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Abstract

Given a set of n points in d dimensions, the Euclidean k-means problem (resp. the
Euclidean k-median problem) consists of finding k centers such that the sum of
squared distances (resp. sum of distances) from every point to its closest center
is minimized. The arguably most popular way of dealing with this problem in
the big data setting is to first compress the data by computing a weighted subset
known as a coreset and then run any algorithm on this subset. The guarantee
of the coreset is that for any candidate solution, the ratio between coreset cost
and the cost of the original instance is less than a (1 ± ε) factor. The current
state of the art coreset size is Õ(min(k2 · ε−2, k · ε−4)) for Euclidean k-means
and Õ(min(k2 · ε−2, k · ε−3)) for Euclidean k-median. The best known lower
bound for both problems is Ω(kε−2). In this paper, we improve the upper bounds
Õ(min(k3/2 · ε−2, k · ε−4)) for k-means and Õ(min(k4/3 · ε−2, k · ε−3)) for k-
median. In particular, ours is the first provable bound that breaks through the k2

barrier while retaining an optimal dependency on ε.

1 Introduction

Coresets have become a staple in the design of algorithms for large data sets. In the most general
setting, a coreset compresses the data set in such a way that for any set of previously specified
candidate queries, the cost of evaluating the query and the cost of the coreset are similar, up to an
arbitrary small distortion.

A popular subject in coreset literature is the Euclidean k-means problem. Here, we are given n
points P in d dimensions and our task is to find a set of k points C called centers minimizing

cost(P,C) :=
∑

p∈P minc∈C ∥p− c∥2, where ∥p− c∥ =
√∑d

i=1(pi − ci)2 denotes the Euclidean
distance. In this case, a coreset is a weighted subset of the input such that difference between the
cost for any set of k centers C on the coreset and the cost on the original point set P is at most
ε · cost(P,C). Since its initial study by Har-Peled and Mazumdar [2004], the Euclidean k-means
problem has received arguably the most attention out of any coreset problem. The current state of the
art by Cohen-Addad et al. [2022] yields coresets of size Õ(kε−2 min(k, ε−2)), where Õ(x) hides
multiplicative factors that are polylogarithmic in x. Unfortunately, there is still a gap towards the best
known lower bound of Ω(kε−2) by Cohen-Addad et al. [2022].

We thus have the option of obtaining either an optimal dependency on k, at the cost of a suboptimal
dependency on ε−1, or an optimal dependency on ε−1, at the cost of a suboptimal dependency on
k. While these bounds suggest that the lower bound is the correct answer, things are not as clear on
closer inspection. Quadratic dependencies on k become necessary for many forms of analysis and so
far, it is unknown how to avoid this loss while retaining an optimal dependency on the remaining
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parameters1. Moreover, the trade-off between the dependency on k and the dependency on ε−2 is
natural. Specifically, if k ≈ ε−2 the two previous alternatives Õ(k2/ε2) and Õ(k/ε4) are equal.

In this paper we break through this barrier. Specifically, we show that coresets of size Õ(k1.5ε−2)
exist. In our view, this is further and arguably stronger evidence that the kε−2 bound will be the correct
answer. Another contribution exists on a technical level. Previously, most coreset constructions for
high dimensions heavily relied on terminal embeddings to facilitate the analysis. In this paper, we
present a novel method that avoids terminal embeddings. We expect that our technique may have
further applications for coreset constructions in Euclidean spaces.

1.1 Techniques
Starting point of our work is the framework introduced by Cohen-Addad et al. [2021a] and specifically
Cohen-Addad et al. [2022]. Prior to Cohen-Addad et al. [2022], all coreset analyses required a
dependency of at least k · d · ε−2. To illustrate why, suppose we are sampling points from some
distribution and wish to use the sampled points as an estimator for the true cost of any candidate
solution. The analysis then consists of (1) a bound on the variance σ2 of the estimator and (2) a
bound on the number of solutions |N| to be approximated. This typically results in coresets of size
O(ε−2 · σ2 · log |N|). When enumerating all (discretized) candidate solutions (henceforth called a
net) in d dimensions, virtually all known techniques result in |N| ≈ exp(k · d). The dependency on d
may be reduced to log(k/ε)ε−2 using dimension reduction techniques.

To bypass this, Cohen-Addad et al. [2022] used a chaining-based analysis to define a sequence of
discretized candidate solutions. Specifically, they showed that there exist discretizations Nα of size
exp(kα−2) such that for any point p and any solution S, there exists a solution Sα with

|cost(p,Sα)− cost(p,S)| ≤ α · cost(p,S),

where cost(p,Sα) = mins∈Sα ∥p− s∥2 and cost(p,S) = mins∈S ∥p− s∥2. The idea of the analysis
is then to write cost(p,S) as a telescoping sum

cost(p,S) =
∞∑
h=1

cost(p,S2−(h+1))− cost(p,S2−h)

and show that the sampled points achieve concentration for each summand. The number of candidate
solutions is now |N2−(h+1) | · |N2−h | ≈ exp(k · 22h) but the difference in cost is 2−hcost(p,S). This
directly leads to a variance of the order 2−2hσ2, where σ2 is the variance of the basic estimator. Thus,
the increase in net size is countered by the decrease and variance. Using this technique, Cohen-Addad
et al. [2022] obtained a coreset of size roughly ε−2kσ2.

To obtain a bound on σ2, the framework by Cohen-Addad et al. [2021a] proposed an algorithm
that first computes a solution A with strong structural properties and then samples any point p
proportionate cost(p,A). To simplify the exposition, we assume that A is the optimum, every cluster
has identical cost and every point has identical cost. For this special case, the distribution of Cohen-
Addad et al. [2021a] turns out to be equivalent to uniform sampling. For any given solution S , let ki
be the number of clusters of A whose points are served at cost 2i times their cost in A for i > 22, i.e.
2i = cost(p,S)

cost(p,A) . Cohen-Addad et al. [2021a] showed that their sampling distribution leads to a variance

of the order σ2 ≈
(

k·ki2
i

(k+ki·2i)2

)
·min(ε−2, 2i, k), which yields the Õ(kε−2 min(k, ε−2)) bound.

To improve either the variance or the net size has to reduced. Unfortunately, is unlikely that reducing
σ2 will be possible as the bounds on σ2 obtained by Cohen-Addad et al. [2022] are tight up to
constant factors. Our main goal is to find a net with an finer error of

|cost(p,Sα)− cost(p,S)| ≤ 2−h ·
√

cost(p,S), cost(p,A).

