
Models and Techniques for Proving
Data Structure Lower Bounds

Kasper Green Larsen

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Models and Techniques for Proving Data
Structure Lower Bounds

A Dissertation
Presented to the Faculty of Science and Technology

of Aarhus University
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Kasper Green Larsen

October 26, 2013

Abstract

In this dissertation, we present a number of new techniques and tools for proving
lower bounds on the operational time of data structures. These techniques
provide new lines of attack for proving lower bounds in both the cell probe
model, the group model, the pointer machine model and the I/O-model. In all
cases, we push the frontiers further by proving lower bounds higher than what
could possibly be proved using previously known techniques.

For the cell probe model, our results have the following consequences:

• The first Ω(lg n) query time lower bound for linear space static data struc-
tures. The highest previous lower bound for any static data structure
problem peaked at Ω(lg n/ lg lg n).

• An Ω((lg n/ lg lgn)2) lower bound on the maximum of the update time
and the query time of dynamic data structures. This is almost a quadratic
improvement over the highest previous lower bound of Ω(lg n).

In the group model, we establish a number of intimate connections to the
fields of combinatorial discrepancy and range reporting in the pointer machine
model. These connections immediately allow us to translate decades of research
in discrepancy and range reporting to very high lower bounds on the update
time tu and query time tq of dynamic group model data structures. We have
listed a few in the following:

• For d-dimensional halfspace range searching, we get a lower bound of
tutq = Ω(n1−1/d). This comes within a lg lg n factor of the best known
upper bound.

• For orthogonal range searching, we get a lower bound of tutq = Ω(lgd−1 n).

• For ball range searching, we get a lower bound of tutq = Ω(n1−1/d).

The highest previous lower bound proved in the group model does not exceed
Ω((lg n/ lg lg n)2) on the maximum of tu and tq.

Finally, we present a new technique for proving lower bounds for range
reporting problems in the pointer machine and the I/O-model. With this tech-
nique, we tighten the gap between the known upper bound and lower bound for
the most fundamental range reporting problem, orthogonal range reporting.

5

Acknowledgments

First and foremost, I wish to thank my wife, Lise, for all her support and
encouragement. I also wish to thank her for helping me raise two wonderful
children during my studies. I feel incredibly grateful for having such a lovely
family. Finally, I wish to thank her for moving with me to Princeton with two
so small children, a travel which was much tougher than if we had stayed close
to family and friends. I’ll never forget she did that for me.

Secondly, I wish to thank my advisor, Lars Arge, for an amazing time.
He has done a fantastic job at introducing me to the academic world. In the
beginning of my studies, when I was completely unknown to the community,
Lars did a lot of work in introducing me to important researchers in my area. I
would not have gotten to work with so many talented people, had it not been for
Lars believing enough in me to tell all his peers about me. I also wish to thank
him for the amount of freedom he has given me in my research. Without that,
I would probably never had studied lower bounds, a field completely outside
Lars’ own area of expertise. Finally, I wish to thank him also for creating a
great environment in our research group. I had an immensely fun time and
enjoyed the many beers we had together. Thank you, Lars.

Next, I want to thank all the people at MADALGO. Each one of them has
contributed to making these past years a great experience. In particular, I wish
to thank Thomas Mølhave, both for introducing me to the group when I was
still an undergraduate and also for being a great friend. A big thanks also goes
to Peyman Afshani for all the great collaboration we’ve had. I also wish to
give a special thanks to all my former office mates: Thomas Mølhave, Pooya
Davoodi, Freek van Walderveen and Bryan T. Wilkinson. A thank you also
goes to Else Mag̊ard and Ellen Kjemstrup for always helping me with practical
issues. Finally, a special thanks also goes to Gerth S. Brodal and Peter B.
Miltersen for lots of guidance and many valuable discussions.

A big thanks also goes to Huy L. Nguyen at Princeton University, who did
a great job at showing me around at Princeton and making me feel welcome.

I also wish to thank all my coauthors for the very inspiring work we’ve done
together, thank you: Peyman Afshani, Manindra Agrawal, Pankaj K. Agarwal,
Lars Arge, Jens Bennedsen, Karl Bringmann, Gerth S. Brodal, Joshua Brody,
Michael E. Caspersen, Timothy M. Chan, Benjamin Doerr, Stephane Durocher,
Mark Greve, Allan G. Jørgensen, Kurt Mehlhorn, Jason Morrison, Thomas
Mølhave, Huy L. Nguyen, Rasmus Pagh, Mihai Pǎtraşcu, Jeff M. Phillips, Jakob
Truelsen, Freek van Walderveen, Bryan T. Wilkinson and Carola Winzen. Here
a special thanks goes to Allan G. Jørgensen for introducing me to the area of

7

lower bounds and for sharing many great ideas.
Next I want to thank Stephen Alstrup for inviting me to Copenhagen Uni-

versity last summer. I really enjoyed the days I spend there, the cool problems
we worked on and the beers we had in the evenings.

I also want to give a very big thanks to Mikkel Thorup, who has been a
great friend and incredibly fun to hang out with. Especially our hiking and bird
watching trip in Palm Springs, the great wine pairing we had at Craft, New
York and the fun visit at the local bar in New Brunswick are great memories
that stand out. Thank you.

Finally, I want to give the biggest thanks to a person who has meant very
much to me during my studies, Mihai Pǎtraşcu. Very sadly, he passed away
last year, only 29 years old. I feel so privileged to have had him as my friend,
and no other person has had a bigger impact on my research and thus my
every day work life. I still remember when Allan Jørgensen came to my office
in the beginning of my studies and handed me one of Mihai’s papers, saying
something like: “You have to read this. The proofs are so elegant and the
results are so cool. We have to do this too!”. Prior to this, I had only focused
on upper bounds, but I was completely sold by Mihai’s incredible proofs and
inspiring writing. That was the start of the journey leading to the results in
this dissertation. Later I was so fortunate to meet Mihai on several occasions
and soon he was not only my idol, but even more a very good friend. Mihai
was always up for fun and lots of beer and wine, as I’m sure everyone who knew
him agrees with. Very sadly our friendship lasted only a few years and I clearly
remember how shocked I was when Mihai told me at SODA’11 that he had been
diagnosed with brain cancer just a month earlier. Amazingly, it didn’t seem
to kill his fantastic spirit: Just months later, he had undergone brain surgery
and I remember that he wrote an email just a couple of hours later regarding
some technical details for the final version of our joint paper! Later I visited
him in New York a couple of times, but sadly I could see with every visit how
the cancer was getting to him. Especially my last visit, just two weeks before
he passed, was very heart breaking. Nonetheless, I’m very happy I got to see
him that last time. In that respect, I also wish to thank Mihai’s wife, Mira, for
inviting me to their home. My best wishes for the future goes to her. Finally,
I want to say that I feel very privileged to have been an invited speaker at the
FOCS’12 workshop in Mihai’s memory. A big thanks to the organizers.

This dissertation is dedicated to the memory of Mihai Pǎtraşcu.

Kasper Green Larsen,
Aarhus, October 26, 2013.

8

In memory of Mihai Pǎtraşcu

9

Preface

My main research area has been data structures, with an emphasis on both
range searching and lower bounds. For maximum coherence, I have chosen to
base this dissertation only on (a subset of) my work in proving lower bounds.
It would be a shame not to mention the many other interesting problems I have
worked on during the past years. This section therefore aims to give a brief
overview of all the results I obtained during my studies.

At the time of writing, I have published 18 papers and have another 3
manuscripts currently in submission. These papers are listed here:

[2] P. Afshani, P. K. Agarwal, L. Arge, K. G. Larsen, and J. M. Phillips.
(approximate) uncertain skylines. In Proc. 14th International Conference
on Database Theory, pages 186–196, 2011.

[3] P. Afshani, M. Agrawal, B. Doerr, K. Mehlhorn, K. G. Larsen, and C. Winzen.
The query complexity of finding a hidden permutation. Manuscript.

[4] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal range reporting in three
and higher dimensions. In Proc. 50th IEEE Symposium on Foundations
of Computer Science, pages 149–158, 2009.

[5] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal range reporting: Query
lower bounds, optimal structures in 3d, and higher dimensional improve-
ments. In Proc. 26th ACM Symposium on Computational Geometry,
pages 240–246, 2010.

[6] P. Afshani, L. Arge, and K. G. Larsen. Higher-dimensional orthogonal
range reporting and rectangle stabbing in the pointer machine model. In
Proc. 28th ACM Symposium on Computational Geometry, pages 323–332,
2012.

[13] L. Arge and K. G. Larsen. I/O-efficient spatial data structures for range
queries. SIGSPATIAL Special, 4(2):2–7, July 2012.

[14] L. Arge, K. G. Larsen, T. Mølhave, and F. van Walderveen. Cleaning
massive sonar point clouds. In Proc. 18th ACM SIGSPATIAL Interna-
tional Symposium on Advances in Geographic Information Systems, pages
152–161, 2010.

[26] K. Bringmann and K. G. Larsen. Succinct sampling from discrete dis-
tributions. In Proc. 45th ACM Symposium on Theory of Computation,
2013. To appear.

11

[27] G. S. Brodal and K. G. Larsen. Optimal planar orthogonal skyline count-
ing queries. Manuscript.

[28] J. Brody and K. G. Larsen. Adapt or die: Polynomial lower bounds for
non-adaptive dynamic data structures. Manuscript.

[29] M. E. Caspersen, K. D. Larsen, and J. Bennedsen. Mental models and
programming aptitude. In Proc. 12th SIGCSE Conference on Innovation
and Technology in Computer Science Education, pages 206–210, 2007.

[31] T. M. Chan, S. Durocher, K. G. Larsen, J. Morrison, and B. T. Wilkinson.
Linear-space data structures for range mode query in arrays. In Proc. 29th
Symposium on Theoretical Aspects of Computer Science, pages 290–301,
2012.

[32] T. M. Chan, K. G. Larsen, and M. Pătraşcu. Orthogonal range searching
on the RAM, revisited. In Proc. 27th ACM Symposium on Computational
Geometry, pages 1–10, 2011.

[46] M. Greve, A. G. Jørgensen, K. D. Larsen, and J. Truelsen. Cell probe lower
bounds and approximations for range mode. In Proc. 37th International
Colloquium on Automata, Languages, and Programming, pages 605–616,
2010.

[49] A. G. Jørgensen and K. G. Larsen. Range selection and median: Tight
cell probe lower bounds and adaptive data structures. In Proc. 22nd
ACM/SIAM Symposium on Discrete Algorithms, pages 805–813, 2011.

[52] K. G. Larsen. On range searching in the group model and combinatorial
discrepancy. In Proc. 52nd IEEE Symposium on Foundations of Computer
Science, pages 542–549, 2011.

[53] K. G. Larsen. The cell probe complexity of dynamic range counting. In
Proc. 44th ACM Symposium on Theory of Computation, pages 85–94,
2012.

