
On Hardness of Several String Indexing
Problems

Kasper Green Larsen1, J Ian Munro2,
Jesper Sindahl Nielsen 1, and Sharma V. Thankachan2

? MADALGO, 1Aarhus University, Denmark {larsen,jasn}@cs.au.dk
2 University of Waterloo, Canada {imunro,thanks}@uwaterloo.ca

Abstract. Let D = {d1, d2, ..., dD} be a collection of D string docu-
ments of n characters in total. The two-pattern matching problems ask
to index D for answering the following queries efficiently.

– report/count the unique documents containing P1 and P2.

– report/count the unique documents containing P1, but not P2.

Here P1 and P2 represent input patterns of length p1 and p2 respectively.
Linear space data structures with O(p1 + p2 +

√
nk logO(1) n) query cost

are already known for the reporting version, where k represents the out-
put size. For the counting version (i.e., report the value k), a simple
linear-space index with O(p1 + p2 +

√
n) query cost can be constructed

in O(n3/2) time. However, it is still not known if these are the best
possible bounds for these problems. In this paper, we show a strong con-
nection between these string indexing problems and the boolean matrix
multiplication problem. Based on this, we argue that these results can-
not be improved significantly using purely combinatorial techniques. We
also provide an improved upper bound for a related problem known as
two-dimensional substring indexing.

1 Introduction

Document listing is a fundamental problem in information retrieval, where the
task is to index a collection of documents, such that whenever a pattern P
comes as a query, we can efficiently find the unique documents containing P as
a substring. This problem was introduced by Matias et al. and they provide a
linear space and near-optimal time solution [15]. Later Muthukrishnan improved
the result by providing a linear-space and optimal query time index [16]. The
counting case asks to find the number of documents containing the query pattern.
See [17] for an excellent survey on more results and extensions of document
retrieval problems. In this paper, our focus is on the case where the query consists
of two patterns (known as two-pattern query problems). The formal definitions
of the problems under consideration are given below.

? Work supported in part by the Danish National Research Foundation grant DNRF84
through Center for Massive Data Algorithmics (MADALGO)

Problem 1 Given a set of strings D = {d1, d2, . . . , dD} with
∑D
i=1 |di| = n,

preprocess D to answer queries: given two strings P1 and P2 report all i’s
where both P1 and P2 occur in di.

Problem 2 Given a set of strings D = {d1, d2, . . . , dD} with
∑D
i=1 |di| = n,

preprocess D to answer queries: given two strings P+ and P− report all i’s
where P+ occurs in string di and P− does not occur in string di.

Problem 3 Let D = {(d1,1, d1,2), (d2,1, d2,2), . . . , (dD,1, dD,2)}, be a set of pairs

of strings with
∑D
i=1 |di,1|+ |di,2| = n. Preprocess D to answer queries: given

two strings P1 and P2 report all i’s where P1 occurs in di,1 and P2 occurs in
di,2.

Problem 1 was introduced by Muthukrishnan [16]. He presented a data struc-

ture using O(n1.5 logO(1) n)-space (in words) with O(p1 + p2 +
√
n+ k) time for

query processing, where p1 = |P1| and p2 = |P2| and k is the output size1.
Later Cohen and Porat [6] presented a space efficient structure of O(n log n)-
space, but with a higher query time of O(p1 + p2 +

√
nk log n log2 n). The

space and the query time of was improved by Hon et al. [11] to O(n) words
and O(p1 + p2 +

√
nk log n log n) time. See [13] for a succinct space solution

for this problem. Problem 2 is known as the forbidden (or excluded) pattern
query problem. This was introduced by Fischer et al. [8], where they presented
an O(n3/2)-bit solution with query time O(p1 + p2 +

√
n + k). Immediately,

Hon et al. [12] improved its space occupancy to O(n) words, but with a higher
query time of O(p1 + p2 +

√
nk log n log2 n). They presented an O(n)-space and

O(p1 + p2 +
√
n log log n) query time structure for the counting version of Prob-

lem 2 (i.e., just report the value k). We remark that the same framework can be
adapted to handle the counting version of Problem 1 as well. Also the O(log log n)
term in the query time can be removed by replacing predecessor search queries
in their algorithm by range emptiness queries. In summary, we have O(n)-space
and Ω̃(

√
n) query time solutions for the reporting/counting versions of these

problems. However, the question whether these are the best possible bounds
remains unanswered.

