dynamic field access or use overly
conservative approximations that lead to poor precision and scalability.

We present new string domains to reason about dynamic field access
in a static analysis tool. A key feature of the domains is that the equal,
concatenate and join operations take O(1) time.

Experimental evaluation on four common JavaScript libraries, includ-
ing jQuery and Prototype, shows that traditional string domains are in-
sufficient. For instance, the commonly used constant string domain can
only ensure that at most 21% dynamic field accesses are without false
positives. In contrast, our string domain H ensures no false positives for
up to 90% of all dynamic field accesses.

We demonstrate that a dataflow analysis equipped with the H domain
gains significant precision resulting in an analysis speedup of more than
1.5x for 7 out of 10 benchmark programs.

1 Introduction

JavaScript is a notoriously difficult language for static analysis due to its many
dynamic features, including a flexible object-model, prototype-based inheritance,
dynamic property accesses1, non-standard scope rules, coercions, and the eval-
construct [3, 5, 6, 9, 10,13].

This paper focuses on the problem of dynamic property accesses in points-
to or dataflow analysis of JavaScript, that is, reads or writes to objects where
the property names are computed on-the-fly. This involves statements such as
v = o[p] or o[p] = v where the value of p is not statically known. A simple
sound approach is to treat the first statement as a read of any property of o and
the second statement as a write to all properties of o. However, such an approach
loses the benefits of field-sensitivity. And, as the following sections illustrate, it
is too imprecise in practice. In JavaScript, string manipulations and dynamic
property accesses are common, and to paraphrase an old mantra: “One man’s
string is another man’s heap location”.

1 In JavaScript a field is called a property and reading/writing a field is called a
property access. We will use this terminology for the remainder of the paper.

Dynamic Reads The JavaScript code below shows three different ways of
accessing a property of an object o.

1 x = o.p; // a static read of ’p’

2 x = o["p" + "q"]; // a dynamic read of ’pq’

3 x = o[c ? "p" : "q"]; // a dynamic read of ’p’ or ’q’

Line 1 is straightforward to analyze. Line 2 can be handled using syntactic con-
stant folding. However, if the concatenation involves variables or heap locations
the syntactic approach is no longer viable, instead some kind of string analysis
is required. Line 3 is even more nefarious for a static analysis. If the statement is
analyzed using the constant string lattice – without context sensitivity or path
sensitivity – the result will be > (corresponding to any property) and thus it
is unknown which property is read from o. A sound analysis will then conser-
vatively include all properties accessible on the o object in the result. However
this includes all properties available in the prototype hierarchy of o! If o is a
regular object and its prototype is Object[[proto]] then around 10 properties
are involved, including functions such as toString and defineSetter . If the
internal prototype object is Array[[proto]] then the problem is exacerbated by
an additional 20 properties, including mutators such as pop, push, and reverse,
leading to even more spurious flow.

Dynamic Writes The JavaScript code below shows three different ways to
store a value into an object property.

1 o.p = function () {}

2 o.["p" + "q"] = function () {}

3 o.[c ? "p" : "q"] = function () {}

The first two statements can be handled like in the previous section. However,
the third statement requires extra care. If it is not known to which property a
value is written, then the analysis must conservatively write it to all properties
of that object using a weak update, i.e. by joining the new value into the existing
values. Thus, after the last statement, any property of object o can point to the
function defined on line 3.

Dynamic Reads and Writes Even more precision is lost when dynamic reads
and writes are combined as shown below:

o[p][q] = function () {};

If neither p nor q are known by the analysis, e.g. if the constant string lattice
is > for both, then p could potentially be the string “ proto ” and as a
result o[p] could be the internal prototype object of o. If o is a regular object
then this would be the Object[[proto]] object. Thus, the write will cause the
function to be written to all properties of the Object[[proto]] object which
is shared by all JavaScript objects. In Java, for instance, this would correspond
to overriding all fields and methods of the java.lang.Object with a spurious

2

function. To handle such scenarios, a better string abstraction is required, in
particular, the abstraction of p and q should be able to rule out property names
such as proto . Furthermore, should a loss of precision occur for p, then the
abstraction of q should still limit the damage done to Object[[proto]] by
writing to just a few of its properties.

Event Handlers An additional challenge occurs for JavaScript web applica-
tions. In JavaScript, an event handler may be registered on a HTML object
by writing to several special properties, e.g. onclick, ondblclick, onload and
onsubmit. For instance, writing a function value to the onclick property reg-
isters that function as a callback which is executed whenever the user clicks the
mouse on its corresponding HTML object.

A sound analysis must take such registrations into account. If a dynamic
property write occurs, where a HTML object is the base object, and the analysis
cannot rule out that the write occurs to one of these special properties, then it
must conservatively assume that an event handler registration occurs. This can
lead to spurious event handler registration and spurious dataflow.

Usage in Practice According to a study of JavaScript behavior by Richards et
al. [14]: 8.3% of all property reads are dynamic and 10.3% of all property writes
are dynamic (c.f. Section 5.2 in [14] and the associated web page2). Furthermore,
as Table 5 shows, many popular JavaScript libraries contain several hundred
dynamic property reads and writes.

Contributions In summary our paper makes the following contributions:

– We describe twelve different string abstractions – five previously known and
seven new. We focus on abstractions which require O(1) space and support
the equal, concatenate and join operations in O(1) time. We place a strong
emphasis on the precision and performance of the equal operation.

– We experimentally evaluate each string abstraction on four common JavaScript
libraries: jQuery, Prototype, MooTools and jQuery UI. We base our evalua-
tion on concrete executions of each library thus providing an analysis inde-
pendent upper bound on the precision of each string abstraction.