[54] K. G. Larsen. Higher cell probe lower bounds for evaluating polynomials.
In Proc. 53rd IEEE Symposium on Foundations of Computer Science,
pages 293–301, 2012.

[55] K. G. Larsen and H. L. Nguyen. Improved range searching lower bounds.
In Proc. 28th ACM Symposium on Computational Geometry, pages 171–
178, 2012.

[56] K. G. Larsen and R. Pagh. I/O-efficient data structures for colored range
and prefix reporting. In Proc. 23rd ACM/SIAM Symposium on Discrete
Algorithms, pages 583–592, 2012.

[57] K. G. Larsen and F. van Walderveen. Near-optimal range reporting struc-
tures for categorical data. In Proc. 24th ACM/SIAM Symposium on
Discrete Algorithms, 2013. To appear.

12

These papers can roughly be categorized as follows: Papers [4, 5, 32, 56,
6, 13, 57, 27] all study variants of the orthogonal range reporting problem,
mainly from an upper bound perspective. In orthogonal range reporting, we
are to maintain a set of points in d-dimensional space, while supporting efficient
retrieval of all points inside an axis-aligned query rectangle. This is one of
the most fundamental problems in computational geometry and spatial data
bases. The most important results in these papers are: In [5], we present the
first optimal data structure for 3-dimensional orthogonal range reporting in
the pointer machine model. In contrast, the 2-dimensional variant has been
completely solved for more than two decades. In [32], we present the current
best data structures for orthogonal range reporting in the word-RAM in all
dimensions d ≥ 2. Similarly, the paper [4] gives the best known upper bound
for orthogonal range reporting in the I/O-model for dimensions d ≥ 3. Finally,
the paper [6] presents the fastest pointer machine data structure in dimensions
d ≥ 4, as well as the highest query time lower bound proved for such data
structures.

The papers [28, 46, 49, 53, 54] focus on proving lower bounds in the cell probe
model. Of particular interest are the latter two papers [53, 54], which present
new techniques for proving lower bounds. More specifically, the paper [54]
presents a new technique for proving lower bounds for static data structures,
yielding the highest static lower bounds to date. Similarly, [53] presents a new
technique for proving dynamic lower bounds. The lower bounds obtained using
the new technique are almost quadratically higher than what could be obtained
using previous techniques. This paper received both the STOC’12 (44th ACM
Symposium on Theory of Computing) Best Paper Award and the Best Student
Paper Award (the Danny Lewin Award).

The two papers [52, 55] study range searching in the group model. Here
all input objects to a range searching problem are assigned a weight from a
commutative group and the goal is to compute the group sum of the weights
assigned to those input objects intersecting a given query range. The two
papers [52, 55] demonstrate tight connections between range searching in the
group model and combinatorial discrepancy and range reporting in the pointer
machine. These two connections allow us to translate decades of lower bound
results in discrepancy theory and range reporting directly to group model lower
bounds. The lower bounds we obtain are polynomial of magnitude, whereas the
highest previous lower bound in the group model was only poly-logarithmic.
The paper [52] received the FOCS’11 (52nd IEEE Symposium on Foundations
of Computer Science) Best Student Paper Award (the Machtey Award).

The remaining papers [29, 14, 2, 31, 26, 3] study various algorithmic and
data structural questions. Of these, I want to high-light the paper [26] in which
we study the basic problem of sampling from a discrete probability distribution.
Here we improve on the space usage of a long-standing classic solution, dating
all the way back to 1974. Furthermore, our solution is extremely simple and
practically efficient. Finally, we also present lower bounds showing that our
new solution is optimal.

As mentioned, this dissertation focuses on lower bounds. I have not included
all my lower bound results, but have instead chosen to include only results from

13

the six papers [4, 6, 52, 53, 54, 55]. These papers all introduce new techniques,
with which we prove lower bounds previously out of reach. I have focused on
new techniques because I believe new techniques and tools have a much larger
impact than a number of concrete lower bounds proved using previously known
techniques. Chapter 2 studies the cell probe model and is based on [53, 54].
The papers [52, 55] form the basis for Chapter 3, which studies range searching
in the group model. Finally, Chapter 4 studies the pointer machine and the
I/O-model. The results therein are part of the two papers [4, 6].

14

Contents

Abstract 5

Acknowledgments 7

Preface 11

1 Introduction 17

1.1 Models of Computation . 18

1.2 The Word-RAM . 20

1.3 The Cell Probe Model . 20

1.3.1 Previous Results . 21

1.3.2 Our Contributions . 23

1.4 The Group Model . 24

1.4.1 Previous Results . 26

1.4.2 Our Contributions . 28

1.5 The Pointer Machine Model . 29

1.5.1 Previous Results . 30

1.5.2 Our Contributions . 31

1.6 The I/O-Model . 32

1.6.1 Previous Results . 32

1.6.2 Our Contributions . 34

2 The Cell Probe Model 35

2.1 Static Data Structures . 36

2.1.1 Techniques . 36

2.1.2 Static Polynomial Evaluation 38

2.2 Dynamic Data Structures . 43

2.2.1 Techniques . 44

2.2.2 Dynamic Polynomial Evaluation 47

2.2.3 Dynamic Weighted Orthogonal Range Counting 53

2.3 Concluding Remarks . 65

3 The Group Model 67

3.1 Connection to Combinatorial Discrepancy 67

3.2 Connection to Range Reporting 71

3.3 Preliminaries . 73

3.4 Establishing the Connections . 74

15

3.4.1 Combinatorial Discrepancy 74
3.4.2 Implications for Combinatorial Discrepancy 78
3.4.3 Range Reporting . 79

3.5 Concluding Remarks . 82

4 The Pointer Machine and the I/O-Model 85
4.1 Lower Bounds for Rectangle Stabbing 86

4.1.1 Pointer Machine Lower Bound 86
4.1.2 Extension to the I/O-Model 89

4.2 Indexability Lower Bound . 91
4.3 Concluding Remarks . 94

Bibliography 97

16

Chapter 1

Introduction

The theory of data structures is concerned with representing data in main mem-
ory or on disk, such that queries about the data can be answered efficiently.
We typically think of data as a set of input objects. Some common examples
of queries include “How many of the input objects satisfies requirement x?”,
“Which of the input objects is smallest with respect to property y?” and “Give
me all input objects satisfying requirement z”. Data structure problems natu-
rally divide into two categories, static problems, where the input data is given
once and for all, and dynamic problems, where we must support updates to the
input data. For static problems, efficiency is most commonly measured in terms
of query time and space usage, i.e. the time it takes to answer a query and the
amount of main memory or disk space used to maintain the data structure. For
dynamic data structures, we are also interested in the update time. Efficient
data structures is one of the bearing pillars of our modern information society.
Classic data structures such as hash tables, priority queues, red-black trees and
linked lists are part of any respectable standard library and are used at the core
of almost all real-world applications. The use of hash tables and linked lists
are even built into the syntax of the popular programming language Python.
Another example where data structures plays a key role is in relational data
bases. Such data bases are in effect just collections of data structures (indices)
constructed on the different attributes of the stored records. Common data
structures in this regime are known as B-trees, kd-trees and range trees.

After decades of research, we now have efficient solutions, called upper
bounds, for most of the basic data structure problems. However, since data
structures are used extensively everywhere, even a ten percent improvement in
the performance of any of the key data structures mentioned above would have
a huge impact. Thus researches still strive to improve the known solutions.
But when does it end? Can we always improve the solutions we have? Or
is there some limit to how efficiently a data structure problem can be solved?
This is precisely the question addressed by lower bounds. Lower bounds are
mathematical functions putting a limit on the performance of data structures.
More concretely, a lower bound is a statement of the following flavor: “Any
data structure solving problem x using y bits of space, must use at least f(y)
CPU cycles to answer a query”. Observe the crucial difference between upper
bounds and lower bounds: Upper bounds show the existence of an efficient solu-

17

tion, while lower bounds must say something about all possible data structures,
even those no one has thought of yet. In this light, it should not come as a
surprise that proving some non-trivial lower bound is significantly harder than
obtaining some non-trivial upper bound. The natural goal when proving lower
bounds is of course to show that the data structure upper bounds we know are
optimal, i.e. there cannot possibly exist a faster data structure than what we
already have.

So how are lower bounds proved? For this, one needs a model of what a
data structure can do. However, there is a tradeoff to be made: The more
realistic the model, the harder it is to prove lower bounds. As a consequence,
numerous models of computation have emerged over the years, in one way or
another trying to balance the meaningfulness of lower bounds and the burden of
proving them. The most prominent models include the semi-group and group
model, the pointer machine model, the I/O-model and the cell probe model.
The amount of success the community has had in proving lower bounds in
these models vary widely. In the more restrictive pointer machine model and
semi-group model, very high and near-tight lower bounds have been known for
decades. This is certainly not the case for the group model and the cell probe
model.

In this dissertation, we present new techniques and frameworks for proving
data structure lower bounds in the pointer machine model, the I/O-model, the
group model and the cell probe model. In all cases, we push the frontiers
further by obtaining lower bounds higher than what could be proved using the
previously known techniques. In the following section, we formally define the
above models and present the concrete results we obtain.

1.1 Models of Computation

As mentioned, models of computation are typically designed with two conflict-
ing goals in mind: Predictive power for the actual performance when imple-
mented on a real computer, and secondly, with the aim of alleviating the task
of proving lower bounds. The computational model most geared towards design-
ing new upper bounds is called the unit cost word-RAM. This model resembles
very closely what can be implemented in modern imperative programming lan-
guages such as C++ and Java. It allows various natural operations on machine
words in constant time, including for instance integer addition, multiplication,
division, etc. We give the details of this model in Section 1.2. When proving
lower bounds for word-RAM data structures, we typically do not want the lower
bounds to be dependent on the concrete set of machine instructions available.
Therefore, we use to the cell probe model when proving lower bounds. This
model abstracts away the instruction set and allows for arbitrary instructions
on machine words in constant time. This model is the least restrictive of all
the lower bound models proposed in the literature and consequently the lower
bounds proved in this model are the most generally applicable we have. Unfor-
tunately this generality has come at a high cost: Prior to our work, the highest
lower bound proved for any data structure problem is just logarithmic. This is

18

far from the conjectured lower bound for many natural data structure problems.
We describe the cell probe model and our results in this model in Section 1.3.

Given the rather limited success researches have had in proving cell probe
lower bounds, more restrictive models have been designed with the hope of
obtaining higher and still meaningful lower bounds. The models we consider
in this dissertation have been designed with a particular class of problems in
mind, namely range searching problems. Range searching is one of the most
fundamental and well-studied topics in the fields of computational geometry
and spatial databases. The input to a range searching problem consists of a
set of n geometric objects, most typically points in d-dimensional space, and
the goal is to preprocess the input into a data structure, such that given a
query range, one can efficiently aggregate information about the input objects
intersecting the query range. Some of the most typical types of query ranges
are axis-aligned rectangles, halfspaces, simplices and balls. The first class of
range searching problems we consider is known as range searching in the semi-
group and the group model. In the (semi-)group model, each input object to a
range searching problem is assigned a weight from a (semi-)group and the goal
is to compute the (semi-)group sum of the weights assigned to the input objects
intersecting a query range. In Section 1.4 we further motivate the semi-group
and group-model and finally present our results in these models.