Problem 3 is a generalization of Problem 1 known as the two-dimensional
substring indexing problem, and was introduced by Ferragina et al. [7]. They
reduced it to another problem known as the common colors query problem,
where the task is to preprocess an array of colors and maintain a data structure,
such that whenever two ranges comes as a query, we can output the unique colors
which are common to both ranges. Based on their solution for this new problem,
they presented an O(n2−ε) space and O(nε+k) query time solution for Problem
3, where ε is any constant in (0, 1]. Later Cohen and Porat [6] presented a space
efficient solution for the common colors query problem of space O(n log n) words
and query time O(

√
nk log n log2 n). Therefore, the current best data structure

for two-dimensional substring indexing problem occupies O(n log n) space and
processes a query in O(p1 + p2 +

√
nk log n log2 n) time.

1 Specifically k is the maximum of 1 and the output size.

1.1 Our Results

In this paper, we use the Word-RAM model of computation with word size
w = Ω(log n). The following summarizes our main results.

– We present a strong connection between the counting versions of the string
indexing problems (Problem 1, 2, and 3) and the boolean matrix multiplica-
tion problem. Specifically, we show that multiplying two

√
n ×
√
n boolean

matrices can be reduced to the problem of indexing D (in Problem 1, Prob-
lem 2, or Problem 3) and answering n counting queries. However, matrix
multiplication is a well known hard problem and this connection gives us a
hardness result for the pattern matching problems under considerations.

– We present an improved upper bound for the common colors query problem,
where the space and query time are O(n) and O(

√
nk log n) respectively.

Therefore, we now have a linear-space and O(p1 + p2 +
√
nk log n) query

time index for the two-dimensional substring indexing problem (Problem 3).

2 Hardness Results

The hardness results are reductions from boolean matrix multiplication. Through
this section we use similar techniques to [3–5]. In the boolean matrix multipli-
cation problem we are given two n × n matrices A and B with {0, 1} entries.
The task is to compute the boolean product of A and B, that is replace multi-
plication by logical and, and replace addition by logical or. Letting ai,j , bi,j , ci.j
denote entry i, j of respectively A, B and C the task is to compute for all i, j

ci,j =

n∨
k=1

(ai,k ∧ bk,j).

The asymptotically fastest algorithm known for matrix multiplication cur-
rently uses O(n2.3728639) time [9]. This bound is achieved using algebraic tech-
niques (like in Strassen’s matrix multiplication algorithm) and the fastest com-
binatorial algorithm is still cubic divided by some poly-logarithmic factor [1].

In this section, we prove that the problem of multiplying two
√
n ×

√
n

boolean matrices A and B can be reduced to the problem of indexing D (in
Problem 1 or 2) and answering n counting queries. This is evidence that unless
better matrix multiplication algorithms are discovered we should not expect
to be able to preprocess the data and answer the queries much faster than
Ω((
√
n)ω)) = Ω(nω/2) (ignoring poly-logarithmic factors) where ω is the matrix

multiplication exponent. In other words one should not expect to be able to
have small preprocessing and query time simultaneously. Currently we cannot
achieve better than Ω(n1.18635) preprocessing time and Ω(n0.18635) query time
simultaneously.

We start the next section with a brief discussion on how to view boolean
matrix multiplication as solving many set intersection problems. Then we give
the reductions from the matrix multiplication problem to Problem 2 and describe
how to adapt it for Problem 1.