– We propose a precise and efficient string abstraction H for reasoning about
dynamic property accesses. Experiments show that H has no spurious flow
for up to 90% of all dynamic property accesses compared to at most 21% for
the constant string abstraction.

– We equip a dataflow analysis with the proposed H string abstraction and
show that it leads to a significant improvement in precision and performance.
In particular, the analysis achieves a speedup of at least 1.5x for 7 out of 10
benchmark programs.

2 http://dumbo.cs.purdue.edu/js/analysis-charts/events.html

3

2 Related Work

We begin with a discussion of prior work related to string analysis and JavaScript.

String Analysis Costantini et al. presents an abstract interpretation-based
framework for string analysis and instantiates the framework for four different
abstract domains [4]: a) The character inclusion domain, which tracks what
characters may or must occur within the string, b) the prefix/suffix domain,
which tracks the k first and last characters of the string, c) the bricks domain,
where a brick b = [P(s)]max

min represents all strings that can be generated by
concatenating elements of P(s) between min and max times, and d) the string
graph domain for which we refer the reader to [4] for details. Costantini et al.’s
work does not discuss string equality which is a key issue for our work. Another
difference is that Costantini et al. focus on the theoretical aspects of the strings
domains, whereas we provide an experimental evaluation of the precision and
performance of the domains.

Christensen et al. presents the Java String Analyzer [2] (JSA), a static anal-
ysis tool which approximates string expressions in a Java program by a regular
language. The technique is based on translation from the control-flow graph into
the def-use graph, which is then translated to a context-free grammar and finally
widened into a regular language. JSA has found a wide variety of applications;
including verification of generated SQL statements and validation of dynami-
cally constructed HTML. In comparison to our work Christensen et al. focus on
string analysis in general, whereas we focus on string analysis for reasoning about
dynamic property accesses. Furthermore, we place a strong emphasis constant
time and space bounds for our abstract domains compared to the potentially
exponential time bound for the whole JSA analysis.

Zheng et al. present Z3-str a general purpose string solver based on the
Microsoft Z3 SMT solver [16]. The solver models strings as a primitive type
together with booleans and integers. Its supported operations include concate-
nation, equality, sub-string and replace. Kiezun et al. present Hampi a string
solver based on constraints on regular languages and fixed-size context-free lan-
guages [11]. In relation to our work, general purpose string solvers such as Z3-str
and Hampi, are heavy-weight. We aim to construct a light-weight string domain,
which can be used in any points-to or dataflow analysis, to address the problem
of dynamic property accesses.

JavaScript Analysis Guarnieri et al. present Gatekeeper, a tool for static
enforcement of security policies for JavaScript programs [6]. The authors present
an Andersen-style [1] inclusion-based, context-insensitive, points-to analysis for
JavaScript. Gatekeeper classifies whether JavaScript “widgets” are safe with
respect to a security policy by inspecting information from the computed points-
to sets and call graph. Gatekeeper cannot soundly reason about dynamic
property accesses and thus must resort to runtime enforcement of the security
policy for every dynamic read or write (c.f. Section 3.2.2, [6]).

4

Guarnieri et al. present Actarus, a static taint analysis for JavaScript [7].
Actarus tracks information flow to ensure that data from an untrusted source
cannot reach a high-integrity sink. The analysis, like the Gatekeeper project,
is based on inclusion-based points-to analysis. Actarus handles dynamic prop-
erty accesses (called reflective property accesses in their paper) by keeping known
string constants separated and creating new abstract objects when strings ob-
jects are concatenated (Section 3.3 in [7]). Yet, abstraction must be introduced
at some point, and it is not clear from the paper, how this is implemented in
Actarus.

Jensen et al. present the Type Analysis for JavaScript (TAJS) tool based
on inter-procedural dataflow analysis [10]. The analysis aims for soundness and
goes to great lengths to faithfully model the semantics of JavaScript. The string
abstraction is based on the constant string lattice extended to track whether
the string may or must be a number-string. In more recent work, Jensen et al.
extends TAJS with the Unevalizer, a technique for analyzing certain invocations
of eval [8]. For this purpose, the string lattice is extended to track strings
which are valid JavaScript identifiers or contain characters which are valid inside
identifiers. Jensen et al. originally identified the problem of dynamic property
writes to HTML objects [9].

Sridharan et al. present correlation tracking, a technique for identifying and
tracking dynamic property reads and writes which are related [15]. The purpose
of their technique is to ensure that e.g. for-each-in loops which copy properties
from one object osrc to another odst maintain the relation s.t. odst[p] = osrc[p].
Thus, preserving field-sensitive precision. We believe that correlation tracking is
a step in the right direction for scaling points-to and dataflow analyses for large
JavaScript libraries. However, not all dynamic property accesses are correlated
and this paper presents an orthogonal way to improve precision.

In summary, except for Sridharan et al., most work use very simple techniques
for dealing with dynamic property accesses.

3 String Domains

In this section we present some existing and several new abstract string domains.
We have marked the domains which we believe are new to the literature with
the ? symbol.

Assumptions We assume, for the rest of the paper, an underlying points-to or
dataflow analysis with a standard field-sensitive heap abstraction. It is our goal
to design string lattices which can be used together with the analysis without
increasing its running time.

String Operations JavaScript has around 15 built-in string operations. We
consider the abstract equality (=̂), abstract concatenation (+) and lattice join
(t) operations central for reasoning precisely and efficiently about dynamic prop-
erty accesses. The =̂ operation is applied at every dynamic property access to

5

decide which property names may be referenced. Thus, it must be both precise
– to rule out many property names – and efficient since it will be evaluated
often. Similarly, the + and t operations should be efficient, while maintaining
as much knowledge about the underlying strings as possible. Additional string
operations are discussed in Section 3.16. All domains described in the following
have finite height, thus widening is not required to ensure termination.