The second class of range searching problems that we consider is range
reporting. Here the goal is to report the set of input objects intersecting a
query range. Lower bounds for reporting problems have typically been proved
in the pointer machine model. Essentially, the pointer machine model is a
restriction of the word-RAM in which navigation is only allowed by following
pointers, i.e. we disallow random accesses. While this may seem like a severe
limitation, it turns out that most known range reporting data structures are in
fact pointer-based. Thus no significant separation has been shown between the
two models from an upper bound perspective. We give a more formal definition
of the pointer machine model in Section 1.5, where we also present our results
in that model.

Finally, we study the case where the input data set is too large to fit in the
main memory of the machine. For such data sets, the performance bottleneck
is no longer the number of CPU instructions executed, but instead the number
of disk accesses needed to answer a query. Thus the performance of a data
structure when analysed in the classic models, such as the word-RAM and the
pointer machine, is no longer a good predictor for the actual performance of the
data structure when used on a huge data set on a real machine. To make more
accurate performance predictions when dealing with large data sets, Aggarwal
and Vitter [8] designed the I/O-model in which data structures are analysed in
terms of the number of disk accesses needed to answer queries, rather than the
number of CPU instructions. At a high level, this model considers a machine
with a bounded memory of M words and an infinite sized disk partitioned into
blocks of B consecutive words each. Computation can only take place on data
residing in main memory, and data is moved to and from disk in blocks. The
goal is to minimize the number of block moves, called I/Os. We further discuss
this model and the results we obtain therein in Section 1.6.

19

1.2 The Word-RAM

In the unit cost word-RAM model, a data structure is represented in a random
access memory, partitioned into words of w bits each. The memory words have
integer addresses amongst [2w] = {0, . . . , 2w − 1}, i.e. we assume a word has
enough bits to store the address of any other memory word (it can store a
pointer). Retrieving a memory word is assumed to take constant time. Also,
any word operation that can be found in modern programming languages such
as C++ or Java is supported in constant time. This includes e.g. integer
addition, subtraction, multiplication and division, bitwise operations such as
AND, OR and XOR on two words and left/right shifts. Standard comparisons
on words are also supported in constant time, e.g. checking for equality, greater
than or smaller than (when interpreted as integers), etc. Typically, we assume
w = Ω(lg n) where n is the size of the input. This allows for storing an index
into the data structure in a single word.

The query cost is simply defined as the number of instructions needed to
answer a query and the space is defined as the largest address used, i.e. the
space usage is S words if only addresses amongst [S] = {0, . . . , S− 1} are used.

Dynamic data structures are also required to support updates. Here the
update time is defined as the number of instructions needed to apply the desired
changes to the data structure.

1.3 The Cell Probe Model

The cell probe model is a less restrictive version of the word-RAM. Again a
static data structure consists of a memory of cells, each containing w bits that
may represent arbitrary information about the input. The memory cells all
have an integer address amongst [2w] and we say that the data structure uses
S cells of space if only cells of addresses [S] are used. Here we also make the
common assumption that a cell has enough bits to address the input, i.e. we
assume w = Ω(lg n), where n is the input size.

When presented with a query, a static data structure reads (probes) a num-
ber of cells from the memory, and at the end must announce the answer to the
query. The cell probed at each step may be any deterministic function of the
query and the contents of the previously probed cells, thus all computations on
read data are free of charge (i.e. we allow arbitrary instructions). The query cost
is defined as the number of cells probed when answering a query. Clearly lower
bounds in this model also apply to data structures developed in the word-RAM
(we count only memory accesses and allow arbitrary instructions).

A dynamic data structure in the cell probe model must also support updates.
When presented with an update, a dynamic data structure may both read and
write to memory cells. We refer to reading or writing a cell jointly as probing
the cell. Again, the cells probed and the contents written to cells during an
update may be arbitrary functions of the previously probed cells and the update
itself. The query cost is defined as for static data structures. The update cost
is defined as the number of cells probed when performing an update.

20

Randomization. In this dissertation, we also consider data structures that
are randomized. When answering queries, a randomized data structure is given
access to a stream of uniform random bits. The cells probed when answering
queries are allowed to depend also on this random stream. The expected query
cost is defined as the maximum over all pairs of a query q and an input I
(update sequence U), of the expected number of cells probed when answering q
on input I (after processing the updates U). Furthermore, we allow randomized
data structures to return an incorrect result when answering queries. We define
the error probability of a randomized data structure as the maximum over all
pairs of an input I (update sequence U) and a query q, of the probability of
returning an incorrect result when answering q on input I (after processing the
updates U).

By a standard reduction, any randomized data structure with a constant
probability of error δ < 1/2 and expected query cost t, can be transformed into a
randomized data structure with any other constant error probability δ′ > 0 and
worst case query cost O(t), see Section 2.1.2. Hence, when stating query cost
lower bounds for randomized data structures with a constant error probability
δ < 1/2, we omit the concrete error probability and whether the lower bound
is for the expected query cost or the worst case query cost.

1.3.1 Previous Results

In the following, we first give a brief overview of the previous techniques and
highest lower bounds obtained in the field of static and dynamic cell probe lower
bounds.

Static Data Structures. Many outstanding results and techniques were pro-
posed in the years following Yao’s introduction of the cell probe model [82].
One of the most notable papers from that time was the paper by Miltersen et
al. [66], relating asymmetric communication complexity and static data struc-
tures. During the next decade, a large number of results followed from their
techniques, mainly related to predecessor search, partial match and other near-
est neighbor type problems [9, 64, 18, 19, 58, 12, 78]. Unfortunately these tech-
niques could not distinguish the performance of near-linear space data struc-
tures from data structures using polynomial space. Thus for problems where
the number of queries is polynomial in the input size, all these results gave
no query cost lower bounds beyond Ω(1), even for linear space data structures
(there are at most nO(1) queries, which is trivially solved in polynomial space
and constant query time by complete tabulation). This barrier was not over-
come until the milestone papers of Pǎtraşcu and Thorup [73, 74]. The technique
they introduced has since then evolved (see e.g. [70]) into an elegant refinement
of Miltersen et al.’s reduction from static data structures to asymmetric com-
munication complexity, and it has triggered a renewed focus on static lower
bounds, see e.g. [69, 70, 79, 46, 49]. Their results pushed the highest achieved
query lower bound to Ω(lg d/ lg lg d) for data structures using n lgO(1) d cells of
space, where d is the number of different queries to the data structure prob-
lem. This lower bound was proved also for randomized data structures with

21

any constant error probability δ < 1/2. Their technique thus provided the first
non-trivial lower bounds when d = nO(1), and their lower bounds remained the
highest achieved prior to our work (Miltersen [63] showed by counting arguments
that there must exist problems that need either query time Ω(n/w) or space
Ω(d). Finding an explicit such problem is the main challenge). We note that
the technique of Pǎtraşcu and Thorup cannot be used to prove lower bounds
beyond Ω(lg d/ lg lg d), even for linear space deterministic data structures, see
Section 2.1.

Recently, Panigrahy et al. [68] presented another technique for proving static
cell probe lower bounds. Their technique is based on sampling cells of the
data structure instead of relying on communication complexity. Using this
technique, they reproved the bounds of Pǎtraşcu and Thorup [74] for various
nearest neighbor search problems. We note that the idea of sampling cells has
appeared before in the world of succinct data structures, see e.g. the papers by
Gál and Miltersen [44] and Golynski [45].

Dynamic Data Structures. Lower bounds for dynamic data structures have
almost exclusively been proved by appealing to the seminal chronogram tech-
nique of Fredman and Saks [42]. The basic idea is to divide a sequence of n
updates into epochs of exponentially decreasing size. From these epochs, one
partitions the cells of a data structure into subsets, one for each epoch i. The
subset associated to an epoch i contains the cells that where last updated when
processing the updates of epoch i. Lower bounds now follow by arguing that
to answer a query after the n updates, one has to probe Ω(1) cells associ-
ated to each epoch. For technical reasons (see Section 2.2.1), the epoch sizes
have to decrease by a factor of at least wtu, where tu is the worst case up-
date cost of the data structure. Thus one obtains lower bounds no higher than
tq = Ω(lg n/ lg(wtu)), where tq is the expected query cost of the data structure.
This bound peaks at max{tu, tq} = Ω(lg n/ lg lgn) for any poly-logarithmic cell
size. We note that by minor modifications of these ideas, the same bound can
be achieved when tu is the amortized update cost. We also mention one of
the most notable applications of the chronogram technique, due to Alstrup et
al. [11]. In their paper, they proved a lower bound of tq = Ω(lg n/ lg(wtu)) for
the marked ancestor problem. Here the input is a rooted tree and an update
either marks or unmarks a node of the tree. A query asks whether a given node
has a marked ancestor or not. Many natural data structure problems with a
range searching flavor to them easily reduce to the marked ancestor problem
and hence the lower bound also applies to those problems.

The bounds of Fredman and Saks remained the highest achieved until the
breakthrough results of Pǎtraşcu and Demaine [72]. In their paper, they ex-
tended upon the ideas of Fredman and Saks to give a tight lower bound for
the partial sums problem. In the partial sums problem, the input consists of
an array of n entries, each storing an integer. An update changes the value
stored at an entry and a query asks to return the sum of the integers in the
subarray between two given indices i and j. Their lower bound states that
tq lg(tu/tq) = Ω(lg n) and tu lg(tq/tu) = Ω(lg n) when the integers have Ω(w)

22

bits, which in particular implies max{tq, tu} = Ω(lg n). We note that they also
obtain tight lower bounds in the regime of smaller integers. The bounds hold
even when allowed amortization and randomization. For the most natural cell
size of w = Θ(lg n), this was the highest achieved lower bound before our work.

The two above techniques both lead to smooth tradeoff curves between
update time and query time. While this behaviour is correct for the partial
sums problem, there are many examples where this is certainly not the case.
Pǎtraşcu and Thorup [75] recently presented a new extension of the chronogram
technique, which can prove strong threshold lower bounds. In particular they
showed that if a data structure for maintaining the connectivity of a graph
under edge insertions and deletions has amortized update time just o(lg n),
then the query time explodes to n1−o(1).

In the search for super-logarithmic lower bounds, Pǎtraşcu introduced a
dynamic set-disjointness problem named the multiphase problem [71]. Based
on a widely believed conjecture about the hardness of 3-SUM, Pǎtraşcu first
reduced 3-SUM to the multiphase problem and then gave a series of reduc-
tions to different dynamic data structure problems, implying polynomial lower
bounds under the 3-SUM conjecture. Proving an unconditional lower bound for
the multiphase problem seems to be the most promising direction for obtaining
lower bounds of polynomial magnitude. In this context, the paper [33] presents
many interesting results related to Pǎtraşcu’s multiphase problem.