In the case of min(2i, ε−2, k) = 2i, this leads to a reduced variance for the h-th summand of the

order 2−2h · (
√

cost(p,S)cost(p,A))2

cost(p,A)2 ·
(

k·ki

(k+ki·2i)2

)
≤ 2−2h ·

(
k·ki·2i

(k+ki·2i)2

)
. To find such a net, we now

1Coresets of size Õ(kd/ε2) are also known (Cohen-Addad et al. [2021a]). This offers improvements in low
dimensions, but generally a dependency on d is considered worse than a dependency on k or ε−2.

2Observe that if one points of a cluster Cj of A costs 2i times more for i ≥ 3, then all points from Cj do
likewise (up to constant factors).
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have two options. First, we can essentially use the previous nets and rescale 2−h by a factor 2−i/2.
Unfortunately, this leads to nets of size exp(k · 22h2i), so any gain in reducing the variance is
countered by an increase in the net size.

The novelty in our approach now lies in showing that a net of size exp(k · ki · 22h) exists. Com-
bining the two net sizes with the improved variance bound results in a coreset of size roughly
ε−2 log

(
exp(k ·min(ki, 2

i) · 22h)
)
· 2−2h ·

(
k·ki·2i

(k+ki·2i)2

)
, which after some calculation is shown to

be of the order O(k1.5ε−2).

For the remainder of this section we will illustrate how these improved nets can be obtained. The
key idea already appears in the case of a single center. Suppose that s is a candidate center. Then we
can show that there always exists a subspace with orthogonal basis U spanned by a set T of at most
O(α−2) points of P such that

|pT (I − UUT )s| ≤ α · ∥(I − UUT )p∥ · ∥(I − UUT )s∥.

We can then write

∥p− s∥2 = ∥U(p− s)∥2 + ∥(I − UUT )p∥2 + ∥(I − UUT )s∥2 − 2pT (I − UUT )s.

The error for the terms ∥Up− s∥2 and ∥(I − UUT )s∥2 can be made negligibly small using a net of
size exp(α−2). Thus the main loss in error comes from the pT (I − UUT )s term. The key insight is
that when adding the center ci of point p in solution A, we have ∥(I − UUT )p∥2 ≤

√
cost(p,A).

Thus, when adding all the ki centers of clusters that cost 2i more in S than in A to T the net size
becomes exp(α−2+ki). By composing these nets for k candidate centers, we then obtain our desired
bound.

1.2 Related Work
There has been a tremendous amount of work on coresets for Euclidean k-means following the
work in Bachem et al. [2018a,b], Baker et al. [2020], Bandyapadhyay et al. [2021], Becchetti
et al. [2019], Braverman et al. [2022, 2021b], Chen [2009], Cohen-Addad and Li [2019], Cohen-
Addad et al. [2021a,b], Feldman and Langberg [2011], Feldman et al. [2020], Feng et al. [2021],
Fichtenberger et al. [2013], Har-Peled and Kushal [2007], Har-Peled and Mazumdar [2004], Huang
and Vishnoi [2020], Huang et al. [2018, 2019], Langberg and Schulman [2010], Schmidt et al. [2019],
Schwiegelshohn and Sheikh-Omar [2022], Sohler and Woodruff [2018]. Almost as prolific is the
catalogue of work on dimension reduction for clustering problems in Euclidean spaces, see Boutsidis
et al. [2009, 2010, 2015], Charikar and Waingarten [2022a,b], Cohen et al. [2015], Cohen-Addad
and Schwiegelshohn [2017], Drineas et al. [2004], Feng et al. [2019], Makarychev et al. [2019].
The arguably most important dimension reduction technique for coresets are terminal embeddings,
see Cherapanamjeri and Nelson [2021], Elkin et al. [2017], Mahabadi et al. [2018], Narayanan and
Nelson [2019].

Further work on coresets considering objects other than points as centers Braverman et al. [2021a],
Feldman et al. [2010], Huang et al. [2021] or other objectives all together Boutsidis et al. [2013],
Huang et al. [2020], Jiang et al. [2021], Karnin and Liberty [2019], Mai et al. [2021], Molina et al.
[2018], Munteanu et al. [2018], Phillips and Tai [2020], Tukan et al. [2020]. For further reading, we
refer the interested reader to recent surveys Feldman [2020], Munteanu and Schwiegelshohn [2018].

2 Preliminaries and Setup

First, we require the following basic notions. For a point p ∈ Rd, we denote ∥p∥2 =
√∑d

i=1 p
2
i to

be the Euclidean norm of p and ∥p∥1 =
∑d

i=1 |pi|. The distinct number of points in a point set P
is denoted by ∥P∥0. Note that the true number of points |P | may be larger than ∥P∥0 as different
points may lie on the same coordinates. Given a solution S consisting of at most k centers, and
any subset P ′ ⊂ P we use cost(P ′,S) :=

∑
p∈P ′ cost(p,S) =

∑
p∈P mins∈S wpcost(p, s), where

cost(p, s) = ∥p− s∥2 for Euclidean k-means and cost(p, s) = ∥p− s∥ for Euclidean k-median and
wp is a non-negative weight (in the basic case this simply 1 whereas for the coreset it can be any
non-negative number). To unify the notation, we will often write cost(p, s) = ∥p− s∥z where z = 1
corresponds to k-median and z = 2 corresponds to k-means. We also denote by vS ∈ R∥P∥0 the
cost vector associated with the point set P and solution S, that is vSp := wpcost(p, s). Note that
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∥vS∥1 = cost(P,S). The classic coreset guarantee is to show that for any solution S the designated
coreset Ω satisfies

|cost(Ω,S)− cost(P,S)| ≤ ε · cost(P,S).
We will later introduce an equivalent statement that uses cost vectors. It will also be convenient to
consider coresets with an additive error E which satisfy

|cost(Ω,S)− cost(P,S)| ≤ ε · cost(P,S) + E.

Cohen-Addad et al. [2022] showed that any coreset algorithm that works for instances with the
following assumptions can be extended to general instances:

Assumption 1: ∥P∥0 ∈ poly(k, ε−1).

Assumption 2: d ∈ O(log(k/ε) · ε−2).

Assumption 3: wp = 1, for all p ∈ P . Note that this only applies to the weights of the original
points; the coreset points will have different weights.