3.1 Constant String

The constant string lattice C tracks a single concrete string. The lattice is ele-
ments are ⊥,> and s ∈ Str where ⊥ and > are the bottom and top elements,
respectively. The ⊥ element represents no concrete strings, whereas > represents
all possible concrete strings. The lattice supports the equal, concatenate and join
operations in O(n) time in the length of the string. In practice most strings are
short so we do not consider the linear complexity to be a problem. The constant
string lattice is the standard solution used by much prior work (as discussed in
Section 2) and is used as the baseline abstraction in Section 4.2.

3.2 String Set

The string set lattice SS is the powerset lattice ordered by subset-inclusion of
a bounded number of concrete strings. The lattice elements are > and {s|s ∈
P(Str)∧ |s| ≤ k} where s is a set of up to k strings and > represents all possible
concrete strings. The lattice supports the equal, concatenate and join operations
in O(k2 × n) time, where k is the bound and n is length of the longest string.

3.3 Length Interval

The length interval lattice I is the interval lattice on the string length. It tracks
the minimum and maximum length of the concrete strings it represents. The
length interval lattice can distinguish property names which are usually short,
from data strings such as HTML code, image data or other serialized data. The
interval representation is standard, with a bounded width k, and supports the
equal, concatenate and join operations in O(1) time. Finally, we note that the
length interval lattice can be useful for coercions from strings to booleans as
it tells us whether the string may be the empty string, and thus can coerce to
false.

3.4 Length Hash ?

The length interval lattice I loses much precision whenever strings of disparate
length are joined. We propose to overcome this by introducing the length hash
lattice LH. The length hash lattice tracks a set of string length hashes instead
of tracking the minimum and maximum string length. We take a universe of
fixed size U = {0 . . . b} and a hash function h : S → U s.t. each string length

6

def concat(A: Long , B: Long): Long = {
var R: Long = Long.reverse(B);
var C: Long = 0L;
for (i <- 0 until b) {

r = Long.rotateLeft(r, 1);
if ((A & R) != 0L) {

C |= (1 << i);
}

}
return C;

}

Fig. 1: Implementation of fast hash concate-
nation in Scala. In Java/Scala bit positions
are indexed in the opposite direction of
what we have described on thus rotateLeft
is used instead of a right rotate.

B

Rj

210 b-1... b-2...

j-1 j-2 ... jj+1j+2...

1

R0

b-1 b-2 ... 012...

1

R2

1 0 ... 234...

1

10

1 0

0 1

Fig. 2: The top part of the figure shows
the bitvector Rj , obtained by reversing
and right-rotating B j times. The bot-
tom part is an example where R0 and
R2 are obtained from the bitvector B.

hashes to a particular bucket in the universe. The lattice is the powerset lattice
of U ordered by subset-inclusion (i.e. ⊥ is the empty set and represents no
concrete strings). If we fix b at the word size of the target architecture we can
efficiently implement LH as a bitset. The equal and join operations can then be
implemented as bitwise operations in O(1) time.

Concatenation is more tricky. If we require the hash function h to be dis-
tributive, s.t. (h(s1 + s2) = h(s1) + h(s2) mod b), then concatenation can be
implemented precisely. Concatenation of the abstract strings ŝ1 and ŝ2 is com-
puted by summing all lengths in ŝ1 with all lengths in ŝ2 and taking the modulus.
A naive implementation calculates these sums inside two nested loops. The com-
plexity of this implementation is O(b2) where b is the size of the universe. This
is O(1) since b is a fixed constant, but in practice b = 64 and thus the naive
implementation may require up to 4096 iterations.

A better solution achieves O(b) time by only iterating through the lengths of
ŝ1 and summing with the lengths of ŝ2 simultaneously by using a few clever bit
operations. Let A and B be the bitvectors representing ŝ1 and ŝ2 respectively.
We observe that the k’th position in the resulting bitvector C depends on all
A[i] and B[j] where i+ j ≡ k mod b.

We define Rj to be the bitvector obtained from B by first reversing it and
then right rotating the result j positions. Thus, e.g. R0 is the reverse of B and
R2 is the reverse of B right rotated two positions, as shown in Figure 2.

We can now compute C[k] by evaluating A ∧ Rk+1 6= 0, since Rk+1[i] =
B[(b− 1− i) + (k + 1) mod b] = B[k − i mod b] = B[j] and thus:

C[k] = (A ∧Rk+1 6= 0) =

b−1∨
i=0

A[i] ∧B[j]

which is equivalent to what is computed by the naive implementation. The code
in Figure 1 implements this strategy. In a synthetic benchmark the above code
resulted in a factor 70 speedup compared to the naive implementation.

7

As an example, the abstraction of {abc, abcdef} is a bitset containing the
elements 3 and 6. This bitset represents all strings of length {l|l = 3 + b ∗ i∨ l =
6 + b ∗ i,∀i ≥ 0}.

3.5 Prefix and Suffix Characters

The prefix-suffix character lattice PS tracks the first and last character symbol
of the string. It is formed as the cartesian product of two constant character
lattices; one for the prefix and one for the suffix. The lattice supports the equal,
concatenation and join operations in O(1) time.