Finally, we mention that Pǎtraşcu [69] presented a technique capable of
proving a lower bound of max{tq, tu} = Ω((lg n/ lg lgn)2) for dynamic weighted
orthogonal range counting, but only when the weights are lg2+ε n-bit integers
where ε > 0 is an arbitrarily small constant. In this problem, we are to support
insertions of two-dimensional points with coordinates on the grid [n] × [n],
where each point is assigned an integer weight. The goal is to return the sum of
the weights assigned to the points lying inside an axis-aligned query rectangle.
For range counting with δ-bit weights, it is most natural to assume that the
cells have enough bits to store the weights, since otherwise one immediately
obtains an update time lower bound of δ/w just for writing down the change.
Hence Pǎtraşcu’s proof is meaningful only in the case of w = lg2+ε n (as he also
notes). Thus the magnitude of the lower bound compared to the number of bits,
δ, needed to describe an update operation (or a query), remains below Ω(δ).
This bound holds when tu is the worst case update time and tq the expected
query time of a data structure. Pǎtraşcu mentioned that it was an important
open problem to prove a similar bound for range counting without weights.

To summarize, the highest lower bound obtained so far on max{tq, tu} re-
mains just Ω(lg n) in the most natural setting of cell size w = Θ(lg n). If we al-
low cell size w = lg2+ε n, then a lower bound of max{tq, tu} = Ω((lg n/ lg lg n)2)
is the highest proved.

1.3.2 Our Contributions

In Chapter 2, we present new techniques for proving cell probe lower bounds
for both static and dynamic data structures. Our new techniques in both cases
yield the highest lower bounds to date and hence opens a new range of problems

23

for which we may hope to prove tight lower bounds.

In the static case, we further investigate the cell sampling technique pro-
posed by Panigrahy et al. [68]. Surprisingly, we show that with a small mod-
ification, the technique is more powerful than the communication complexity
framework of Pǎtraşcu and Thorup [74]. More specifically, we apply the tech-
nique to the static polynomial evaluation problem. In this problem, we are
given an n-degree polynomial with coefficients from a finite field F. The goal is
to evaluate the polynomial at a given query element x ∈ F. For this problem,
we obtain a query cost lower bound of Ω(lg |F|/ lg(Sw/n lg |F|)) when |F| is at
least n1+ε for an arbitrarily small constant ε > 0. This lower bound holds for
randomized data structure with any constant error probability δ < 1/2. For
linear space data structures (i.e. S = O(n lg |F|/w)), this bound simplifies to
Ω(lg |F|). This is the highest static cell probe lower bound to date, and is a
lg lg |F| factor larger than what can possibly be achieved using the communi-
cation framework. We discuss the previous work on the concrete problem of
polynomial evaluation in Section 2.1.2.

For dynamic data structures, we first consider a dynamic variant of the
polynomial evaluation problem (see Section 2.2.2). We have chosen to demon-
strate our new technique for this (perhaps slightly artificial) problem because
it allows for a very clean proof. The lower bound we obtain is of the form
tq = Ω(lg |F| lg n/ lg(wtu/ lg |F|) lg(wtu)) when the field has size at least Ω(n2).
Here tu is the worst case update time and tq is the query cost of any random-
ized data structure with a constant error probability δ < 1/2. In the natural
case of |F| = n2+O(1), w = Θ(lg n) and poly-logarithmic update time tu, the
lower bound simplifies to tq = Ω((lg n/ lg lgn)2). This is almost a quadratic im-
provement over the highest previous lower bound of Pǎtraşcu and Demaine [72].
Secondly, we also apply our technique to a more natural problem, namely dy-
namic weighted orthogonal range counting in two-dimensional space, where the
weights are Θ(lg n)-bit integers. For this problem, we obtain a lower bound
of tq = Ω((lg n/ lg(wtu))2). This gives a partial answer to the open problem
posed by Pǎtraşcu by reducing the requirement of the magnitude of weights
from lg2+ε n to just logarithmic. Finally, the lower bound is also tight for any
update time that is at least lg2+ε n, hence deepening our understanding of one
of the most fundamental range searching problems.

1.4 The Group Model

In the group model, each input object to a range searching problem is assigned
a weight from a commutative group, and the goal is to preprocess the input into
a data structure, consisting of precomputed group elements and auxiliary data,
such that given a query range, one can efficiently compute the group sum of the
weights assigned to the input objects intersecting the query range. The data
structure answers queries by adding and subtracting a subset of the precom-
puted group elements (in a group, each element has an inverse element, thus
we have subtraction) to yield the answer to the query. In addition to answering
queries, we require that a data structure supports updating the weights of the

24

input objects. The related semi-group model is defined identically, except that
weights come from a semi-group and hence data structures cannot subtract (in
a semi-group, we are not guaranteed the existence of an inverse element).

Motivation. The true power of the group model and semi-group model lies in
the abstraction. Having designed an efficient (semi-)group model data structure
(which does not exploit properties of the particular (semi-)group in question),
one immediately has a data structure for many other natural range searching
problems. For instance, a range counting data structure can be obtained from
a group model data structure by plugging in the group (Z,+), i.e. integers
with standard addition and subtraction, and then assigning each input object a
weight of 1. Emptiness queries, i.e. returning whether a query range is empty,
can be solved by choosing the semi-group ({0, 1},∨) and assigning each input
object the weight 1. Similarly, finding the right-most point inside a query re-
gion could be done using the semi-group (R,max) and assigning each point a
weight corresponding to its x-coordinate. As a technical remark, note that any
semi-group data structure is also a group model data structure, but the con-
verse is not true. Hence proving lower bounds in the group model is at least
as hard as in the semi-group model (and seemingly much harder as we shall see).

Since the group model was first introduced there has been two slightly dif-
ferent definitions of data structures, one a bit less restrictive than the other.
The most restrictive type of data structure is known in the literature as oblivi-
ous, while the other type has not received a formal name. To avoid confusion,
we have chosen to name this other type of data structure weakly oblivious. In
the following we review both definitions, starting with the least restrictive:

Weakly Oblivious Data Structures. A weakly oblivious data structure in
the group model, is a dynamic data structure with no understanding of the
particular group in question, i.e. it can only access and manipulate weights
through black-box addition and subtraction [42]. Thus from the data structure’s
point of view, each precomputed group element is just a linear combination over
the weights (and possibly previous weights) assigned to the input objects. When
answering a query, such a data structure adds and subtracts a subset of these
linear combinations to finally yield the linear combination summing exactly the
weights currently assigned to the input objects intersecting the query range.
Deciding which precomputed elements to add an subtract is determined from
the auxiliary data. When given an update request, the data structure may
change the auxiliary data, delete some of the stored group elements, and also
create new group elements to store by adding and subtracting both previously
stored group elements and the newly assigned weight.

The query time of such a data structure is defined as the number of pre-
computed group elements used when answering a query, and the update time
is defined as the number of created and deleted group elements on an update
request. Thus all access to the auxiliary data is considered free of charge, and
hence deciding which precomputed group elements to add, subtract, create and

25

delete is also for free.

We note that if we did not require the data structure to have no knowledge
of the group in question, then range searching over any finite group would be
trivial: The data structure could start by storing each element in the group
and then encode the weights assigned to the input points in the auxiliary data.
Thus when given a query, it can compute the answer by examining the auxiliary
data and then returning the corresponding stored group element using no group
operations at all. Similarly, updates are for free since we only need to change to
auxiliary data. The group model is thus incomparable to the cell probe model.

Oblivious Data Structures. The second, and slightly more restrictive defi-
nition of data structures, was given by Fredman [43]. Again data structures are
considered to have no knowledge of the group, and queries are still answered
by adding and subtracting precomputed linear combinations over the weights
assigned to the input points. The update operations are however more con-
strained: an update of the weight assigned to an input object p, is supported
simply by re-evaluating every precomputed group element for which the weight
of p occurs with non-zero coefficient in the corresponding linear combination.
Every stored group element thus corresponds to a linear combination over the
currently assigned weights, and may not include previous weights.

The query time of an oblivious data structure is defined as the number of
group elements used when answering a query, and the update time is defined as
the number of linear combinations that need to be re-evaluated when updating
the weight of an input object. We note that lower bounds proved for weakly
oblivious data structures also apply to oblivious data structures. For a more
mathematical definition of an oblivious data structure, we refer the reader to
Section 3.3.

Given that data structures in the group model have no understanding of
the particular group in question, the additional freedom allowed for weakly
oblivious data structures might seem artificial. Thus we mention that the main
motivating factors for studying weakly oblivious data structures, is that they
allow for amortization in the update algorithm and secondly, previous lower
bounds proved for weakly oblivious data structures were (somewhat) easily
translated to cell probe lower bounds.

1.4.1 Previous Results

In the following, we first review the previous results on lower bounds for range
searching problems in the (semi-group and) group model, and then present
the best known upper bounds for the two most fundamental range searching
problems: orthogonal range searching and halfspace range searching.

In the semi-group model, researchers have been very successful in proving
lower bounds. Since data structures cannot subtract, range searching lower
bound proofs tend to have a very geometric flavor: If a data structure stores a
precomputed semi-group element involving the weight of an input object, then
the query algorithm can only use that precomputed semi-group element when
answering query ranges that intersects that input object (its weight cannot be

26

cancelled out). Thus semi-group lower bound proofs boils down to arguing that
it is hard to “cover” all query ranges with a small collection of subsets of input
objects.

Unfortunately we have no such property when allowing subtraction (i.e. the
group model). The difficulties encountered when moving from the semi-group
to the group model have been recognized as major obstacles for decades, and we
believe the following quote by Pǎtraşcu captures the essence of these difficulties:

“Philosophically speaking, the difference in the type of reasoning behind
semi-group lower bounds and group/cell probe lower bounds is parallel to the
difference between understanding geometry and understanding computation.
Since we have been vastly more successful at the former, it should not come
as a surprise that progress outside the semi-group model has been extremely
slow [69].”

In 1982, Fredman [43] gave the definition of an oblivious data structure in
the group model. He then managed to prove an Ω(lg n) lower bound on the
average cost per operation in a sequence of n updates and n queries to the
partial sums problem. In the group model variant of the partial sums problem,
the input is an array of n entries, each storing an element from a commutative
group, and the goal is to support weight updates and range queries of the form:
“What is the group sum of the elements in the subarray from index i through
j?”.

The next result on group model lower bounds was due to Fredman and
Saks [42], who introduced the celebrated chronogram technique (see Section 2.2.1
for a description of this technique when used in the cell probe model). Using
this technique, they again proved lower bounds for the partial sums problem,
stating that any dynamic data structure must have an average cost per opera-
tion of Ω(lg n/ lg lgn) over a sequence of n updates and n queries [42]. While
the lower bound is weaker than the earlier lower bound of Fredman, it holds
also for weakly oblivious data structures.