Assumption 4: There exists a solution A such that

1. |A| ∈ O(k).

2. For any two clusters Ci, Cj induced by A, cost(Ci,A) ≤ 2 · cost(Cj ,A).

3. For any cluster Cj induced by A and any two points p, p′ ∈ Cj , cost(p,A) ≤ 2 ·
cost(p′,A)

To keep this paper self contained, we will detail the validity of these assumptions at the end of this
section.

The sampling procedure is now very simple. Given that these aforementioned assumptions hold, we
sample a points p ∈ Cj with probability Pp := 1

|Cj | ·
cost(Cj ,A)
cost(P,A) and add it to the designated coreset

Ω. Furthermore, p receives the weight wp = 1
Pp

. Overall, our basic cost estimator for any candidate
solution S is therefore

cost(Ω,S) := 1

|Ω|
∑
p∈Ω

cost(p,S) · wp.

It is routine to check that E[cost(Ω,S)] = cost(P,S). The remainder of this section will be devoted
to showing that Ω satisfies for all S

|cost(Ω,S)− cost(P,S)| ≤ ε

log2 ε−1
· (cost(P,S) + cost(P,A)) (1)

Using the framework from Cohen-Addad et al. [2021a], this implies an O(ε) coreset in general.

2.1 Justification of the Assumptions
To obtain the first assumption, we compute any coreset of size poly(k, ε−1) in preprocessing. Con-
structions of these coresets are abundant in literature and any one would serve our needs.

To obtain the second assumption, we apply a terminal embedding on the coreset. A terminal
embedding guarantees that for any point p ∈ P and any point q ∈ Rd, where d is the dimension of
the points of P , we have a mapping f s.t.

∥p− q∥2 = (1± ε)∥f(p)− f(q)∥2.

Narayanan and Nelson [2019] showed that for any n-point set a terminal embedding of target
dimension Õ(ε−2 log n) exists, which, combined with the first assumption, yields the desired target
dimension.

To obtain the third assumption, we merely have to ensure that the weights of the coreset points are
integers. A number of constructions satisfy this but a simple way of always enforcing this is to scale
and round the weights (see Corollary 2 of Cohen-Addad et al. [2021a]).

The fourth assumption follows from the preprocessing of Cohen-Addad et al. [2021a], see Sections 3.3
and 4.1 of that reference. Similarly, the same preprocessing, given that A is an O(1)-approximation,
also shows that Eq 1 implies that the overall construction will be a coreset (subject to rescaling ε by

4



constant factors), see Section 4.2 of the aforementioned reference. We must point out that a point set
cannot always be decomposed into only sets that satisfy the aforementioned assumption. Nevertheless
Cohen-Addad et al. [2022] showed that every other case require only Õ(k/ε2) many sampled points
(compared Lemmas 15 and 17 of that reference.)

Finally, we remark that these steps and assumptions immediately also apply to the k-median problem.

3 Analysis
In this section we prove the following theorems.

Theorem 1. For any set of points in d dimensional Euclidean space, there exists a coreset for
k-means clustering of size Õ(k3/2ε−2).

Theorem 2. For any set of points in d dimensional Euclidean space, there exists a coreset for
k-median clustering of size Õ(k4/3ε−2).

If not remarked upon, the analysis will holds for both problems.

We first describe the random process used to show concentration of the estimator.

3.1 Setting up the Chaining Analysis
First, we observe that Eq.1 is equivalent to showing

sup
S

|cost(Ω,S)− ∥v∥1|
(cost(P,S) + cost(P,A))

≤ ε

log2 ε−1
.

Our goal is to show that

EΩ

[
sup
S

|cost(Ω,S)− ∥v∥1|
(cost(P,S) + cost(P,A))

]
≤ ε

log2 ε−1
,

where EΩ is meant to denote the expectation over the randomness of Ω. This implies that the desired
guarantee holds with constant probability.

We now apply a standard symmetrization argument.

Lemma 1 (Appendix B.3 of Rudra and Wootters [2014]). Let gp be independent standard Gaussian
random variables. Then.

EΩsup
S

[∣∣∣∣∣
1
|Ω|
∑

p∈Ω cost(p,S) · wp − ∥v∥1
(cost(P,S) + cost(P,A))

∣∣∣∣∣
]
≤

√
2πEΩEgsup

S

[∣∣∣∣∣
1
|Ω|
∑

p∈Ω cost(p,S) · wp · gp
(cost(P,S) + cost(P,A))

∣∣∣∣∣
]
.

It is therefore sufficient to show

EΩEgsup
S

[∣∣∣∣∣
1
|Ω|
∑

p∈Ω cost(p,S) · wp · gp
(cost(P,S) + cost(P,A))

∣∣∣∣∣
]
≤ ε√

2π log2 ε−1
. (2)

Let z = 1 for Euclidean k-median and 2 for Euclidean k-means. We partition the clusters of any
solution S by type. We consider a cluster Cj of type Ti if for

2i min
p∈Cj

cost(p,A) ≤ min
p∈Cj

min
s∈S

cost(p,S) ≤ 2i+1 min
c∈A

cost(p,A).

The number of clusters Cj ∈ Ti are denoted by ki. If Cj is of type i ≤ 3, we say Cj is of type Tsmall

and if Cj is of type i ≥ log γε−z , for a sufficiently large absolute constant γ, we say that Cj is of
type Tlarge. Then, we show

EΩEg

[
sup
S

∣∣∣∣∣
1
|Ω|
∑

Cj∈Tsmall

∑
p∈Cj∩Ω cost(p,S)wp · gp

(cost(P,S) + cost(P,A))

∣∣∣∣∣
]
≤ ε√

2π log3 ε−1
(3)

EΩEg

[
sup
S

∣∣∣∣∣
1
|Ω|
∑

Cj∈Ti

∑
p∈Cj∩Ω cost(p,S)wp · gp

(cost(P,S) + cost(P,A))

∣∣∣∣∣
]
≤ ε√

2π log3 ε−1
(4)

EΩEg

[
sup
S

∣∣∣∣∣
1
|Ω|
∑

Cj∈Tlarge

∑
p∈Cj∩Ω cost(p,S)wp · gp

(cost(P,S) + cost(P,A))

∣∣∣∣∣
]
≤ ε√

2π log3 ε−1
(5)
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Note that if Equation 4 holds for i ∈ {3, . . . , log 1/ε}, this also implies Equation 2, as the error from
each type can only sum up in the worst case and there are at most O(log ε−1) many types.