In jQuery HTML tags can be passed into to the $-function to construct new
HTML elements. Inside the $-function3, the following test is used to inspect
whether an argument is an HTML tag:

var length = selector.length;

if (selector.charAt (0) === "<" &&

selector.charAt(length - 1) === ">" &&

length >= 3) {

The prefix-suffix character lattice can analyze code like the above by providing
information about whether the first and last character may or must not be the
< and > characters, respectively.

3.6 Character Inclusion

The character inclusion lattice CI tracks what character symbols may and must
occur within a string. It is formed as the cartesian product of the four sub-
lattices: cmay, cmust, emay and emust. The cmay and cmust lattices are powerset
lattices of character symbols ordered by subset- and superset inclusion, respec-
tively. The emay and emust boolean lattices tracks whether the concrete set of
strings may or must include the empty string or a character symbol which is not
representable by cmay or cmust. As an example, the empty string, and the strings
foo and moo are represented as:

CI = (cmay = {f, m, o}, cmust = {o},>emay
,⊥emust

)

The equal operation of CI1 and CI2 is implemented as:

1. If CI1 or CI2 is ⊥CI then the result is ⊥bool, i.e. if one (or both) of the lattices
represents the empty set of concrete strings then the results represents the
empty set of concrete booleans (denoted by ⊥bool).

2. If c1must ∩ c2may = ∅ or c2must ∩ c1may = ∅ the result is False, i.e. if a character
must be in CI1 but at the same time is definitely not present in CI2 the
strings cannot be the same (and vice versa).

3. If c1may ∩ c2may = ∅ and e1may = e2may = ⊥ then the result is False, since no
characters overlap between CI1 and CI2, and none of them are the empty
string.

3 jQuery v. 1.8.3, line 114

8

4. If CI1 must contain the empty string or an unrepresented character and CI2
definitely does not (or vice versa) the result is False, since either contains
characters which the other does not.

5. Otherwise the result is >bool, i.e. the concrete set of true and false.

We implement the character inclusion lattice using two bitsets. The first
bitset tracks may-information and the second tracks must-information. In each
bitset we use a bit to track whether the string may/must be the empty string
or contain an unrepresentable character. The remaining bits are reserved for
character symbols. If we use a word size of 64 this leaves space for 63 character
symbols.

We represent character symbols in the ASCII range from 32 to 95, which in-
cludes the characters 0-9, A-Z, the special characters !"#$%&’()*+,-./:;<=>?@
and space. Lowercase letters can be accommodated by converting them to up-
percase, i.e. the character inclusion lattice is case-insensitive. In summary, the
bitset-based character inclusion lattice supports the equal, concatenate and join
operations in O(1) time.

3.7 Index Predicate ?

The index predicate lattice (IP) tracks whether a boolean valued predicate ρ(c)
may or must hold for the character symbol c at index i of the string, where the
index is bounded by a constant b. That is, the lattice only tracks the predicate for
the first b characters. Most property names are short, and thus having incomplete
information for long strings is unlikely to be a problem in practice. We can
instantiate the lattice with predicates like the following:

– Lowercase / Uppercase – whether the character at index i may or must be
a lowercase or uppercase letter. This is useful for property names that use
camel casing, e.g. hasOwnProperty.

– Underscore – whether the character at index i may or must be an underscore.
Like above, this is useful for “hidden” property names with underscores, e.g.
defineGetter .

– Digit – whether the character at index i may or must be a digit. If all
character symbols must be digits then the entire string represents a number.

– Non-identifier Character – whether the character at index i may or must be
a non-identifier character. (A generalization of the idPart in Unevalizer [8])

– Whitespace – whether the character at index i may or must be white space
(i.e. space, tabs or newline) which is useful for e.g. split.

The index predicate lattice is the cartesian product of two powerset lattices of
indices imay and imust and the length interval lattice. The length interval lattice
is used to handle concatenation precisely.

We implement the imay and imust lattices as bitsets for the first 64 string
indices. The length interval lattice uses the standard representation. The join
operation is straightforward to implement in O(1) time. The equal operation
can be implemented similarly to the equal operation for the character inclusion

9

lattice. The concatenate operation, however, requires more legwork. If the strings
s1 = (i1may, i

1
must) and s2 = (i2may, i

2
must) are concatenated and the length of s1 is

not an interval, but a concrete number, then concatenation is simply a matter
of merging the i1may and i2may bitsets using the concrete length of s1 as an offset.

On the other hand, if the length of the string s1 is an interval then the i1may and

i2may bitsets must be merged by all offsets in that interval. Similarly for the must
bitsets, as shown in Figure 3.

A 001 1 1 1

B 10

R 001 1 1 0

B 10

0

i j

i j

Fig. 3: Concatenation of two index predicate lattices A and B for the i1must and i2must sets,
respectively. Here the length of A is between [5, 6]. The example shows how the indices
i and j are computed by bitwise-and.

3.8 Sliding Index Predicate ?

The sliding index predicate lattice SIP tracks a boolean valued predicate for
pairs of consecutive characters. That is, the predicate is of the form ρ : Char ×
Char → Bool, where the two characters are adjacent inside the string. We can
instantiate the lattice with predicates like the following:

– Gemination - whether two consecutive characters are the same. E.g. in the
property names defineGetter and defineSetter there are three
geminations, one for the preceding underscores, one for the double t’s and
one for the succeeding underscores.

– Inversions - whether two consecutive characters are inverted with respect
to their lexicographical ordering. E.g. in the property name valueOf the
characters v and a are inverted. If no characters may be inverted then the
characters in the string must be sorted.

The sliding index predicate lattice is similar to the index predicate lattice.
However, in addition to may- and must- bitsets and the length interval lattice,
it must be equipped with the prefix-suffix lattice. This lattice is required for the
concatenation operation: When s1 and s2 are concatenated the prefix-suffix is
used to evaluate the predicate for the last character of s1 and the first character of
s2 thus ensuring that knowledge of the predicate is preserved for all consecutive
pairs of characters in the resulting string.