2.1 Boolean Matrix Multiplication

A different way to phrase the boolean matrix multiplication problem is that
entry ci,j = 1 if and only if ∃k : ai,k = bk,j = 1. For any two matrices A and
B let Ai = {k | ai,k = 1} and similarly let Bj = {k | bk,j = 1}. It follows that
ci,j = 1 if and only if Ai ∩Bj 6= ∅. In this manner we view each row of matrix A
as a set containing the elements corresponding to the indices where there is a 1,
and similarly for columns in B. For completeness we also use Ai = {k | ai,k = 0}
and Bi = {k | bk,j = 0}.

A naive approach to solving Problem 1 would be to index the documents
such that we can find all documents containing a query pattern fast. This way a
query would be to find all the documents that P1 occurs in and the documents
that P2 occurs in separately and then return the intersection of the two result
sets. This is obviously not a good solution in the worst case, but it illustrates
that the underlying challenge is to solve set intersection.

We observed that boolean matrix multiplication essentially solves set inter-
section between rows of A and columns of B, so the idea for the reductions
is to use the fact that queries for Problems 1 and 2 essentially also solve set
intersection. We now give the reductions.

2.2 The Reductions

We first relax the data structure problems. Instead of returning a list of docu-
ments satisfying the criteria we just want to know whether the list is empty or
not, i.e. return 0 if empty and 1 if nonempty.

Let A and B be two
√
n ×
√
n boolean matrices and suppose we have an

algorithm for building the data structure for the relaxed Problem 2. We now
wish to create a set of strings D based on A and B, build the data structure
on D and do n queries, one for each entry in the product of A and B. In the
following we need to represent a subset of {0, 1, . . . , 2

√
n} as a string, which we

do in the following manner.

Definition 1. Let X = {x1, x2, . . . , x`} ⊆ {0, 1, . . . , 2
√
n}, then we represent

the set X as str(X) = bin(x1)#bin(x2)# · · ·#bin(x`)# where bin(·) gives the
binary representation of the number · using

⌈
1
2 log n+ 1

⌉
bits.

For the matrix A we define
√
n strings: dA1 , d

A
2 , . . . , d

A√
n

and similarly for B we

define dB1 , d
B
2 , . . . , d

B√
n
. Construct dBj = str({k+

√
n | k ∈ Bj} and dAi = str(Ai).

We construct the
√
n strings in D as: d` = dA` d

B
` for 1 ≤ ` ≤

√
n.

Lemma 1. Each string in D is at most O(
√
n log n) characters long.

Proof. There are at most
√
n elements in A` and at most

√
n elements in B`.

Each element in A` and B` contributes exactly one number to the string d`
and one ’#’. Each number uses exactly

⌈
1
2 log n+ 1

⌉
characters. In total we get(

|A` + |B`|
)

(
⌈
1
2 log n+ 1

⌉
+ 1) ≤ 2

√
n
⌈
1
2 log n+ 1

⌉
+ 2
√
n = O(

√
n log n) ut

Corollary 1. The total length of the strings in D is

√
n∑

i=1

di = O(n log n).

Proof. Follows since there are at most
√
n strings in D and by Lemma 1 each

string is at most O(
√
n log n) characters long. ut

We have now created the set of strings, D, that we wish to build the data
structure on. We now specify the queries and prove that using these queries we
can solve the matrix multiplication problem.

Lemma 2. The entry ci,j = 1 if and only if the query P+ = bin(i), P− =
bin(
√
n+ j) returns 1.

Proof. Suppose that ci,j = 1. Then by a previous discussion there must exist a k
such that ai,k = bk,j = 1. By construction the string bin(i) occurs as a substring
in dAk since ai,k = 1. If bk,j = 1 we know that k ∈ Bj and therefore k 6∈ Bj so
the string bin(

√
n + j) is not in dBk . It follows that the string dk satisfies the

conditions and the query returns 1.
Suppose the query (P+, P−) returns 1, then by definition there exists a

d` ∈ D such that bin(i) occurs in d` and bin(
√
n + j) does not occur in d`.