The small and large types are comparatively simple to handle.

Lemma 2 (Lemmas 15 and 16 of Cohen-Addad et al. [2022]). Let |Ω| ≥ κ k
ε2 log

10(k/ε) for some
absolute constant κ. Then Equations 3 and 5 hold.

Our main objective will be to prove the following lemma.

Lemma 3. Let |Ω| ≥ κ1
k1+z/(z+2)

ε2 log10(k/ε) ≥ κ2
k
ε2 log

10(k/ε) ·
(

min(ki,2
i)·2ik·ki

(k+ki·2i)2

)
for some

absolute constants κ1 and κ2. Then Equation 4 holds.

Combining Lemma 2 and Lemma 3 then implies Theorem 1.

3.2 Proof of Lemma 3
The proof of Lemma 3 mainly consists of defining a nested sequence of nets over cost vectors
over which we apply a union bound. Roughly speaking, for any cost vector vS , we aim to find an
approximating cost vector v′ such that

|vSp − v′p| ≤ ε ·
√

cost(p,S)z−1 · cost(p,A)3−z.

Thus, on closer inspection, we have an error proportionate to ε ·
√

cost(p,S) · cost(p,A) for k-means
and ε · cost(p,S) for k-median.

This analysis differs from the terminal-embedding-based nets one used in Cohen-Addad et al. [2022],
which aimed for an error of the order ε · cost(p,S).
Suppose we have, for every ε, a suitable collection of approximating cost vectors Nlog 1/ε with this
guarantee for any candidate S3. Let vS,ε be the cost vector approximating vS in the net Nlog 1/ε.
Then we can write

vSp =

∞∑
h=0

vS,2−(h+1)

p − vS,2−h

p ,

with vS,1
p = 0. Our goal is to now bound

EΩEg

[
sup
S

∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω cost(p,S)wp · gp

|Ω| · (cost(P,S) + cost(P,A))

∣∣∣∣∣
]

= EΩEg

sup
vS

∣∣∣∣∣∣
∑∞

h=0

∑
Cj∈Ti

∑
p∈Cj∩Ω(v

S,2−(h+1)

p − vS,2−h

p )wp · gp
|Ω| · (cost(P,S) + cost(P,A))

∣∣∣∣∣∣


≤
∞∑
h=0

EΩEg

 sup
vS,h+1−vS,h∈N

2−(h+1)×N
2−h

∣∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω(v

S,2−(h+1)

p − vS,2−h

p )wp · gp
|Ω| · (cost(P,S) + cost(P,A))

∣∣∣∣∣∣


= EΩEg

[
sup

vS,1∈N2−1

∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω vS,2−1

p wp · gp
|Ω| · (cost(P,S) + cost(P,A))

∣∣∣∣∣
]

(6)

+

log ε−2∑
h=1

EΩEg

 sup
vS,h+1−vS,h∈Nh+1×Nh

∣∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω(v

S,2−(h+1)

p − vS,2−h

p )wp · gp
|Ω| · (cost(P,S) + cost(P,A))

∣∣∣∣∣∣
 (7)

+

∞∑
h=log ε−2

EΩEg

 sup
vS,h+1−vS,h∈Nh+1×Nh

∣∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω(v

S,2−(h+1)

p − vS,2−h

p )wp · gp
|Ω| · (cost(P,S) + cost(P,A))

∣∣∣∣∣∣
(8)

We will bound Equations 6 and 8 directly. For the O(log ε−1) equations in term 7, we prove a bound
on each. Thus, we aim for a bound of the order O( ε

log3 ε−1 ); the overall bound then follows by

3The reason for indexing the net by Nlog 1/ε and not by Nε is to conveniently sum over
∑∞

i=1 log |Ni|, rather
than

∑∞
i=1 log |N2i |.
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summing up the errors and rescaling by constant factors. Technically, bounding each of the terms in
Equations 6, 7 and 8 requires somewhat different arguments. For the sake of illustrating the key new
ideas we first focus on Eq. 7.

The next section presents the nets for the cost vectors. The subsequent section bounds the variance.
The final section combines these results and completes the proof of Lemma 3.

Cost Vector Nets

Definition 1. Let I be a metric space, P a set of points, k a positive integer, and let α > 0 be
a precision parameters and let A be some solution with at most k′ centers. Let C ⊂ Ik be a
(potentially infinite) set of candidate k-clusterings. We say that a set of cost vectors N ⊂ R|P | is an
(α, k)-clustering net if for every S ∈ C there exists a vector v′ ∈ N such that the following condition
holds. For all p ∈ P ,

|vSp − v′p| ≤ α ·
√

cost(p,S)z−1 · cost(p,A)3−z.

These clustering nets have a substantially smaller error than those proposed in Cohen-Addad et al.
[2022], which had an error of the order α · (cost(p,S) + cost(p,A)).

Given a set of points X in Euclidean space, an ε-net is a subset S ⊂ X such that for every p ∈ X
there exists a q in S with ∥p− q∥ ≤ ε. Throughout this section, we will frequently use the fact that
in d dimensions, there exists an ε-net of cardinality (1 + 2/ε)d (see for example Pisier [1999]). Our
main goal in this section is to prove the following lemma.

Lemma 4. Let P be a set of points in d dimensional Euclidean space, k a positive integer, A be a
candidate solution with ki clusters and γ and absolute constant. Define C to be the set of possible
candidate centers such that the clusters induced by A are of type i, with 3 ≤ i ≤ log 1/εz . For all
α ≤ 1/2, there exists an (α, k)-clustering net N of C with

|N| ≤ exp

(
γ · k · log ∥P∥0 ·min(ki + α−2, α−2 · 2i) · i log 1

α
)

)
.

Proof. We first show that given a set of vectors P and any vector s, there always exists a small subset
U of P such that all inner products between p ∈ P and s are preserved by the span of U .

Lemma 5. Let P = {p1, ..., pn} ⊆ Rd and let s ∈ Rd. Then there exists U ⊆ P , with |U | = O(ε−2)
and orthogonal basis ΠU , such that

∀p ∈ P, |pT (I −ΠUΠ
T
U )s| ≤ ε∥(I −ΠUΠ

T
U )p∥ ·min

p∈P
∥p− s∥ (9)

Proof. Start with U0 = argminp∈P ∥p− s∥, and proceed in rounds. Note that ∥(I −ΠU0
ΠT

U0
)s∥ ≤

∥p− s∥ for all p ∈ P .