10

3.9 Prefix Suffix Inclusion ?

The prefix-suffix inclusion lattice PSI is inspired by the prefix-suffix and char-
acter inclusion lattices. It tracks the set of characters that the first and last
character in the string may or must be. As for the character inclusion lattice, it
tracks whether the string is the empty string or if the prefix/suffix may be a non-
representable character symbol. Its representation is based on no less than four
bitsets: May- and must- bitsets for both the prefix and suffix character. Equal,
concatenation and join is implemented as bitwise operations in O(1) time.

The prefix-suffix inclusion lattice can rule out equality of the concrete string
prototype and the abstract string ŝ, if the first character of ŝ is definitely not
p or the last character of ŝ is definitely not e.

3.10 String Hash ?

The string hash lattice SH lattice is inspired by the length hash lattice, but
instead of hashing the string length, it hashes the string itself: It uses a hash
function h : S → U which takes the sum of all character codes in the string and
hashes it into a bucket (as described in Section 3.4). The strength of the string
hash lattice is that it can keep separate strings for which the other lattices might
lose all information. Consider the example:

"foo"=̂("The" t "quick" t "brown" t "fox")

Here, for instance, the length interval, the length hash and the character inclu-
sion lattices lose information and cannot rule out that the strings may be equal.
In contrast, the four strings hash to 33, 29, 40 and 13, respectively, and "foo"

hash to 4, and thus the abstraction is able to rule out equality between the left
and right side. We implement the string hash lattice as a single bitset which sup-
ports equal, concatenate and join in O(1) time. Concatenation is implemented
in the same way as the length hash lattice and requires the hash function to be
distributive (see Section 3.4).

3.11 Number Strings ?

In JavaScript it is common for numbers to be coerced to strings. We introduce
the number string lattice N to track JavaScript numbers encoded as strings. It
is the powerset lattice of the elements ∞, −∞, NaN, N and Other ordered by
subset-inclusion:

N = (P{∞,−∞, NaN,N, Other},⊆)

Here ∞ represents the number “positive infinity” which coerced to a string
yields "Infinity", similarly −∞ coerces to "-Infinity", NaN represents “not-
a-number” which coerces to "NaN" and N which represents any natural number
which coerces to itself as a string. The number string lattice is implemented as a
bitset and supports equal, concatenate and join operations in O(1) time. With
respect to concatenate, we take a pragmatic approach and let it return >, i.e.
all lattice elements.

11

>

CN T

SS

I

IP

SIP

PS

PSI

CILH SH

H

A

Fig. 4: A diagram showing how the precision of the lattices relate to each other. As an
example, the precision of the prefix-suffix lattice PS lattice is fully subsumed by the
prefix-suffix inclusion lattice PSI.

3.12 Type Strings ?

In JavaScript the typeof operator inspects the runtime type of a value and
returns one of the string constants: boolean, function, object, string and
undefined. The typeof operator is widely used in jQuery, for instance4:

stop: function(type , clearQueue , gotoEnd) { // ...

if (typeof type !== "string") { // ...

Here the behaviour of the stop function depends on the type of its first argument.
We introduce the type string lattice T to explicitly track the five strings returned
by typeof:

T = (P({Bool, Func, Obj, Str, Undef, Other}),⊆)

The Other element, as for the number string lattice, represents all strings other
than the type strings. We implement the lattice as a single bitset which supports
the equal and join operations in O(1) time.

3.13 The Hybrid Lattice ?

We introduce the hybrid string lattice H as the cartesian product of the string
set SS (Section 3.2), character inclusion CI (Section 3.6) and string hash SH
(Section 3.10) lattices. The intuitive idea behind the lattice is to track a few
concrete strings with full precision and then “fallback” to the character inclusion
and string hash lattices when there are too many strings to track. As will be
shown in Section 4, the hybrid lattice achieves almost the same precision as the
combination of all presented lattices.

3.14 Lattice Relations

Figure 4 shows how the precision of the lattices relate to each other. As discussed
in the previous section, the figure shows that the hybrid string lattice H is at
least as precise as the string set SS, character inclusion CI and string hash
lattices SH. We call the cartesian product of all lattices A.

4 jQuery v1.8.3, line 9,046

12

C SS I LH PS CI IP PSI SH N T H
New X X X X X X X
Structural X X X X X X X X
Subset X X X X X X X X X
Parametric X X X X X
Space |s| k × |s| 2 1 2 2 4 5 1 1 1 k × |s|+ 3

Table 1: Overview of lattice characteristics.

3.15 Overview

We briefly summarize some characteristics of the presented lattices:

New We believe that the lattice is new to the literature.
Structural The lattice tracks the structure of the string. As an example, the

prefix-suffix lattice PS tracks the first and last character of the string.
Subset The lattice subset or superset-based.
Parametric The lattice has different instantiations. For instance, the index

predicate lattice IP can be instantiated with different predicates.
Space The space (memory) required to represent a single lattice element. In

machine words, except for C and SS which must store the entire string(s).

Table 1 shows an overview of these characteristics.

3.16 Additional String Operations

We now describe some additional string operations which the lattices support.

charAt and charCodeAt The charAt(i) and charCodeAt(i) string functions
return the character or character code at position i inside the string.

– PS– if the index is zero then the prefix-suffix lattice knows the precise result.
– IP– the index predicate lattice can provide an upper bound on what char-

acter symbols may occur at index i. E.g. if the predicate is isUpperCase and
it holds for index i, then the character must be in the set [A− Z].