All numbers in d` but the first are surrounded by ’#’ and all numbers are the
same length as |P+|. Furthermore any number in d` less than

√
n is only there

because of a 1 in column ` of A. In particular ai,` = 1, otherwise d` would not
satisfy the conditions. Additionally by construction the binary representation of
any number 2

√
n ≥ m >

√
n appears in d` if and only if b`,m = 0. In particular

bin(j +
√
n) did not occur in d`, therefore b`,j = 1. We now have a witness (`)

where ai,` = b`,j = 1, and we conclude ci,j = 1. ut

We are now able to give the following theorems:

Theorem 1. Let P (n) be the preprocessing time for building the data structure
for Problem 1 on a set of strings of total length n and let Q(n) be the query time.
In time O(P (n log n) + n · Q(n log n) + n log n) we can compute the product of
two
√
n×
√
n boolean matrices.

Proof. Follows by the lemmas and the discussion above. ut

Similarly for Problem 2 we obtain:

Theorem 2. Let P (n) be the preprocessing time for building the data structure
for Problem 2 on a set of strings of total length n and let Q(n) be the query time.
In time O(P (n log n) + n · Q(n log n) + n log n) we can compute the product of
two boolean matrices.

Proof. In the discussion above substitute Bj with Bj , P
+ and P− with P1 and

P2 respectively.

As a side note, observe that if we replace the problems by their counting
version (i.e. count the number of strings in D that satisfy the condition) then
these problems solve matrix multiplication with 0/1 matrices and the regular
addition and multiplication operations using the same reductions.

3 The Common Colors Query Problem

In this section, we present an improved upper bound for the common colors
query problem and the main result is summarized below.

Theorem 3. An array E of n colors can be indexed in O(n)-word space so that
the following query can be answered in O(

√
nk log n) time: report the unique

colors appearing in both E[a...b] and E[c...d], where a, b, c and d are input pa-
rameters and k is the output size.

Corollary 2. The two dimensional substring indexing problem (problem 3) can
be solved in linear space and O(p1 + p2 +

√
nk log n) query time.

Proof. Ferragina et al. showed that Problem 3 can be reduced to the common
colors problem [7]. When combined with Theorem 3, we achieve the result. ut

First we give an overview, and then present the details of the proposed data
structure. Let Σ = {σ1, σ2, σ3, ..., σ|Σ|} be the set of colors appearing in E.
Without loss of generality we assume |Σ| ≤ n. The main structure is a binary
tree ∆ (not necessarily balanced) of |Σ| nodes, where each color is associated
with a unique node in ∆. Specifically, the color associated with a node u is given
by σino(u), where ino(u) is the in-order rank of u. Also we use Σ(u) to represent
the set of colors associated with the nodes in the subtree of u. Let [q, r] and
[s, t] be two given ranges in E, then Outq,r,s,t denotes the set of colors present
in both [q, r] and [s, t]. We maintain auxiliary data structures for answering the
following subqueries efficiently.

Subquery 1 Given i ∈ [1, |Σ|] and ranges [q, r] and [s, t] is σi ∈ Outq,r,s,t?

Subquery 2 Given u ∈ ∆ and ranges [q, r] and [s, t] is Σ(u)∩Outq,r,s,t empty?

3.1 Query Algorithm

To answer the query (i.e., find Outa,b,c,d, where [a, b] and [c, d] are the input
ranges), we perform a preorder traversal of ∆. Upon reaching a node u, we issue
a Subquery 2: Is Σ(u) ∩Outa,b,d,d empty?

– If the answer is yes (i.e., empty), we can infer that none of the color associ-
ated with any node in the subtree of u is an output. Therefore, we skip the
subtree of u and move to the next node in the preorder traversal.