Chazelle [35, 36] later proved lower bounds for offline range searching in
the group model. He first proved a lower bound of Ω(n lg n) for offline two-
dimensional halfspace range searching [36]. The input to the offline halfspace
range searching problem is a set of n query halfspaces and n input points, each
assigned a weight from a commutative group, and the goal is to compute for
every query halfspace, the group sum of the weights assigned to the points
contained therein. In [35] he considered offline two-dimensional orthogonal
range searching and proved a lower bound of Ω(n lg lg n). Here the input is n
axis-aligned query rectangles and n points, each assigned a weight. Again, the
goal is to answer all the queries on the given input points. Both these lower
bounds were established using a general theorem for proving lower bounds for
offline range searching in the group model: Letting A denote the incidence
matrix corresponding to the input set of points and queries (i.e. the matrix
with one row for each query Ri and one column for each point pj , such that
entry ai,j is 1 if pj ∈ Ri and it is 0 otherwise), Chazelle showed that for any
1 ≤ k ≤ n, if λk denotes the k’th largest eigenvalue of A, then the offline
problem requires Ω(k · lg(λk)) group operations [36]. Thus proving offline group
model lower bounds was reduced to constructing input and query sets where

27

the corresponding incidence matrix has large eigenvalues.

The next big result was due to Pǎtraşcu and Demaine [72], who showed
an Ω(lg n) lower bound on the average cost per operation over a sequence of n
updates and n queries to the partial sums problem. While matching the early
results of Fredman, this bound also applies to weakly oblivious data structures.

Finally, Pǎtraşcu [69] proved an Ω(lg n/ lg(lg n + S/n)) lower bound for
the query time of static data structures for two-dimensional orthogonal range
searching. Here S is the space used by the data structure in number of precom-
puted group sums. Using an elegant extension of the chronogram technique,
this provided the highest lower bound to date for any dynamic range searching
problem in the group model, namely tq = Ω((lg n/ lg(lg n + tu))2), where tq is
the query time and tu is the update time. This lower bound applies to weakly
oblivious data structures for two-dimensional orthogonal range searching.

Given that it has now been three decades since the model was defined, we
believe it is fair to say that progress indeed has been extremely slow outside
the semi-group model, with the highest lower bound to date not exceeding
Ω((lg n/ lg lg n)2) per operation.

On the upper bound side, there is no separation between what has been
achieved for oblivious and weakly oblivious data structures. Thus, all the
bounds we mention in the following hold for both types of data structures.

The best results for d-dimensional orthogonal range searching in the group
model is achieved through the classic data structures known as range trees [24].
These data structures provide a solution with tq = tu = O(lgd n). From the
above lower bounds, these data structures are seen to be optimal in 1-d, and to
have a query time within a lgO(1) lg n factor from optimal in 2-d. Unfortunately
it is not even known from a lower bound perspective whether the query and
update time must grow with dimension.

For halfspace range searching, one can use Chan’s results on partition trees
to give data structures with tu = O(lg lg n) and tq = O(n1−1/d) [30], and with
some extra work, one can extend the results in [61] to achieve a tradeoff between

query time and update time of tq = Õ(n1−1/d/t
1/d
u), for any tu = Ω(lg n).

Here Õ(·) hides poly-logarithmic factors. Thus the highest known lower bound
for any explicit problem is exponentially far from the best known upper for
halfspace range searching.

1.4.2 Our Contributions

In Chapter 3, we present two new techniques for proving lower bounds for
oblivious data structures. The first technique establishes an intimate connec-
tion between dynamic range searching in the group model and combinatorial
discrepancy. The second technique demonstrates a connection to range report-
ing in the pointer machine model. These two connections allow us to reuse
decades of research in combinatorial discrepancy and range reporting to imme-
diately obtain a whole range of exceptionally high and near-tight lower bounds
for all of the basic range searching problems. We have stated a few of the ob-
tained lower bounds in the following, where tu is the worst case update time
and tq the worst case query time of an oblivious data structure:

28

• For d-dimensional halfspace range searching, we get a lower bound of
tutq = Ω(n1−1/d). This comes within a lg lg n factor of Chan’s recent
upper bound [30].

• For orthogonal range searching, we get a lower bound of tutq = Ω(lgd−1 n).

• For ball range searching, we get a lower bound of tutq = Ω(n1−1/d).

We note that these lower bounds need a requirement of bounded coefficients
which was not needed for the previous lower bounds. This requirement is how-
ever satisfied by all known upper bounds. We discuss this requirement further
in Chapter 3, where we also present all the other lower bounds that follow from
our techniques.

The previous highest lower bound for any explicit problem stated that tq =
Ω((lg n/ lg(lg n + tu))2), thus our lower bounds are exponentially higher than
what has been achieved before. Our result also has implications for the field
of combinatorial discrepancy. Using textbook range searching solutions, we
improve on the best known discrepancy upper bound for axis-aligned rectangles
in all dimensions d ≥ 3, see Chapter 3 for details.

1.5 The Pointer Machine Model

The pointer machine model was introduced in 1979 by Tarjan [81]. In this
model, a range reporting data structure is represented by a directed graph.
Each node of the graph may store either an input object or some auxiliary
data. The nodes have constant out-degrees and one node is designated as the
root. When answering a query, the data structure starts by reading the root
node. The data structure then examines the contents of that node and if the
node stores an input object, the data structure may choose to report that
object if it intersects the query range. Following that, it either terminates or
selects an edge leaving the root and retrieves the node pointed to by that edge.
This process continues, where at each step, the data structure selects an edge
leaving one of the previously seen nodes and retrieves the node pointed to by
that edge. When the process terminates, we require that all input objects that
intersects the query range have been reported, i.e. each reported input object
must be stored in at least one of the explored nodes. Thus a data structure in
the pointer machine model is a data structure where all memory accesses are
through pointers and random accesses are disallowed. Also, input objects have
to be stored indivisibly in order for them to be reported and hence standard
compression techniques used in the word-RAM cannot be applied.

The space of a pointer machine data structure is defined as the number of
nodes in the corresponding graph, and the query time is the number of nodes ex-
plored when answering a query. Note that when proving lower bounds, we make
no restriction on how the data structure determines which nodes to explore;
We simply assume it knows the entire graph and thus non-deterministically can
choose the best subgraph to explore.

While the pointer machine model is somewhat constrained compared to
the popular word-RAM model (see Section 1.2), there are several motivating

29

factors for studying the complexity of range reporting in this model. First and
foremost, we can prove polynomially high and often very tight lower bounds
in this model. This stands in sharp contrast to the highest query time lower
bound of Ω(lg n) for any static data structure problem in the word-RAM (or cell
probe model). Additionally, most word-RAM range reporting upper bounds are
really pointer-based or can easily be implemented without random accesses with
a small overhead, typically at most an O(lg n) multiplicative cost in the query
time and/or space. Thus pointer machine lower bounds indeed shed much light
on the complexity of range reporting problems.

1.5.1 Previous Results

With only a few exceptions (see [1, 6]), lower bounds for range reporting in the
pointer machine model have all been proved by appealing to a theorem initially
due to Chazelle [34] and later refined by Chazelle and Rosenberg [40]. First, let
P be a set of input objects to a range searching problem and let R be a set of
query ranges. Then we say that R is (t, h)-favorable if

1. |R ∩ P | ≥ t for all R ∈ R.

2. |R1∩R2∩· · ·∩Rh∩P | = O(1) for all sets of h different queries R1, . . . , Rh ∈
R.

Letting k denote the output size of a query, Chazelle and Rosenberg proved
that

Theorem 1.1 (Chazelle and Rosenberg [40]). Let P be a set of n input objects
to a range searching problem and R a set of m query ranges. If R is (Ω(tq), h)-
favorable, then any pointer machine data structure for P with query time tq +
O(k) must use space Ω(mtq/h).

This theorem completely reduces the task of proving pointer machine range
reporting lower bounds to a geometric problem of constructing a hard input
and query set. As we shall see, it is possible to prove lower bounds of poly-
nomial magnitude using this technique. Thus, in contrast to the cell probe
and group model setting, the main objective for research in pointer machine
lower bounds is not so much to develop techniques that can prove higher lower
bounds, but instead to prove tight lower bounds for the fundamental problems.
Hence we have summarized the highest previous lower bounds for the three
most fundamental range reporting problems in the following:

Orthogonal Range Reporting. In this problem, the input consists of n
points in d-dimensional space and the goal is to report all points contained
in an axis-aligned query rectangle. Already in 1990, Chazelle [34] proved an
Ω(n(lg n/ lg tq)

d−1) space lower bound for this problem. Here tq + O(k) is the
query time of the data structure, where k is the number of points reported.
The lower bound is known to be tight for tq = Ω(lg n(lg n/ lg lgn)d−3) [5].

While the lower bound of Chazelle focuses on the space usage, together
with Afshani and Arge [5], we recently proved a lower bound focusing on the

30

query time. Our lower bound states that tq = Ω((lg n/ lg(S/n))bd/2c−1) where
S denotes the space usage. While this is known not to be tight (we improve
on it in Chapter 4), it was the first lower bound to show that the query time
has to increase beyond Ω(lg n + k) for constant d and near-linear space usage
(n lgO(1) n space). We note that the fastest query time obtained for d ≥ 4 and
n lgO(1) n space usage is O(lg n(lg n/ lg lg n)d−4+1/(d−2) + k) [6], thus the true
complexity of the problem remains a mystery.

Simplex Range Reporting. In simplex range reporting, the input again
consists of a set of n points in d-dimensional space and query regions are sim-
plices (the generalization of triangles to higher dimensions). This problem is
fundamental since range reporting with any polytope as query range can be
solved by first triangulating the polytope and then querying a simplex range
reporting data structure with each simplex in the triangulation. The first lower
bound for this problem was due to Chazelle and Rosenberg [40] who showed
that any simplex range reporting data structure must use space Ω((n/tq)

d−ε)
when the query time is tq + O(k). This comes fairly close to the known upper

bounds having space usage O((n/tq)
d lgO(1) n) for any tq = Ω(lgd+1 n) [62].

Using the new technique we present in Chapter 4, Afshani [1] recently pre-

sented a tighter lower bound of S = Ω((n/tq)
d/2O(

√
lg tq)). In particular for the

regime of tq = lgO(1) n, this lower bound is within poly-logarithmic factors from
the best upper bound.

Halfspace Range Reporting. Unfortunately the status for the halfspace
range reporting problem is less satisfactory than for orthogonal and simplex
range reporting. The best known lower bounds for this problem are obtained
by reduction from range reporting in a slab in roughly

√
d dimensions. Not

going into details, we merely note that this gives lower bounds of roughly S =

(n/tq)
Ω(
√
d) [1] where the query time is tq + O(k), whereas the best known

upper bounds have space usage O((n/tq)
bd/2c lgO(1) n) for any tq = Ω(lgc n) for

a sufficiently large constant c > 0 depending on the dimension [7].