– CI– the character inclusion lattice can provide an upper bound on what
character symbols may occur at index i.

indexOf, lastIndexOf and search The indexOf(s) and lastIndexOf(s) func-
tions return the index of respectively the first and last occurrence of s in the
string. If s is not contained in the string, the value −1 is returned.

– CI– if the query string is a single character the character inclusion lattice
can decide whether that character may or must occur within the string. It
cannot give the precise index, but it can decide whether the −1 value should
be part of the return value.

13

– IP– if the query string is a single character and some property of that
character is tracked by the index predicate lattice, then a set of indices can
be returned. E.g. if the query string is an uppercase A and the index predicate
lattice tracks uppercase letters, then the lattice can provide all indices where
uppercase letters may occur.

– I– the length interval lattice can provide a bound on the returned index.

substring The substring(b, e) function returns the substring beginning at po-
sition b and ending immediately before position e.

– I & LH– the length interval and length hash lattices simply restrict their
intervals to the range [b, e].

– PS– if the extracted string is a prefix, i.e. if b = 0, then the prefix-suffix
lattice can retain its first component.

– CI– the character inclusion lattice can retain its may-set of character sym-
bols, but its must-set must be replaced by >.

– IP & SIP– the index predicate and sliding index predicate lattices can
retain all their information for the substring.

4 Evaluation

We have described the theoretical properties of the lattices and now turn to their
practical application by considering the research questions:

– Q1: How precise are the lattices, independent of any particular analysis, for
reasoning about strings used in dynamic property accesses?

– Q2: To what degree does a more precise string lattice, for dynamic property
accesses, improve the overall precision and performance of a static analysis?

4.1 Dynamic Analysis

We investigate Q1 by performing a dynamic analysis of strings and dynamic
property accesses in four large JavaScript libraries. Inspired by Liang et al. [12]
the dynamic analysis is used to provide a (static-) analysis independent upper
bound on the precision of each lattice. That is, the best precision each lattice
can possibly provide for a set of concrete execution traces.

We instantiate the string set lattice with k = 3 (see Section 3.2), the length
interval lattice with width k = 20 (see Section 3.3), the index predicate lattice
with the uppercase predicate (see Section 3.7) and the remaining lattices are
instantiated as described in their respective sections.

Benchmarks We collect concrete execution traces for the four large JavaScript
libraries shown in Table 5. The traces expose a total of 80,000 dynamic property
accesses of which 60,000 are reads. We obtained the traces by loading twelve

14

Reads Writes

Library Lines Locations Properties Locations Properties

jQuery-1.9.1 9,597 400 7.0 124 5.8
jQuery-1.8.1 9,301 377 12.0 102 8.3
jQuery-1.7.1 9,266 401 6.8 101 6.6
Prototype-1.7.0 7,036 226 9.8 43 14.7
MooTools-1.4.5 5,976 281 13.7 110 14.2
jQueryUI-1.8.24 11,377 265 8.1 75 7.4

Fig. 5: The JavaScript libraries used for the dynamic analysis evaluation. Here the
locations column indicates the number of syntactic occurrences of dynamic property
accesses. The properties column indicates the average number of property names read-
/written by a dynamic property access expression.

popular websites according to the Alexa rankings5. The complete list of websites
is available in Appendix A. Since jQuery is prevalent, we include three different
versions. The websites are automatically modified to use instrumented versions
of the libraries which record information about every dynamic property access.

We explain Table 5 by example. The table shows that the jQuery-1.9.1 source
code has 400 dynamic property read expressions and 124 write expressions. For
the read expressions, an average of 7.0 properties are read by each expression,
and an average of 5.8 properties are written by each expression.

Concrete Traces We instrument the source code to register the following for
every dynamic property access o[p]:

T = (R,L, E ,Po,Pp) , where

– R is a unique identifier for the concrete run.
– L is the physical location of the dynamic property access in the source code.
– E is the expression tree corresponding to how the property name, which is

being used for the dynamic property access, was created. An expression tree
is a tree where the leaves are string constants and the internal nodes are
string operations, which are equipped with their source code location.

– Po is the set of properties available on the object o itself.
– Pp is the set of properties available on the prototype objects of o.

Here R and L is meta data about the concrete trace and E ,Po,Pp is information
about the dynamic property access. As an example, the execution of the code
snippet on the left produces the trace on the right.

Here Toplevel is the name of the toplevel “function”, E is the expression
tree for the string concatenation of "p" and "q", Po contains a and b (i.e all
properties of o) and Pp contains all properties of the Object[[prototype]]

object.

5 http://www.alexa.com/topsites

15

x = new Object ();

x.a = 42;

x.b = 21;

z = x["p" + "q"];

T = (0, input.js:4, Toplevel, E ,Po,Pp)

E = Concat(input.js:4, "p", "q")

Po = {a, b}
Pp = {..., toString, valueOf, ...}

Abstract Traces We simulate the effects of abstraction by merging several
concrete traces into a smaller set of abstract traces. We merge concrete traces
which share the same location L to obtain a single abstract trace for that lo-
cation. In particular, given two concrete traces T 1 = (R1,L1, E1,P1

o ,P1
p) and

T 2 = (R2,L2, E2,P2
o ,P2

p) we define the abstract trace T̂ = (L, Ê , P̂o, P̂p) where

L = L1 = L2 Ê = {T 1
E , T 2

E } P̂o = T 1
Po
∪ T 2
Po

P̂p = T 1
Pp
∪ T 2
Pp

The generalization to multiple traces is straightforward.
We now consider two scenarios. First, we evaluate the precision of the lattices

on the abstract traces where the expression tree E is fully evaluated before any
abstraction. That is, if an abstract trace has the two expressions trees E1 = ”a”
and E2 = ”b” + ”c” + ”d” then we consider the abstraction α(”a”) t α(”bcd”),
i.e. concatenation occurs before abstraction. Second, we evaluate the precision
when concatenation occurs after abstraction. For instance, we would evaluate
α(”a”) t (α(”b”) + α(”c”) + α(”d”)). Here α is the abstraction function which
lifts a concrete string into the abstract domain.