– On the other hand if Subquery 2 at u returns no, there exists at least one
node v in the subtree of u, where σino(v) is an output. Notice that v can
be the node u itself. Therefore, we first check if σino(u) ∈ Outa,b,c,d using
Subquery 1. If the query returns yes, we report σino(u) as an output and
continue the preorder traversal.

By the end of this procedure, all colors in Outa,b,c,d has been reported.

3.2 Details of the Data Structure

We now present the details. For any node u in ∆, we use nu to represent the
number of elements in E with colors in Σ(u). i.e., nu = |{i|E[i] ∈ Σ(u)}|. Then,
we construct ∆ as follows, maintaining the invariant:

nu ≤ n
(

1

2

)depth(u)
Here depth(u) ≤ log n is the number of ancestors of u. (We remark that this
property is essential to achieve the result in Lemma 4 stated below). The follow-
ing recursive algorithm can be used for constructing ∆. Let fi be the number of
occurrences of σi in E. Initialize u as the root node and Σ(u) = Σ. Then, find
the color σz ∈ Σ(u), where∑

i<z,σi∈Σ(u)

fi ≤
1

2

∑
σi∈Σ(u)

fi and
∑

i>z,σi∈Σ(u)

fi ≤
1

2

∑
σi∈Σ(u)

fi

Partition Σ(u) into three disjoint subsets Σ(uL), Σ(uR) and {σz}, where

Σ(uL) = {σi|i < z, σi ∈ Σ(u)}

Σ(uR) = {σi|i > z, σi ∈ Σ(u)}
If Σ(uL) is not empty, then we add a left child uL for u and recurse further from
uL. Similarly, if Σ(uR) is not empty, we add a right child uR for u and recurse
on uR. This completes the construction of ∆. Since ∆ is a tree of O(|Σ|) = O(n)
nodes, it occupies O(n) words. The following lemmas summarize the results on
the structures for handling Subquery 1 and Subquery 2.

Lemma 3. Subquery 1 can be answered in O(log log n) time using an O(n)-word
structure.

Proof. The array E can be stored using n log |Σ|(1 + o(1))-bits (or O(n)-word
of space), and supporting rankE(j, σi): find the number of occurrences of σi
in E[1...j] in O(log log |Σ|) = O(log log n) time for any color σi ∈ Σ [10].
The answer to Subquery 1 is yes if both (rankE(r, σi) − rankE(q − 1, σi)) and
(rankE(t, σi)− rankE(s− 1, σi)) are nonzero and no otherwise. ut

Lemma 4. There exists an O(n)-word structure for handling Subquery 2 in the
following manner:

– If Σ(u) ∩Outq,r,s,t = ∅, then return yes in time O
(

logn
log logn +

√
nu logε n

)
– Otherwise, one of the following will happen

• Return no in O
(

logn
log logn

)
time

• Return the set Σ(u) ∩Outq,r,s,t in O
(

logn
log logn +

√
nu logε n

)
time

Proof. See Section 3.4.

By putting all the pieces together, the total space becomes O(n) words.

3.3 Analysis of Query Algorithm

The structures described in Lemma 3 and Lemma 4 can be used as black boxes
to support our query algorithm. However, we slightly optimize the algorithm as
follows: when we issue Subquery 2 at a node u, and the structure in Lemma 4
returns the set Σ(u)∩Outa,b,c,d (this includes the case where Subquery 2 returns
yes), we do not recurse further in the subtree of u. Next we bound the total time
for all Subqueries.