In each round i, denote the current set of vectors Ui with orthogonal basis ΠUi
. We add a vector pi if

the following equation holds

|pT (I −ΠUi
ΠT

Ui
)s| ≥ ε∥(I −ΠUi

ΠT
Ui
)p∥ · ∥(I −ΠU0

ΠT
U0
)s∥.

We observe that if this equation holds for all p ∈ P , then Equation 9 must also hold. Note that
(I − ΠUi

ΠT
Ui
)p is orthogonal to the span of Ui of all previously added vectors. Thus, due to the

Pythagorean theorem, we have

t∑
i

(
(pT (I −ΠUi−1Π

T
Ui−1

)s)

∥(I −ΠUi−1Π
T
Ui−1

)p∥ · ∥(I − U0UT
0 )s∥

)2

≥ t · ε2.

Therefore, after t = ε−2 many rounds (I − ΠUΠ
T
U )s = 0, which implies that after at most ε−2

rounds Eq. 9 has to hold.

With this lemma, we can prove our net bound. Our objective is to generate a small set of cost
vectors that satisfy the desired guarantee. Throughout this proof, let dist(p,A) = cost(p,A)1/z

be the distance of p to its center in A. We first define the cost vectors. For each subset U of size

7



O(min(α−22i, α−2 + ki), we consider the the subspace ΠU spanned by U . In this subspace we
consider (α/2i) · dist(p,A)-nets of every ball centered around ΠUp with radius 60 · 2i/2 · dist(p,A)
for all p ∈ P . Such a net has size exp(γ · rank(U)i logα), for some constant γ and there exist at
most ∥P∥0 · exp(γ · |U |i logα) many such nets. Furthermore, there are at most

(∥P∥0

|U |
)
≤ ∥P∥|U |

0

such subsets.

Now, for every point p, define an exponential sequence α2(1 + α/2i)j for j ∈ {0, . . . log 10 · 2i}.
There exist at most ∥P∥0 such sequences and every such sequence consists of at most O(α−1 · 2i · i)
many values. We combine every net point in ever ball of every subspace with all values in the
exponential sequence to obtain the evaluation for a single candidate center. The overall number of
candidate centers is therefore of the order ∥P∥|U |

0 · exp(γ · |U |i logα), for a sufficiently large γ. The
overall number of candidate cost vectors is now the number of k subsets of candidate centers, i.e.
∥P∥k·|U |

0 · exp(γ · k · |U |i logα). Combined with the bounds on U , this yields the desired size. What
remains to be shown is that the thus constructed cost vectors are a (α, k)-clustering net.

Here, we use that for any center s in some candidate solution S

∥p− s∥2 = ∥ΠU (p− s)∥2 + ∥(I −ΠUΠ
T
U )p∥2 + ∥(I −ΠUΠ

T
U )s∥2 − 2pT (I −ΠUΠ

T
U )s.

The nets for the span of ΠU are so fine that the distance ∥ΠUs − s′∥2 is essentially negligible
compared to the maximum error incurred by 2pT (I − ΠUΠ

T
U )s, where s′ is the point in the span

of ΠU closest to ΠUs and the same holds for the exponential sequence approximating the term
∥(I −ΠUΠ

T
U )s∥2. Thus, the error is dominated by 2pT (I −ΠUΠ

T
U )s. Now, we can assume that the

input point closest to s is included in U . Then minp∈P ∥p − s∥ ≤ O(1) · 2i/z · cost(p,A)1/z and
∥(I −ΠUΠ

T
U )p∥ ≤ cost(p,S)1/z ≤ O(1) · 2i/zcost(p,A)1/z . If α−2 · 2i < ki + α−2, we have

|pT (I−ΠUΠ
T
U )s| ≤ α·2−i/2 ·∥(I−ΠUΠ

T
U )p∥·min

p∈P
∥p−s∥ ≤ O(1)·α·cost(p,S)z−1cost(p,A)3−z

otherwise we have ∥(I −ΠUΠ
T
U )p∥ ≤ cost(p,A)1/z which implies

|pT (I −ΠUΠ
T
U )s| ≤ α · ∥(I −ΠUΠ

T
U )p∥ ·min

p∈P
∥p− s∥ ≤ α · cost(p,S)z−1cost(p,A)3−z.

Rescaling α by constant factors yields the claim.

We also require an additional net that works for low dimensions.

Lemma 6 (Compare Lemma 22 of Cohen-Addad et al. [2022]). Let P be a set of points in d
dimensional Euclidean space, k a positive integer and A be a candidate solution. Define C to
be the set of possible candidate centers such that the clusters induced by A are of type i, with
3 ≤ i ≤ log 1/ε2. For all α ≤ 1/2, there exists an (α, k)-clustering net N of C with

|N| ≤ exp (γ · k · d · i log(4/α)) ,

where γ is an absolute constant.

Proof. The only difference to Lemma 22 of Cohen-Addad et al. [2022] is that the nets are required
to have an error of α ·

√
cost(p,S)cost(p,A) rather than α · (cost(p,S) + cost(p,A)). This can be

done by rescaling ε by 2−i, which in turn is absorbed by the constant γ as 2i ≤ O(1) · ε−2.

Bounding the Variance
We now use the cost vectors to obtain an improved variance for the estimator∑

Cj∈Ti

∑
p∈Cj∩Ω(vS,2−(h+1)

p −vS,2−h

p )wp

(cost(P,S)+cost(P,A)) gp. The bounds on variance for any random variable
∑

apgp

with standard Gaussians gp is Gaussian distributed with mean 0 and variance
∑

a2p.

Before we do this, we require an additional notion. Let E denote the event that 1
|Ω|
∑

p∈Cj∩Ω wp =

(1± ε) · |Cj |. The following lemma bounds the probability of E occurring.

Lemma 7. [Compare Lemma 19 of Cohen-Addad et al. [2022]] If Assumption 4 holds, then event E
holds with probability 1− k−2 if |Ω| > κ · kε−2 log k for a sufficiently high absolute constant κ.
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Lemma 8. Given Assumption 4, the variance of
∑

Cj∈Ti

∑
p∈Cj∩Ω(vS,2−(h+1)

p −vS,2−h

p )wp·gp
|Ω|·(cost(P,S)+cost(P,A)) is at most

γ · 2
−2h

|Ω|
· k · ki2i(z−1)

(k + ki · 2i)2
conditioned on event E

γ · 2
−2h · k
|Ω|

· k · ki2i(z−1)

(k + ki · 2i)2
conditioned on event E

for an absolute constant γ.