Precision without Concatenation Figure 6 shows the percentage of dynamic
property access locations with zero false positives for each lattice. That is, a value
of 100% implies that the lattice is complete for all dynamic property accesses. A
value of 50% implies that half of all locations of dynamic property accesses have
at least one false positive. The figure shows two bars for each lattice; the light bar
represents locations with false positives involving properties in the base object,
and the dark bar represents false positives involving properties in the prototype
objects.

We observe that the constant string lattice ensures that at most 50% of
all dynamic property accesses involving base object properties have zero false
positives. If we consider prototype properties, the number drops to 31%. This
means that for more than half of all dynamic property accesses the constant
string lattice will cause spurious flow. For the string set lattice the percentages
are not surprisingly higher at 72% and 58%, respectively. The character inclusion
lattice achieves the highest precision with 79% and 78% of all dynamic property
accesses having zero false positives. Remarkably, the prefix-suffix inclusion lattice
achieves nearly the same precision, even though it only tracks information about
the first and last characters in the string. The hybrid lattice achieves 89% and
86% which is only slightly lower than the all lattice (the product of all lattices).
The number string and type string lattices achieve less than 25% of property
accesses with zero false positives and are omitted from the graphs.

16

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
PA

s
 w

it
h

 z
er

o
 f

al
se

 p
o

si
ti

ve
(s

)

Precision (no concatenation)

Object

Prototype

Fig. 6: Precision without concatenation,
measured as the number of dynamic prop-
erty accesses with zero false positives.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
PA

s
 w

it
h

 z
er

o
 f

al
se

 p
o

si
ti

ve
(s

)

Precision (with concatenation)

Object

Prototype

Fig. 7: Precision with concatenation, mea-
sured as the number of dynamic property
accesses with zero false positives.

We attribute the difference in precision for object and prototype properties
to the fact that most objects have fewer properties than their corresponding
prototype object(s).

Precision with Concatenation Figure 7 shows the percentage of dynamic
property accesses with zero false positives for each lattice restricted to traces
which involve at least one concatenation. This restriction reduces the number
of concrete traces from 80,000 to around 8,000. Note that this implies that
Figures 6 and 7 are not directly comparable.

We observe, when concatenation is involved, the constant string lattice is
only able to achieve a zero false positive rate of 21% and 14% for object and
prototype properties. Again, the character inclusion lattice achieves the best
precision with 64% and 93% property accesses with zero false positives. The
hybrid lattice achieves 90% and 97% which is only slightly less than all the
lattices combined. The number string and type string lattices achieve less than
10% with zero false positives and are omitted from the graphs.

We leave the evaluation of the sliding index predicate as future work for two
reasons: First, initial experiments on the index predicate lattice showed that it
has very poor performance for concatenation. Second, it was not clear to us what
kind of predicate would be a good discriminator for property names.

We answer Q1 by concluding that the precision of the constant string lattice
is worse than most other of the presented lattices. Furthermore, the hybrid string
lattice H achieves almost the same precision as all the lattices combined.

4.2 Static Analysis

We investigate Q2 by comparing the precision and performance of a static anal-
ysis equipped with the constant string lattice C and the proposed hybrid string
lattice H.

17

Precision Performance

Program Lines Nodes PAs↓ PointsTo↓ Constant Hybrid Speedup

3d-cube.js 343 2,794 14% 10% 1.7s 1.0s 1.6x
3d-raytrace.js 443 2,874 57% 41% 38.5s 4.7s 8.2x
access-nbody.js 170 828 9% 7% 0.3s 0.2s 2.1x
astar.js 355 1,406 68% 58% 5.9s 0.3s 16.8x
crypto-md5.js 295 1,422 93% 93% 0.3s 0.2s 1.8x
garbochess.js 2,812 15,795 78% 77% 56.3s 24.3s 2.3x
javap.js 1,400 5,104 28% 27% 7.5s 7.3s 1.0x
richards.js 541 1,602 3% 2% 3.7s 3.3s 1.1x
simplex.js 450 2,056 73% 72% 0.6s 0.3s 2.0x
splay.js 398 1,016 2% 2% 0.4s 0.4s 1.0x

Table 2: Static Analysis results. Lines is the number of lines of source code. Nodes is
the number of control-flow graph nodes. PAs↓ is the percentage of property reads with
improved precision. PointsTo↓ is the average reduction in the size of points-to sets for
all property reads.

Dataflow Analysis We have implemented an inter-procedural, flow-sensitive
and context-insensitive dataflow analysis for JavaScript in the style of Jensen et
al. [10]. The analysis can be instantiated with different string lattices without
any changes to the rest of the abstraction.

Benchmarks We evaluate the analysis on the programs shown in Table 2. The
3d-cube.js, 3d-raytrace.js, access-nbody.js and crypto-md5 programs orig-
inate from the Mozilla SunSpider benchmark suite, richards.js and splay.js

originate from the Google Octane benchmark suite and astar.js, garbochess.js,
javap.js and simplex.js were collected from GitHub and various sources on
the Internet. The table lists the benchmark name, number of lines of code and
the number of control-flow graph nodes in the first three columns. We use these
benchmarks, instead of the libraries from the previous section, since we know of
no analysis which is yet able to analyze such large and complex libraries.