1.5.2 Our Contributions

In Chapter 4 we present a new technique for proving pointer machine lower
bounds. With this technique, we shrink the gap between the upper and lower
bound for orthogonal range reporting. More specifically, we obtain a lower
bound stating that data structures with query time tq + tkk and space usage S

must satisfy tq = Ω(lg n · lgbd/2c−2
h n) for d ≥ 4. Here h = max{S/n, 2tk}. This

is a lg h factor higher than our previous bound from Afshani et al. [5]. Perhaps
even more interesting, we use the same hard input instance as we used in [5]
in combination with the theorem of Chazelle and Rosenberg (Theorem 1.1).
Since the lower bound obtained there was a lg h factor weaker than our new
bound, our new technique is more powerful than the technique of Chazelle and
Rosenberg (for some problems and inputs at least).

31

It remains an intriguing open problem whether the true complexity of or-
thogonal range reporting has a query time that increases with every dimension
or only every other dimension.

Finally, as we noted above, Afshani [1] recently used our new technique to
improve on the long-standing best lower bound for simplex range reporting.
This also lead to the current best lower bounds for halfspace range reporting
(still only growing as roughly

√
d in the exponent).

1.6 The I/O-Model

The I/O-model of Aggarwal and Vitter [8] was designed to more accurately
predict the performance of data structures and algorithms when the size of the
input data exceeds the main memory size. When this happens, most of the
input data resides on a slow secondary storage device (e.g. a magnetic hard
disk). The difference in access time between main memory and disk is typically
several orders of magnitude. This means that the time spend performing CPU
instructions becomes negligible to the time spend accessing data stored on disk
and hence a standard algorithmic analysis in the word-RAM or pointer machine
model is no longer a good predictor for performance.

The crucial property of most types of secondary storage devices is that,
while access time is slow, reading (and writing) large chunks of consecutive
memory locations is very fast. Therefore, data is moved between main memory
and disk in large chunks of consecutive memory locations. The hope is that
the next many memory locations needed by the algorithm or data structure all
belong to the same chunk and hence the large transfer time can be amortized
away. This property is exactly what one tries to exploit when designing data
structures in the I/O-model.

In the I/O-model, a machine consists of a CPU, a main memory of limited
size M words and an infinitely sized disk. The disk is partitioned into blocks
of B consecutive words each and data is transferred between main memory
and disk in blocks. The movement of one block is called an I/O. The CPU
can only perform instructions on data stored in main memory and hence a
data structure has to decide how to organize data on disk and which blocks to
transfer to main memory when answering queries. The performance of a data
structure is measured in space usage (number of words) and the number of I/Os
needed to answer a query. Note that all computation on data in main memory
is free of charge.

1.6.1 Previous Results

There is an enormous body of work on algorithms and data structures in the
I/O-model, thus we have chosen to present only the previous work most related
to our results, namely work on orthogonal range reporting. For range reporting
in the I/O-model, we assume input objects are indivisible and that one input
objects fits in a machine word. Hence main memory can store M input objects
and a disk block can store B input objects. It is interesting that, in contrast
to the pointer machine vs. word-RAM setting, no separation has been shown

32

between orthogonal range reporting in the I/O-model with and without the
indivisibility requirement. In fact, it is generally believed that most problems
(including sorting) cannot be solved more efficiently in the I/O-model when
abandoning the indivisibility requirement (see [48] for more discussion and one
of the only convincing exceptions).

When designing orthogonal range reporting data structures in the I/O-
model, we typically aim at a query cost of the form O(lgcB n + k/B) where
k denotes the number of reported objects and c ≥ 1 is some small constant.
Note that in the I/O-model, the optimal term involving k is O(k/B), and not
O(k), since B output objects can be written in one I/O. For natural values of
B, the difference between O(k) and O(k/B) is so large that an O(k) reporting
cost is completely uninteresting. Also, the optimal search cost is lgB n (corre-
sponding to the height of a B-ary search tree), at least when the coordinates
of the input objects can only be compared. For natural values of B, lgB n is
rarely more than 3 or 4, thus a lgB n search cost significantly improves over the
performance of a binary search.

The main tool for proving lower bounds for range reporting data structures
in the I/O-model was introduced by Hellerstein et al. [47] and slightly refined by
Arge et al. [15]. Hellerstein et al. [47] defined what they called the indexability
model, which can be thought of as a variant of the I/O-model targeted at proving
lower bounds for range reporting problems. Again, input objects are considered
indivisible and hence to report an input object, the query algorithm must read
a block storing that object. The details of the model are as follows:

The Indexability Model [47]. In the indexability model [47] an indexing
problem is described by a workload W = (I,Q), where I is a set of input objects
and Q is a set of subsets of I; the elements of Q are called queries. Given a
workload W and a block size B, an indexing scheme is defined on I by a block
assignment function, B, which is a set of B-sized subsets of I. Intuitively, all
the input objects in a set b ∈ B are stored in one block.

The quality of an indexing scheme is quantified by two parameters: space
and query time. The space is defined as B|B| (the number of objects stored). If
any query in Q is covered by at most tq + tkd|q|/Be blocks of B, then the query
time is defined as the (tq, tk) tuple [15] (this a slight variation on the original
definition of access overhead [47]). For any range reporting data structure in the
I/O-model (storing input objects indivisibly), an indexing scheme is naturally
defined by just looking at the input objects stored in the blocks of the storage
medium, hence lower bounds proved in the indexability model immediately
gives lower bounds in the I/O-model.

The following redundancy theorem relates space and query cost and is the
main tool for proving range reporting lower bounds in the I/O-model [15, 47]:

Theorem 1.2 (Refined Redundancy Theorem [15]). For a workload W = (I,Q)
where Q = {q1, q2, . . . , qm}, let (I,B) be an indexing scheme for W with query
cost (tq, tk) with tk ≤

√
B/8 such that for any 1 ≤ i, j ≤ m, i 6= j : |qi| ≥ Btq

and |qi ∩ qj | ≤ B/(64t2k). Then the space of (I,B) is at least 1
12

∑m
i=1 |qi|.

33

The similarity to the theorem of Chazelle and Rosenberg (Theorem 1.1) is
striking: To prove a lower bound, one constructs a set of input objects and
queries, such that any query contains sufficiently many input objects, and sec-
ondly, any two queries have a sufficiently small intersection. Except for a recent
result by Afshani [1], simplex and halfspace range reporting has not received
any attention from a lower bound perspective in the I/O-model, hence we only
review the results for orthogonal range reporting in the following.

The two-dimensional version of the problem has been completely solved for
some time now. In [15], Arge et al. presented a data structure answering
queries in optimal O(lgB n + k/B) I/Os using O(n lg n/ lg lgB n) space, where
k is the number of reported points. They also used the Refined Redundancy
Theorem to prove that this space bound is optimal for any query time of the

form lg
O(1)
B n · (1+k/B). However, in three and higher dimensions, the problem

remains open. From a lower bound side, Hellerstein et al. [47] proved that any
data structure with query time tq + tkk must use space Ω(n(lgB/ lg(tktq))

d−1)
for d ≥ 3. Note the lgB in the numerator and not lg n as in the two-dimensional
case. From an upper bound side, the current best tradeoffs were presented in
our paper Afshani et al. [4]. Here a data structure using O(n(lg n/ lg lgB n)d−1)
space and answering queries in O(lgB n(lg n/ lg lgB n)d−2 + k/B) I/Os was pre-
sented. Alternatively, a data structure using O(n(lg n/ lg lgB n)d) space and
answering queries in O(lgB n(lg n/ lg lgB n)d−3 + k/B) was also presented. For
d = 3, it is believed that the optimal bound is O(lgB n+ k/B) query cost and
O(n(lg n/ lg lgB n)2) space, i.e. the best query time of the two solutions and
the best space of the two. Thus both the lower bound and the upper bounds
are believed to be off for all dimensions d ≥ 3. Also, the query time of the best

upper bounds for d ≥ 4 are not of the form lg
O(1)
B n+O(k/B), but instead pay

almost a lg n penalty per dimension, thus not exploiting the large block size.

1.6.2 Our Contributions

In Chapter 4 we make two steps towards tightening the lower bounds for or-
thogonal range reporting. First, we show that our new technique for proving
lower bounds in the pointer machine (see the discussion in Section 1.5) can
be extended to also prove I/O-model lower bounds. This yields a new lower
bound for orthogonal range reporting, stating that data structures with query

time tq + tkk/B and space S, must satisfy tq = Ω(lg
bd/2c−1
h n) for d ≥ 4. Here

h = max{S/n, tk}. The most surprising conclusion from this lower bound is
that it is not possible to exploit the large block size to obtain query times of

lg
O(1)
B n+O(k/B) in dimensions d ≥ 4, at least not without paying an expensive

Bε factor in space for a constant ε > 0. Also note that the lower bound de-
creases as a polynomial in lg tk and not as a polynomial in tk which was the case
in the pointer machine (see Section 1.5). We also mention that Afshani’s [1] re-
cent lower bounds for simplex range reporting were based on our new technique.
Finally, we use the Refined Redundancy Theorem and construct a hard work-
load to obtain a space lower bound of Ω(n(lg n/ lg(tqtk))

d−1) for data structures
with query cost tq + tkk/B when d ≥ 2. Thus we replace the lgB term in the
bound of Hellerstein et al. [47] with a seemingly more correct lg n term.

34

Chapter 2

The Cell Probe Model

In this chapter, we present our results in the cell probe model. As mentioned
in Chapter 1, the cell probe model has been designed such that lower bounds
proved in this model applies to data structures developed in the standard word-
RAM model. In that light, the cell probe model is really the most natural and
appealing model for proving lower bounds. Unfortunately, as we saw in Sec-
tion 1.3, the highest previous lower bounds are just logarithmic, even for dy-
namic data structures. This severely restricts the list of natural data structure
problems for which we may hope to prove tight lower bounds. Therefore, the
main objective for current research in the cell probe model, is to design new
techniques that allow us to prove higher lower bounds and thereby expand the
list of problems that we may hope to settle the complexity of. This is precisely
the focus of this chapter, in which we introduce two new techniques for proving
cell probe lower bounds, one for static data structures and one for dynamic
data structures.

In Section 2.1, we first present the previous techniques for proving lower
bounds for static data structures. We also discuss the limitations of these
techniques and finally present our new technique and compare it to the previous
approaches. This new technique allow us to obtain static query time lower
bounds peaking at Ω(lg d), where d is the number of queries to the data structure
problem. We conclude the section on static data structures by demonstrating
our technique on the concrete problem of polynomial evaluation.

We continue in Section 2.2 by presenting a number of previous techniques
for proving dynamic lower bounds. We have chosen to focus on the techniques
most closely related to our new technique. We discuss the limitations of these
techniques and finally present the key ideas of our new technique, leading to
lower bounds of Ω((lg n/ lg lgn)2) on the maximum of the update and query
time. After having presented the techniques we move on to demonstrate our
new technique for the dynamic polynomial evaluation problem and the dynamic
weighted range counting problem.