Proof. We first observe that since the gp are standard normal Gaussians, the entire estimator is
Gaussian distributed with variance∑

Cj∈Ti

∑
p∈Cj∩Ω

1

|Ω|2

(
(vS,2−(h+1)

p − vS,2−h

p )wp

(cost(P,S) + cost(P,A))

)2

.

We have |vS,2−(h+1)

p − vS,2−h

p | = |vS,2−(h+1)

p − cost(p,S) + cost(p,S) − vS,2−h

p | ≤ 2 · 2−h ·√
cost(p,S)z−1 · cost(p,A)3−z due to Lemma 4. Furthermore, by definition wp =

cost(P,A)|Cj |
cost(Cj ,A) .

Finally, by definition of type i, we have cost(p,S) · |Cj | = O(1) · cost(Cj ,S) and by Assumption 4
we have cost(p,A) · |Cj | = O(1) · cost(Cj ,A) for all p ∈ Cj .

∑
Cj∈Ti

∑
p∈Cj∩Ω

1

|Ω|2

(
(vS,2−(h+1)

p − vS,2−h

p )wp

(cost(P,S) + cost(P,A))

)2

≤ O(1) ·
∑

Cj∈Ti

∑
p∈Cj∩Ω

1

|Ω|2

(
2−h ·

√
cost(p,S)z−1 · cost(p,A)3−z · cost(P,A)|Cj |

cost(Cj ,A) · (cost(P,S) + cost(P,A))

)2

≤ O(1) ·
∑

Cj∈Ti

∑
p∈Cj∩Ω

1

|Ω|2

(
2−2h · cost(Cj ,A)1−z · cost(Cj ,S)z−1 · cost(P,A)2

(cost(P,S) + cost(P,A))
2

)
Now, let ki be the number of clusters of type i. Then due to Assumption 4 cost(Cj ,S) · ki ≤
O(1)cost(P,S), for all Cj of type i. Finally, note that cost(P,A)

cost(Cj ,A) ≤ O(1) · k, also due to Assumption
4. Combining this, we then have

∑
Cj∈Ti

∑
p∈Cj∩Ω

(
(vS,2−(h+1)

p − vS,2−h

p )wp

(cost(P,S) + cost(P,A))

)2

≤ O(1) ·
∑

Cj∈Ti

∑
p∈Cj∩Ω

(
2−2h · 2i(z−1)k2

|Ω|2 · (k + ki · 2i)2

)

≤ O(1) ·
∑

Cj∈Ti

∑
p∈Cj∩Ω

(
2−2h · k
ki · |Ω|2

)
· ki · k · 2i(z−1)

(k + ki · 2i)2

Assuming event E , this may now be bounded by O(1) · 2−2h

|Ω| · k·ki2
i(z−1)

(k+ki·2i)2 . If event E does not hold,

we may bound the term by 2−2h·k
ki·|Ω| · k·ki2

i(z−1)

(k+ki·2i)2 ≤ 2−2h·k
|Ω|

k·ki2
i(z−1)

(k+ki·2i)2 .

Completing the Proof for Eq. 7
Throughout this section, we use the bound on the expected maximum of independent Gaussians.

Lemma 9 (Lemma 2.3 of Massart [2007]). Let gi ∼ N (0, σ2
i ), i ∈ [n] be Gaussian random variables

and suppose σi ≤ σ for all i. Then E[max
i∈[n]

|gi|] ≤ 2σ ·
√
2 lnn.

The number of cost vectors in Nh+1 × Nh is at most
exp

(
γ · k · log ∥P∥0 ·min(ki + 22h, 22h · 2i) · i · h)

)
for some absolute constant γ due to

Lemma 4. With the bound on the variance (Lemma 8 and conditioned on event E), we then have
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log ε−2∑
h=1

EΩEg

 sup
vS,h+1−vS,h∈Nh+1×Nh

∣∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω(v

S,2−(h+1)

p − vS,2−h

p )wp · gp
(cost(P,S) + cost(P,A))

∣∣∣∣∣∣
∣∣∣∣∣∣ E


≤
log ε−2∑
h=1

√
γ · k · log ∥P∥0 ·min(ki + 22h, 22h · 2i) · i · h · 2

−2h

|Ω|
· k · ki2i(z−1)

(k + ki · 2i)2

≤ 2

√
γ · k · log ∥P∥0 ·min(ki, 2i) · i · log3 ε−1 · 1

|Ω|
· k · ki2i(z−1)

(k + ki · 2i)2
. (10)

Conditioned on event E not holding, we then have using a similar calculation

log ε−2∑
h=1

EΩEg

 sup
vS,h+1−vS,h∈Nh+1×Nh

∣∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω(v

S,2−(h+1)

p − vS,2−h

p )wp · gp
(cost(P,S) + cost(P,A))

∣∣∣∣∣∣
∣∣∣∣∣∣ E


≤
log ε−2∑
h=1

√
γ · k · log ∥P∥0 ·min(ki + 22h, 22h · 2i) · i · h · 2

−2h · k
|Ω|

· k · ki2i(z−1)

(k + ki · 2i)2

≤ 2

√
γ · k2 · log ∥P∥0 ·min(ki, 2i) · i · log3 ε−1 · 1

|Ω|
· k · ki2i(z−1)

(k + ki · 2i)2
. (11)

We have P[E ] ≤ 1/k2 due to Lemma 7. Since ∥P∥0 ≤ poly(k, ε−1), 2i ≤ O(1) · ε−2, we can
combine Equations 10 and 11 with the law of total expectation to obtain

log ε−2∑
h=1

EΩEg

 sup
vS,h+1−vS,h∈Nh+1×Nh

∣∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω(v

S,2−(h+1)

p − vS,2−h

p )wp · gp
(cost(P,S) + cost(P,A))

∣∣∣∣∣∣


≤ 2

√
γ · k · log ∥P∥0 ·min(ki, 2i) · i · log3 ε−1 · 1

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2

+2

√
γ · k2 · log ∥P∥0 ·min(ki, 2i) · i · log3 ε−1 · 1

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2
· 1

k2

≤ 4

√
γ · k · log ∥P∥0 ·min(ki, 2i) · i · log3 ε−1 · 1

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2
(12)

Using a straightforward, but tedious calculation, we have min(ki, 2
i)k·ki·2i(z−1)

(k+ki·2i)2 ∈ O(kz/(z+2)).