Precision We compare the precision of the string lattices in two ways. First,
we compute for how many property read locations that the points-to sets are
smaller. Second, we compute on average how much smaller the points-to sets are.
We look at all property reads and not just dynamic property reads. The reason
is that spurious flow in one dynamic property access may cause imprecision in
a non-dynamic read. Thus, by looking at all reads we get a clearer picture of
overall analysis precision.

The PAs↓ column in Table 2 shows the percentage of property reads where the
use of the hybrid string lattice results in a smaller points-to set than the constant
string lattice, that is, the percentage of reads where the hybrid string lattice
yields at least one less pointer than the constant string lattice. The results show
that for 5 of the 10 programs at least 50% of all property reads have improved
precision, and that all programs show some improvement. The PointsTo↓ column

18

shows how much smaller on average the points-to sets are for all property reads.
The results show that the hybrid lattice ensures significantly smaller sets and
that for 5 of the 10 programs the reduction is more than 40%. Thus the hybrid
lattice improves precision for many property accesses and is effective at reducing
spurious flow compared to the constant string lattice.

Performance The last three columns of Table 2 compare the analysis time
with the two different lattices. The results show that for 7 of the 10 programs
the analysis is more than 1.5x faster, and for 5 of the programs the analysis is
more than 2.0x faster. We attribute this to the fact that the analysis is more
precise with the hybrid lattice and propagates less spurious flow. In the case of
javap.js, richards.js and splay.js there is no significant speedup. In case
of richards.js and splay.js this can be explained by the fact that these two
benchmarks gain little in terms of improved precision. The javap.js program
appears to be an outlier which gains significantly improved precision, but no
corresponding boost in performance. Naturally, the degree of speedup will vary
from analysis to analysis. In particular, if the analysis is efficient at representing
and propagating large point-to sets the performance improvement will likely be
less pronounced.

We answer Q2 by concluding that the hybrid string lattice H is preferable
to the commonly used constant string lattice C. We have shown that the hybrid
string lattice leads to significantly improved precision and performance.

5 Conclusion

We have described twelve different string abstractions – five previously known
and seven new – for reasoning about dynamic property accesses in static analysis
of JavaScript. Experimental evaluation on four common and large JavaScript
libraries, including jQuery, suggests that dynamic property accesses are prevalent
and that the standard approach of tracking strings with the constant string
lattice is insufficient. We have presented the hybrid lattice H which supports the
equal, concatenate and join operations in O(1) time. Experimental results on
10 JavaScript programs show that the hybrid string lattice leads to significantly
improved precision and performance when used in a dataflow analysis.

19

References

1. Lars Ole Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, 1994.

2. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise
Analysis of String Expressions. In SAS, pages 1–18, 2003.

3. Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged Information
Flow for JavaScript. In PLDI, pages 50–62, 2009.

4. Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. Static Analysis of String
Values. In ICFEM, pages 505–521, 2011.

5. Douglas Crockford. JavaScript: The Good Parts. O’Reilly Media, Inc., 2008.
6. Salvatore Guarnieri and V. Benjamin Livshits. GATEKEEPER: Mostly Static

Enforcement of Security and Reliability Policies for JavaScript Code. In USENIX
Security Symposium, pages 151–168, 2009.

7. Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet,
and Ryan Berg. Saving the World Wide Web from Vulnerable JavaScript. In
ISSTA, pages 177–187, 2011.

8. Simon Holm Jensen, Peter A. Jonsson, and Anders Møller. Remedying the Eval
that Men Do. In ISSTA, pages 34–44, 2012.

9. Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the HTML
DOM and Browser API in Static Analysis of JavaScript Web Applications. In Proc.
8th joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
September 2011.

10. Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type Analysis for
JavaScript. In Proc. 16th International Static Analysis Symposium, SAS, volume
5673 of LNCS. Springer-Verlag, August 2009.

11. Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D.
Ernst. HAMPI: A Solver for String Constraints. In ISSTA, pages 105–116, 2009.

12. Percy Liang, Omer Tripp, Mayur Naik, and Mooly Sagiv. A Dynamic Evaluation
of the Precision of Static Heap Abstractions. In OOPSLA, pages 411–427, 2010.

13. Sergio Maffeis, John C. Mitchell, and Ankur Taly. An Operational Semantics for
JavaScript. In APLAS, pages 307–325, 2008.

14. Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An Analysis of
the Dynamic Behavior of JavaScript Programs. In PLDI, pages 1–12, 2010.

15. Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Cor-
relation Tracking for Points-To Analysis of JavaScript. In ECOOP, pages 435–458,
2012.

16. Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: A Z3-based String Solver
for Web Application Analysis. In ESEC/SIGSOFT FSE, pages 114–124, 2013.

20

A Appendix

The concrete traces were scraped from the following websites:

URL Library Version

http://jquery.com/ jQuery 1.9.1
http://www.chacha.com/ jQuery 1.9.1
http://themeforest.net/ jQuery 1.8.1
http://www.guardian.co.uk/ jQuery 1.8.1
http://adf.ly/ jQuery 1.7.1
http://stackoverflow.com/ jQuery 1.7.1
http://www.fixya.com/ jQuery UI 1.8.24
http://www.goal.com/en-us/ jQuery UI 1.8.24
http://www.6.cn/ MooTools 1.4.5
http://www.aeriagames.com/ MooTools 1.4.5
http://hubpages.com/ Prototype 1.7.0
http://www.last.fm/ Prototype 1.7.0

21