35

2.1 Static Data Structures

In this section, we focus on static data structures. In the static setup, the
input data is given once and for all and we must preprocess it into a data
structure to support answering queries. The two performance metrics are space
and query time (in particular, we allow arbitrary preprocessing time). We
start by reviewing previous techniques for proving lower bounds for static data
structures. Following that, we introduce our new technique and demonstrate it
on the polynomial evaluation problem.

2.1.1 Techniques

In the following, we first review the techniques of Miltersen et al. [66], Pǎtraşcu
and Thorup [73, 74], and of Panigrahy et al. [68]. Finally we introduce our new
approach and compare it to the previous ones.

Miltersen et al. [66]. This technique relies on a reduction to an asymmetric
communication game. More formally, to prove a lower bound for a data struc-
ture problem, we consider a communication game between two players Alice
and Bob. Alice is given a query to the data structure problem and Bob an
input set. The goal for Alice and Bob is to compute the answer to Alice’s query
on Bob’s input using as little communication as possible. The “asymmetry”
lies in Alice having a much smaller input than Bob.

Now assume a data structure exists using S cells of space and with query cost
t. This data structure gives rise to a t-round protocol for the communication
game: Bob first construct the data structure on his input. Alice then simulates
the query algorithm, and for each cell probe, she sends to Bob the address
of the desired cell. Bob then replies with the contents of the cell, until all t
probes have been simulated, and Alice knows the answer. The data structure
solution thus provides a protocol in which Alice sends t lgS bits and Bob sends
tw bits. Cell probe lower bounds now follow by bounding the communication
needed by Alice and Bob using tools from communication complexity, see e.g.
the excellent book by Kushilevitz and Nisan [51].

Let d be the number of different queries to the data structure problem. Since
the communication game is trivial once either of the two players has send his/her
entire input to the other player, this technique cannot prove lower bounds
beyond t lgS = Ω(lg d), i.e. at most t = Ω(lg d/ lgS), which, as mentioned
in Section 1.3, degenerates to Ω(1) in the setting of d = nO(1) where n is the
minimum space usage in bits (i.e. 2n is the number of inputs). The lgS term
clearly shows that the technique does not distinguish between near-linear and
polynomial space data structures.

Pǎtraşcu and Thorup [74]. This technique is essentially a refinement of the
above communication game: Instead of Alice receiving one query as input, she
receives a set of k queries. The goal is to compute the answer to all k queries
on Bob’s one input.

36

Again assume a data structure exists using S cells of space and with query
cost t. Bob constructs the data structure on his input, but this time Alice
simulates the query algorithm for all k queries in parallel, i.e. in each of the t
rounds, she sends to Bob the addresses of all the cell probes requested, for a
total of lg

(
S
k

)
≈ k lg(S/k) bits per round. Bob replies with the requested cells,

including addresses and contents for a total of k(w+lgS) ≤ 2kw bits per round
(since lgS ≤ w). The key point is that lg(S/k) is much smaller than lgS for
k close to n, i.e. the average cost of specifying a cell is much smaller. Finally,
the cell probe lower bounds are obtained by using communication complexity
tools [51] to lower bound the communication between Alice and Bob.

Let d be as above, and furthermore let 2n be the number of different input
sets to the data structure problem. By the same argument as earlier, we cannot
hope to prove lower bounds beyond 2ktw = Ω(n). This naturally constrains k =
O(n/wt). Similarly, we cannot prove anything beyond kt lg(S/k) = Ω(k lg d).
This maximizes at t = Ω(lg d/ lg(S/k)), which by the bound on k cannot exceed
t = Ω(lg d/ lg(Swt/n)). Since S must be at least n/w, this peaks at t =
Ω(lg d/ lg lg d) for S = n lgO(1) d. For problems with polynomially many queries,
i.e. d = nO(1), the bound becomes t = Ω(lg n/ lg lgn) for space n lgO(1) n.

Panigrahy et al. [68]. This is the technique which we extend upon. In
contrast to the two previous, this technique is not based on communication
complexity. Instead, lower bounds are proved by showing that a small set of
memory cells “solves” many queries, leading to a contradiction. More specifi-
cally, consider a data structure problem with 2n inputs and d different queries
and assume for simplicity that d is at least n2. To obtain a lower bound, we
assume a data structure solution exists for this problem, having query time
t. Using this data structure, we show how to represent each of the 2n inputs
uniquely in less than n bits when t is too small, i.e. we encode the inputs in
less than n bits. Obviously this is not possible since we have 2n distinct inputs
and hence t has to be large.

In greater detail, we map each input I to a string of less than n bits by
first implementing the claimed data structure on it. This produces a memory
representation consisting of S cells of w bits each. For t iterations, i = 1, . . . , t,
we now carefully pick a set Ci of n/4tw cells in the data structure. We represent
I by writing down the cell sets C1, . . . , Ct, including addresses and contents, for
a total of t(w + lgS)n/4tw ≤ n/2 < n bits. What remains is to argue that I
can be uniquely recovered from this representation. For this step, we consider
each of the d possible queries. For a specific query q, we simulate the query
algorithm, and for the i’th cell probe, we check whether the requested cell is
included in Ci. If so, we have the contents and can continue the simulation. If
not, we discard q and continue with the next query. If we simply choose the sets
Ci as uniform random sets of n/4tw cells, then the probability that the i’th cell
probed when answering q on input I is included in Ci is precisely n/4Stw. It
follows that the probability that q is not discarded is (n/4Stw)t. By linearity of
expectation, we expect to have d · (n/4Stw)t queries that are not discarded. If
t = o(lg d/ lg(Swt/n)), this is d1−o(1) = n1+Ω(1). The lower bound finally follows

37

by arguing that I can be uniquely recovered from the answer to any n1+Ω(1)

queries, leading to a contradiction and hence implying t = Ω(lg d/ lg(Swt/n)).
Clearly the answer to any set of n1+Ω(1) queries is not guaranteed to uniquely
determine I, but luckily there is some freedom in the choice of the Ci’s and a
uniform random choice did not suffice in [68]. The intuition however remains
the same, i.e. a small set of cells solves a large number of queries.

As with the previous technique, the highest achievable lower bound is t =
Ω(lg d/ lg(Swt/n)), since for higher values of t, the number of queries not dis-
carded reduces to d · (n/4Stw)ω(lg d/ lg(Swt/n)) = o(1). Note that for linear
space, i.e. S = O(n/w), this becomes t = Ω(lg d/ lg t). As with the technique
of Pǎtraşcu and Thorup, this is bounded by t = Ω(lg d/ lg lg d).

Our Technique. The key idea leading to our improved lower bound is in fact
a simple twist to the technique of Panigrahy et al. [68]. In their approach, the
cell sets Ci must have size less than n/wt since we have to write down t such
sets and arrive at less than n bits. Thus the t factor is inevitable and hence
lower bounds proved using this technique cannot exceed Ω(lg d/ lg t), even for
linear space (S = O(n/w)).

To avoid the t factor, we pick one set of cells C, having size n/4w. Encoding
this set of cells, including addresses and contents, takes less than n bits. We
then discard all queries for which some probe is outside C. The probability
that all cell probes are inside C when C is chosen uniformly at random is
(n/4Sw)t. For t = o(lg d/ lg(Sw/n)) this becomes d−o(1), i.e. we expect to
have d1−o(1) queries that are not discarded. We can thus prove lower bounds of
t = Ω(lg d/ lg(Sw/n)) which for linear space (S = O(n/w)) becomes t = Ω(lg d).
In some sense, we have parallelized the sampling for all t probes of the queries
which leads to the improvement.

2.1.2 Static Polynomial Evaluation

In this section, we prove a cell probe lower bound for static polynomial eval-
uation. Before descending into the proof, we recall the problem definition.
The input to polynomial evaluation is an n-degree polynomial with coefficients
drawn from a finite field F, where we assume |F| = n1+Ω(1). A query is specified
by an element x ∈ F and the goal is to evaluate the polynomial at x. We first
review the previous work for this problem.

Previous Results. The polynomial evaluation problem has seen a rather
large amount of attention, in particular from a lower bound perspective. Mil-
tersen [65] was the first to prove cell probe lower bounds for polynomial eval-
uation over a finite field F. His lower bound states that t = Ω(lg |F|/ lgS)
whenever |F| is at least n1+ε for an arbitrarily small constant ε > 0. Here t
is the worst case query cost. This lower bound unfortunately degenerates to
t = Ω(1) for |F| = nO(1). In [44], Gál and Miltersen considered succinct data
structures for polynomial evaluation. Succinct data structures are data struc-
tures that use space very close to the information theoretic minimum required
for storing the input (in this case (n+1) lg |F| bits). In this setting, they showed

38

that any data structure for polynomial evaluation must satisfy tr = Ω(n) when
|F| ≥ (1 + ε)n for any constant ε > 0. Here t is the worst case query cost
and r is the redundancy, i.e. the additive number of extra bits of space used
by the data structure compared to the information theoretic minimum. If data
structures are allowed non-determinism (i.e. they can guess the right cells to
probe), then Yin [83] proved a lower bound matching that of Miltersen [65].

On the upper bound side, Kedlaya and Umans [50] showed that there exists
a static word-RAM data structure (and hence cell probe data structure) for
polynomial evaluation, having space usage n1+ε lg1+o(1) |F| and worst case query
cost lgO(1) n lg1+o(1) |F| for any constant ε > 0.

The Lower Bound Proof.

Our goal is to prove a lower bound of t = Ω(lg |F|/ lg(Sw/n lg |F|)), where S is
the space in number of cells, w the cell size in bits and t is the query time of
a randomized data structures with error probability δ, where δ is an arbitrary
constant less than 1/2. Note that for linear space, i.e. S = O(n lg |F|/w), the
lower bound simplifies to t = Ω(lg |F|).

For the proof, we assume the availability of such a randomized data struc-
ture. To ease calculations, we first modify this data structure in the following
standard way: When presented with a query, we repeat the query algorithm a
sufficiently large constant number of times and then return the majority answer.
By this procedure, we have effectively obtained a randomized data structure
with error probability at most 1/19, while maintaining the same asymptotic
expected query cost. Secondly, we modify the data structure by letting it re-
turn an arbitrary answer whenever the query algorithm does not terminate
within a number of steps that is bounded by a sufficiently large constant times
the expected query cost. By Markov’s inequality, this yields a randomized data
structure with error probability at most 1/18 and worst case query cost O(t).

Finally, by fixing the random bits, this implies the existence of a determinis-
tic data structure with error probability at most 1/18 and worst case query cost
O(t), where the error probability of the deterministic data structure is defined
as the probability that it returns an incorrect result when answering a uniform
random query on a uniform random input polynomial.

We show that such a deterministic data structure must have worst case
query cost Ω(lg |F|/ lg(Sw/n lg |F|)), which completes the proof.

Notation. We let P denote a random variable giving a uniform random n-
degree polynomial with coefficients in the field F, i.e. each of the n+ 1 coeffi-
cients of P is a uniform random element from F. Clearly H(P) = (n+ 1) lg |F|,
where H(·) denotes binary entropy.