Specifically, if min(ki, 2
i) = ki, the term may be bounded by k2

i ·k·2
i(z−1)

k3−z·(ki·2i)z−1 . If min(ki, 2
i) = 2i,

the term may be bounded by ki·k·2i·z
k2−z·(ki·2i)z . Setting both terms to be equal, solving for ki yields

ki = k(z+1)/(z+2). Inserting that value of ki back into k2
i ·k·2

i(z−1)

k3−z·(ki·2i)z−1 then yields the upper bound

kz/(z+2). Therefore, by our choice of |Ω|, we can bound Eq. 12 by O(1) ε−2

log3 ε−1 .

Completing the Proof for Eq. 8 Here, we use Lemma 6 and Assumption 2 to show that the number
of cost vectors in Nh+1 × Nh is at most exp

(
γ · k · log ∥P∥0 · ε−2 log h/ε)

)
. Conditioned on event

E , we therefore have
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∞∑
log ε−2

EΩEg

 sup
vS,h+1−vS,h∈Nh+1×Nh

∣∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω(v

S,2−(h+1)

p − vS,2−h

p )wp

(cost(P,S) + cost(P,A))
gp

∣∣∣∣∣∣
∣∣∣∣∣∣ E


≤
∞∑

log ε−2

O(1) ·

√
γ · k · log ∥P∥0 · ε−2 · log h/ε · 2

−2h

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2

≤
∞∑
1

O(1) ·

√
γ · k · log ∥P∥0 · log h/ε ·

2−2h

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2

≤ O(1) ·

√
γ · k · log ∥P∥0 · log 1/ε ·

1

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2

Similarly, if E does not hold, we have

∞∑
log ε−2

EΩEg

 sup
vS,h+1−vS,h∈Nh+1×Nh

∣∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω(v

S,2−(h+1)

p − vS,2−h

p )wp

(cost(P,S) + cost(P,A))
gp

∣∣∣∣∣∣
∣∣∣∣∣∣ E


≤
∞∑

log ε−2

O(1) ·

√
γ · k · log ∥P∥0 · ε−2 · log h/ε · 2

−2hk

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2

≤
∞∑
1

O(1) ·

√
γ · k · log ∥P∥0 · log h/ε ·

2−2hk

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2

≤ O(1) ·

√
γ · k · log ∥P∥0 · log 1/ε ·

k

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2

We have P[E ] ≤ 1/k2 due to Lemma 7. Since ∥P∥0 ≤ poly(k, ε−1), 2i ≤ O(1) · ε−2 and by our
choice of |Ω|, we can combine the last two equations with the law of total expectation to obtain

∞∑
log ε−2

EΩEg

 sup
vS,h+1−vS,h∈Nh+1×Nh

∣∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω(v

S,2−(h+1)

p − vS,2−h

p )wp

(cost(P,S) + cost(P,A))
gp

∣∣∣∣∣∣


≤ O(1) ·

√
k · log k ·min(ki, 2i) · log5 ε−1 · 1

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2
. (13)

Observe that Eq. 13 and Eq. 12 are essentially identical up to lower order terms.

Completing the Proof for Eq. 6 Here, we first split Eq. 6 into two estimators that will be easier

to handle. We split the estimator into two parts as follows. First, let qj :=

∑
p∈Cj

vS,2−1

p

|Cj | . Now we
consider

1

|Ω|

∑
Cj∈Ti

∑
p∈Cj∩Ω(v

S,2−1

p − qj)wp

(cost(P,S) + cost(P,A))
gp (14)

+
1

|Ω|

∑
Cj∈Ti

∑
p∈Cj∩Ω qj · wp

(cost(P,S) + cost(P,A))
gp (15)

11



Thus, Equation 6 becomes

EΩEg

[
sup

vS,1∈N2−1

∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω vS,2−1

p wp

|Ω| · (cost(P,S) + cost(P,A))
gp

∣∣∣∣∣
]

= EΩEg

[
sup

vS,1∈N2−1

∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω |vS,2−1

p − qj |wp

|Ω| · (cost(P,S) + cost(P,A))
gp

∣∣∣∣∣
]

(16)

+ EΩEg

[
sup

vS,1∈N2−1

∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω qj · wp

|Ω| · (cost(P,S) + cost(P,A))
gp

∣∣∣∣∣
]

(17)

Due to Assumption 4, we have cost(Ti,S) = O(1) · kicost(Cj ,S), for any Cj ∈ Ti Thus

EΩEg

[
sup

vS,1∈N2−1

∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω qj · wp

|Ω| · (cost(P,S) + cost(P,A))
gp

∣∣∣∣∣
]

≤ EΩEg

[
sup

vS,1∈N2−1

∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω qj · wp

|Ω| · cost(Ti,S)
gp

∣∣∣∣∣
]

≤ EΩEg

[
sup

vS,1∈N2−1

∣∣∣∣∣max
Cj∈Ti

∑
p∈Cj∩Ω qj · wp

|Ω| · cost(Cj ,S)
gp

∣∣∣∣∣
]

(18)

For the variance of the estimator used for Eq. 16, we use the following lemma.

Lemma 10. If Assumption 4 holds, the variance of 1
|Ω|

∑
Cj∈Ti

∑
p∈Cj∩Ω(vS,2−1

p −qj)wp

(cost(P,S)+cost(P,A)) gp is at most

γ · 1

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2
conditioned on event E

γ · k

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2
conditioned on event E

for an absolute constant γ.

Proof. The proof of this is very close to the proof of Lemma 9 from Cohen-Addad et al. [2021a]. For
k-median, this is a straightforward application of the triangle inequality. For k-means, the analysis is
slightly more involved and included for completeness. Thus, throughout this proof, we have z = 2.

We will bound |vS,2−1

p − qj | for any point p ∈ Cj . Due to the triangle inequality and by Assumption
4 which states that all points have roughly equal distance to their center in A, we have

|
√
vS,2−1

p −√
qj | ≤ O(1) ·

√
cost(p,A).