Let k = |Outa,b,c,d| be the output size and ∆′ be the subtree of ∆ consisting
only of those nodes which we visited processing the query. Then we can bound
the size of ∆′:

Lemma 5. The number of nodes in ∆′ is O(k log(n/k))

Proof. The parent of any node in ∆′ must be a node on the path from root
to some node u, where σino(u) ∈ Outa,b,c,d. Since the height of ∆′ is at most
log n, the number of nodes with depth at least log k on any path is at most
log n − log k = log(n/k). Therefore, number of nodes in ∆′ with depth at least
log k is O(k log(n/k)). Also the total number of nodes in ∆ with depth at most
log k is O(k). ut

We spend O(log log n) time for Subquery 1 in every node in ∆′. If a node
u is an internal node in ∆′, then Subquery 2 in u must have returned yes in

O
(

logn
log logn

)
time (otherwise, the algorithm does not explore its subtree). On the

other hand, if a node v is a leaf node in ∆′, we spend a lot more time. Thus by
combining all, the overall query processing time can be bounded as follows.

O

(
k log(n/k)

log n

log log n
+
√
n logε n

∑
v∈leaves

2−depth(v)/2

)

= O

k log(n/k)
log n

log log n
+
√
n logε n

√ ∑
v∈leaves

12
∑

v∈leaves

2−depth(v)

 (1)

= O

(
k log(n/k)

log n

log log n
+
√
n logε n

√
k log(n/k)× 1

)
(2)

= O
(√

nk log n
)
,

Here Equation (1) is by Cauchy-Schwarz’s inequality,2 while Equation (2)
is using Kraft’s inequality: for any binary tree,

∑
`∈leaves 2−depth(`) ≤ 1. This

completes the proof of Theorem 3.

2 ∑n
i=1 xiyi ≤

√∑n
i=1 x

2
i

√∑n
i=1 y

2
i .

3.4 Proof of Lemma 4

The following are the building blocks of our O(n)-word structure.

1. For every node u in ∆, we define (but not store) Eu as an array of length
nu, where Eu[i] represents the ith leftmost color in E among all colors in
Σ(u). Thus for any given range [x, y], the list of colors in E[x...y], which are
from Σ(u) appears in a contiguous region [xu, yu] in Eu, where
– xu = 1+ the number of elements in E[1...x− 1], which are from Σ(u).
– yu = the number of elements in E[1...y], which are from Σ(u).

Notice that the set of colors in Σ(u) can be represented as contiguous
range of numbers, and the task of computing [xu, yu] for any given x, y
and u can be reduced to two orthogonal range counting queries in two di-
mensions. We therefore maintain O(n)-word structure for executing this in
O(log n/ log log n) time [14].

2. An
√
nu ×

√
nu boolean matrix Mu, for every node u in ∆. For this, we

first partition Eu into blocks of size
√
nu, where the ith block is given by

Eu[1 + (i− 1)
√
nu, i
√
nu]. Notice that the number of blocks is at most

√
nu.

Then, Mu[i][j] = 1, iff there is at least one color, which appear in both the ith
block and the jth block of Eu. We also maintain a two-dimensional range
maximum query structure (RMQ) with constant query time [2] over each
Mu. The total space required is O(

∑
u∈∆ nu) = O(n

∑
u∈∆ 2−depth(u)) =

O(n log n) bits.
3. Finding the leftmost/rightmost element in Eu[x...y], which is from Σ(u), for

any given x, y, and u can be reduced to an orthogonal successor/ predecessor
query. We therefore maintain O(n)-word structure for supporting this query
in O(logε n) time [18].

We use the following steps to answer if Σ(u) ∩Outq,r,s,t is empty.

1. Find [qu, ru] and [su, tu] in O(log n/ log log n) time.
2. Find [q′u, r

′
u] and [s′u, t

′
u], the ranges corresponds to the longest spans of

blocks within Eu[qu, ru] and Eu[su, tu] respectively. Notice that q′u− qu, ru−
r′u, s

′
u− su, tu− t′u ∈ [0,

√
nu). Check if there is at least one common in both

Eu[q′u, r
′
u] and Eu[s′u, t

′
u] with the following steps.

– Perform an RMQ on Mu with R as the input region, where
R = [1 + (q′ − 1)/

√
nu, r

′/
√
nu]× [1 + (s′ − 1)/

√
nu, t

′/
√
nu].