Futhermore, again due to the triangle inequality, Cj ∈ Ti with i > 3 and Assumption 4, we have

(

√
vS,2−1

p +
√
qj) = O(1)

√
cost(p,S. Therefore

|vS,2−1

p − qj | = |
√
vS,2−1

p −√
qj | · (

√
vS,2−1

p +
√
qj) = O(1)

√
cost(p,S)cost(p,A)

Using this bound and the same steps as in Lemma 8, we then have

∑
Cj∈Ti

∑
p∈Cj∩Ω

1

|Ω|2

(
(vS,2−1

p − qj)wp

(cost(P,S) + cost(P,A))

)2

≤ O(1) ·
∑

Cj∈Ti

∑
p∈Cj∩Ω

1

|Ω|2
cost(p,S)cost(p,A)cost(P,S)2|Cj |2

cost(Cj ,A)2 · (cost(P,S) + cost(P,A))
2

≤ O(1) ·
∑

Cj∈Ti

∑
p∈Cj∩Ω

(
k

ki · |Ω|2

)
· k · ki · 2i

(k + ki · 2i)2
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Conditioned on event E , this now becomes O(1) · 1
|Ω| ·

k·ki·2i
(k+ki·2i)2 and similarly, if event E does not

hold, we have the bound k
|Ω| ·

k·ki·2i
(k+ki·2i)2 .

We now focus on the variance of the estimator used for Eq. 17. Due to Assumption 4, we have
cost(Ti,S) = O(1) · kicost(Cj ,S), for any Cj ∈ Ti Thus

EΩEg

[∣∣∣∣∣ sup
vS,1∈N2−1

∑
Cj∈Ti

∑
p∈Cj∩Ω qj · wp

|Ω| · (cost(P,S) + cost(P,A))
gp

∣∣∣∣∣
]

≤ EΩEg

[∣∣∣∣∣ sup
vS,1∈N2−1

∑
Cj∈Ti

∑
p∈Cj∩Ω qj · wp

|Ω| · cost(Ti,S)
gp

∣∣∣∣∣
]

≤ EΩEg

[∣∣∣∣∣ sup
vS,1∈N2−1

max
Cj∈Ti

∑
p∈Cj∩Ω qj · wp

|Ω| · cost(Cj ,S)
gp

∣∣∣∣∣
]

(19)

We now obtain the following variance for the estimator used in Equation 19.

Lemma 11. If Assumption 4 holds, the variance of
∑

p∈Cj∩Ω qj ·wp

|Ω|·cost(Cj ,S) gp, given that Cj ∈ Ti with
i ∈ {3, . . . , log ε−2} is at most

γ · k

|Ω|
conditioned on event E

γ · k2

|Ω|
conditioned on event E

for an absolute constant γ.

Proof. Recall by Assumption 4 cost(P,S) = O(1) · k · cost(Cj ,S). We have∑
p∈Cj∩Ω

(
qj · wp

|Ω| · cost(Cj ,S)

)2

=
∑

p∈Cj∩Ω

(
qj · cost(P,A) · |Cj |

|Ω| · cost(Cj ,A) · cost(Cj ,S)

)2

= O(1) ·
∑

p∈Cj∩Ω

(
k

|Ω|

)2

Conditioned on event E , |Cj ∩ Ω| = 1
k · |Ω| and this now becomes O(1) · k

|Ω| . Otherwise, we have

the bound k2

|Ω| .

We now bound Equations 16 and 19. For the former, we have |N2−1 | ≤
exp

(
γ · k · log ∥P∥0 ·min(ki, 2

i) · i)
)
. Thus, combined with Lemma 10 and conditioning

on event E , we have

EΩEg

[
sup

vS,1∈N2−1

∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω |vS,2−1

p − qj |wp

|Ω| · (cost(P,S) + cost(P,A))
gp

∣∣∣∣∣ |E
]

= O(1)

√
γ · k · log ∥P∥0 ·min(ki, 2i) · i) ·

1

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2

Similarly, not conditioning on event E implies

EΩEg

[
sup

vS,1∈N2−1

∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω |vS,2−1

p − qj |wp

|Ω| · (cost(P,S) + cost(P,A))
gp

∣∣∣∣∣ |E
]

≤ O(1)

√
γ · k · log ∥P∥0 ·min(ki, 2i) · i) ·

k

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2
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We have P[E ] ≤ 1/k2 due to Lemma 7. Plugging in ∥P∥0 ≤ poly(k, ε−1) and our choice of |Ω|, we
can combine the last two equations with the law of total expectation to obtain

EΩEg

[
sup

vS,1∈N2−1

∣∣∣∣∣
∑

Cj∈Ti

∑
p∈Cj∩Ω |vS,2−1

p − qj |wp

|Ω| · (cost(P,S) + cost(P,A))
gp

∣∣∣∣∣
]

≤ O(1) ·

√
k · log k ·min(ki, 2i) · log5 ε−1 · 1

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2
(20)

For the term in Equation 19, we note that qj ·wp

cost(Cj ,S) = cost(P,A). Thus, for every cluster, we have a
net of size 1, which means we have an overall net of size k. We thus obtain

EΩEg

[
sup

vS,1∈N2−1

max
Cj∈Ti

∣∣∣∣∣
∑

p∈Cj∩Ω qj · wp

|Ω| · cost(Cj ,S)
gp

∣∣∣∣∣ |E
]

≤ O(1)

√
log k

k

|Ω|
· k · ki · 2i
(k + ki · 2i)2

Similarly, conditioning on event E implies

EΩEg

[
sup

vS,1∈N2−1

max
Cj∈Ti

∣∣∣∣∣
∑

p∈Cj∩Ω qj · wp

|Ω| · cost(Cj ,S)
gp

∣∣∣∣∣ |E
]

≤ O(1)

√
log k

k2

|Ω|
· k · ki · 2i(z−1)

(k + ki · 2i)2

Combining both terms, using P[E ] ≤ 1/k2 due to Lemma 7 and the law of total expectation, we
obtain

EΩEg

[
sup

vS,1∈N2−1

max
Cj∈Ti

∣∣∣∣∣
∑

p∈Cj∩Ω qj · wp

|Ω| · cost(Cj ,S)
gp

∣∣∣∣∣
]

≤ O(1) ·

√
k log k

|Ω|
(21)

Combining the bounds in Equations 12, 13, 20 and 21 for the respective terms in Equations 7, 8, 16
and 19 now yields the claim.
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