– If the maximum value within R is 1, then we infer that there is one
color common in Eu[q′u, r

′
u] and Eu[s′u, t

′
u]. Also we can return no as the

answer to Subquery 2.
The time spent so far is O(log n/ log log n).

3. If the maximum value within R in the previous step is 0, we need to do
some extra work. Notice that any color, which is an output must have an
an occurrence in at least one of the following spans Eu[qu, q

′
u − 1], Eu[r′u +

1, ru], Eu[su, s
′
u − 1], Eu[t′u + 1, tu] of length at most 4

√
nu. Therefore, these

colors can be retrieved usingO(
√
nu) successive orthogonal predecessor/successor

queries and with Subquery 1, we can verify if a candidate belongs to the out-
put. The total time required is O(

√
nu logε n).

This completes the proof of Lemma 4.

References

1. N. Bansal and R. Williams. Regularity lemmas and combinatorial algorithms.
Theory of Computing, 8(1):69–94, 2012.

2. G. S. Brodal, P. Davoodi, and S. S. Rao. On space efficient two dimensional range
minimum data structures. Algorithmica, 63(4):815–830, 2012.

3. T. M. Chan, S. Durocher, K. G. Larsen, J. Morrison, and B. T. Wilkinson. Linear-
space data structures for range mode query in arrays. In STACS, volume 14 of
LIPIcs, pages 290–301. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

4. T. M. Chan, S. Durocher, M. Skala, and B. T. Wilkinson. Linear-space data
structures for range minority query in arrays. In SWAT, pages 295–306, 2012.

5. T. M. Chan, K. G. Larsen, and M. Patrascu. Orthogonal range searching on the
ram, revisited. In Symposium on Computational Geometry, pages 1–10. ACM,
2011.

6. H. Cohen and E. Porat. Fast set intersection and two-patterns matching. Theor.
Comput. Sci., 411(40-42):3795–3800, 2010.

7. P. Ferragina, N. Koudas, S. Muthukrishnan, and D. Srivastava. Two-dimensional
substring indexing. J. Comput. Syst. Sci., 66(4):763–774, 2003.

8. J. Fischer, T. Gagie, T. Kopelowitz, M. Lewenstein, V. Mäkinen, L. Salmela, and
N. Välimäki. Forbidden patterns. In LATIN, volume 7256 of Lecture Notes in
Computer Science, pages 327–337. Springer, 2012.

9. F. L. Gall. Powers of tensors and fast matrix multiplication. CoRR, abs/1401.7714,
2014.

10. A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets:
a tool for text indexing. In SODA, pages 368–373. ACM Press, 2006.

11. W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. String retrieval for multi-
pattern queries. In SPIRE, volume 6393 of Lecture Notes in Computer Science,
pages 55–66. Springer, 2010.

12. W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. Document listing for
queries with excluded pattern. In CPM, volume 7354 of Lecture Notes in Computer
Science, pages 185–195. Springer, 2012.

13. W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. Space-efficient framework
for top-k string retrieval. In JACM, 2014.

14. J. JáJá, C. W. Mortensen, and Q. Shi. Space-efficient and fast algorithms for
multidimensional dominance reporting and counting. In ISAAC, volume 3341 of
Lecture Notes in Computer Science, pages 558–568. Springer, 2004.

15. Y. Matias, S. Muthukrishnan, S. C. Sahinalp, and J. Ziv. Augmenting suffix trees,
with applications. In ESA, volume 1461 of Lecture Notes in Computer Science,
pages 67–78. Springer, 1998.

16. S. Muthukrishnan. Efficient algorithms for document retrieval problems. In SODA,
pages 657–666. ACM/SIAM, 2002.

17. G. Navarro. Spaces, trees and colors: The algorithmic landscape of document
retrieval on sequences. CoRR, abs/1304.6023, 2013.

18. Y. Nekrich and G. Navarro. Sorted range reporting. In SWAT, pages 271–282,
2012.