An Encoding Proof. Assume for contradiction that a deterministic data
structure solution for polynomial evaluation over F, using S cells of space, with
worst case query cost t = o(lg |F|/ lg(Sw/n lg |F|)) and error probability 1/18
exists. Assume furthermore |F| = n1+Ω(1). Under this assumption, we show
how to encode P using less than H(P) = (n + 1) lg |F| bits in expectation,

39

a contradiction. Following Panigrahy et al. [68], the high level idea of the
encoding procedure is to implement the claimed data structure on P. Letting
D(P) denote the set of cells stored by the data structure on input P, we then
find a subset of cells that resolves a large number of queries which do not err,
and hence the cell set reveals much information about P. Here we say that a set
of cells C ⊆ D(P) resolves a query q, if the query algorithm probes only cells
in C when answering q on input P. If the found set of cells can be described in
fewer bits than the resolved queries reveal about P, this gives the contradiction.
The following is our main technical result:

Lemma 2.1. With probability at least 1/2 over the choice of P, there exists a
set of cells C ⊆ D(P) and an integer t∗, where 1 ≤ t∗ ≤ t, which satisfy all of
the following properties:

1. |C| = n lg |F|/5w.

2. Let GC
t∗(P) be the set of queries that succeed on input P (good queries),

where furthermore each query q in GC
t∗(P) is resolved by C on input P

and the query algorithm probes exactly t∗ cells when answering q on input
P. Then |GC

t∗(P)| = |F|1−o(1) = n1+Ω(1).

3. Similarly, let BC
t∗(P) be the set of queries that err on input P (bad

queries), where furthermore each query q in BC
t∗(P) is resolved by C and

the query algorithm probes exactly t∗ cells when answering q on input P.
Then |BC

t∗(P)| ≤ |GC
t∗(P)|/2.

Before giving the proof of Lemma 2.1, we show how we use it in the encoding
and decoding procedures. We first give a high-level interpretation of Lemma 2.1:
Examining the lemma, we see that for half of all possible input polynomials,
the claimed (too fast) data structure must contain a set of cells C, such that C
can be described in less than H(P) bits, and at the same time, many queries
can be answered solely from the contents of the cells in C. Now observe that
knowing the answer to an evaluation query provides a point on the polynomial
P. Hence from C, we can recover |GC

t∗(P)| = n1+Ω(1) points on the polynomial
P. Since an n-degree polynomial over a field is uniquely determined from any
n + 1 distinct points on the polynomial, it follows that (ignoring the queries
that err for now) P is uniquely determined from C, which gives a contradiction
since C can be described in fewer than H(P) bits. The remaining parts of the
lemma ensure that we can recover P even when facing a number of queries that
err. The details of this will become apparent in the encoding and decoding
procedures below.

We note that to prove Lemma 2.1, we have to extend on the ideas in Pan-
igrahy et al. [68] since their cell sampling technique would leave us with a set
C of size a factor t larger than what we obtain. Readjusting parameters, this
would loose a factor lg lg |F| in the lower bound and bring us back to what can
be achieved using the communication approach. We discuss this further when
we give the proof of Lemma 2.1.

40

Encoding Algorithm. The algorithm for encoding P does the following:

1. First we construct the claimed data structure on P and obtain the set of
cells D(P). If for every integer 1 ≤ t∗ ≤ t, D(P) does not contain a set of
cells C satisfying the properties of Lemma 2.1, we simply encode P as a 0-
bit followed by a naive encoding of P, taking a total of 1+d(n+1) lg |F|e ≤
2 +H(P) bits.

2. If the integer 1 ≤ t∗ ≤ t and the cell set C does exist, we first write a
1-bit. We then encode both t∗ and C, including addresses and contents of
the cells in C, for a total of 1 + lg t+ |C|(w+ lgS) ≤ 3|C|w ≤ 3/5 ·H(P)
bits.

This completes the encoding procedure. Next we show how to recover P
from the encoding:

Decoding Algorithm. To recover the polynomial P from the above encod-
ing, we do the following: We start by examining the first bit. If this is a 0, we
immediately recover P from the remaining part of the encoding. If the first bit
is 1, we obtain the set of cells C and the integer t∗ from the encoding. We now
simulate the query algorithm for each of the |F| possible queries. For each such
query q, if the query algorithm requests a cell outside C we simply discard q.
Otherwise we recover the contents of the requested cell from the encoding and
continue the simulation until we either discard the query or obtain the answer
to it (possibly incorrect answer). Once this procedure is done we are left with
all the queries that are resolved by C. We now prune this set by deleting all
queries where the query algorithm did not probe exactly t∗ cells. We are then
left with the set GC

t∗(P)∪BC
t∗(P), including the correct answer to each query in

GC
t∗(P) and an incorrect answer to each query in BC

t∗(P) (but we do not know
which queries belong to each set). We finally iterate through all possible input
polynomials and return as our candidate for P, the polynomial which agrees
with the most of the answers we have obtained for queries in GC

t∗(P)∪BC
t∗(P).

To see that the returned polynomial in fact is P, first recall the standard
fact that any n-degree polynomial over a field is uniquely determined from
n + 1 distinct points on the polynomial. This implies that any two distinct
polynomials over the input field F can agree on the answer to at most n
evaluation queries. Thus any polynomial different from P can agree with at
most n of the answers obtained for queries in GC

t∗(P) and possibly all an-
swers obtained for queries in BC

t∗(P). By Lemma 2.1, this is bounded by
n+ |BC

t∗(P)| ≤ n+ |GC
t∗(P)| − |GC

t∗(P)|/2 = |GC
t∗(P)|+ n− n1+Ω(1) < |GC

t∗(P)|
query answers. But P agrees on all answers in GC

t∗(P) and hence it follows that
the returned polynomial indeed is P.

Analysis. Invoking Lemma 2.1, we get that the encoding uses at most

1/2 · (2 +H(P)) + 1/2 · 3/5 ·H(P) < 9/10 ·H(P)

bits in expectation, i.e. a contradiction.

41

Proof of Lemma 2.1. In this paragraph, we prove the main technical re-
sult, namely Lemma 2.1. As noted, our approach differs slightly from that of
Panigrahy et al. [68]. In their paper, they find a set of cells resolving many
queries by picking t random samples of cells, one for each cell probe by the data
structure. Our key idea is to pick one sample for all t probes simultaneously.
This small difference is crucial to obtain the improved lower bounds when the
space is less than a factor t from linear.

First, by Markov’s inequality, we get that with probability at least 1/2,
there are at most 2 · |F|/18 = |F|/9 queries that err on input P. When this
happens, we show that there exists t∗ and C satisfying all the properties of
Lemma 2.1. This boils down to counting arguments:

We first choose t∗. For this, initialize a candidate set T = {1, . . . , t} of
values for t∗. Now define G(P) as the set of queries that succeed on input
P and similarly define B(P) as the set of queries that err on input P. By
assumption we have |B(P)| ≤ |F|/9 and hence |G(P)| ≥ 8/9 · |F| ≥ 8|B(P)|.
Examine each i ∈ T in turn and collect for each choice the set Gi(P), consisting
of all queries in G(P) that probe exactly i cells on input P. For each i where
|Gi(P)| < |G(P)|/2t, we remove i from T , i.e. we set T ← T \ {i}. After
this step, we have

∑
i∈T |Gi(P)| ≥ |G(P)|/2 and |Gi(P)| ≥ |G(P)|/2t for each

i ∈ T .

Next, we examine each remaining i ∈ T and remove all such i where
|Bi(P)| > |Gi(P)|/4. Here Bi(P) is the set of queries in B(P) that probe
exactly i cells on input P. Since∑

i∈T
|Gi(P)| ≥ |G(P)|/2 ≥ 4|B(P)| ≥ 4

∑
i∈T
|Bi(P)|,

it follows that T is non-empty after this pruning step. We let t∗ equal
an arbitrary remaining value in T , thus we have |Gt∗(P)| ≥ 4|Bt∗(P)| and
|Gt∗(P)| ≥ |G(P)|/2t.

We find C in a similar fashion. For ease of notation, define ∆ = n lg |F|/5w.
First initialize a candidate set Y , containing all ∆-sized subsets of cells in D(P).
We thus have |Y | =

(
S
∆

)
. For a set C ′ ∈ Y , we define GC

′
t∗ (P) (BC′

t∗ (P)) as the
subset of queries in Gt∗(P) (Bt∗(P)) that are resolved by C ′, i.e. they probe
only cells in C ′ on input P. Observe that each query in Gt∗(P) and Bt∗(P) is
resolved by precisely

(
S−t∗
∆−t∗

)
sets in Y , hence

∑
C′∈Y |GC

′
t∗ (P)| = |Gt∗(P)|

(
S−t∗
∆−t∗

)
and

∑
C′∈Y |BC′

t∗ (P)| = |Bt∗(P)|
(
S−t∗
∆−t∗

)
.

We now prune Y by deleting all sets C ′ ∈ Y for which

|GC′t∗ (P)| < |Gt∗(P)|
(
S − t∗

∆− t∗

)
/2

(
S

∆

)
.

We then have both

•
∑

C′∈Y |GC
′

t∗ (P)| ≥ |Gt∗(P)|
(
S−t∗
∆−t∗

)
/2.

• |GC′t∗ (P)| ≥ |Gt∗(P)|
(
S−t∗
∆−t∗

)
/2
(
S
∆

)
.

42

for all remaining C ′ ∈ Y . As the last step, we remove all C ′ ∈ Y for which
|BC′

t∗ (P)| > |GC′t∗ (P)|/2. Again, since∑
C′∈Y

|GC′t∗ (P)| ≥ |Gt∗(P)|
(
S − t∗

∆− t∗

)
/2

≥ 2|Bt∗(P)|
(
S − t∗

∆− t∗

)
≥ 2

∑
C′∈Y

|BC′
t∗ (P)|,

we conclude that Y is non-empty after this step, and we let C equal an arbitrary
remaining set. We have thus obtained t∗ and C satisfying both

• |GC
t∗(P)| ≥ |Gt∗(P)|

(
S−t∗
∆−t∗

)
/2
(
S
∆

)
≥ |G(P)|

(
S−t∗
∆−t∗

)
/4t
(
S
∆

)
.

• |BC
t∗(P)| ≤ |GC

t∗(P)|/2.

Lemma 2.1 now follows since

|G(P)|
(
S−t∗
∆−t∗

)
4t
(
S
∆

) ≥ 2|F|
(
S−t∗
∆−t∗

)
9t
(
S
∆

)
= |F| 2(S − t∗)!∆!

9tS!(∆− t∗)!

≥ |F|2(∆− t∗)t
∗

9tSt∗

≥ |F|
(
n lg |F|
6Sw

)t
= |F|1−o(1),

where the last step followed from making the contradictory assumption that
t = o(lg |F|/ lg(Sw/n lg |F|)). We finally conclude:

Theorem 2.1. Any static cell probe data structure for evaluating an n-degree
polynomial over a finite field F must have query cost t = Ω(lg |F|/ lg(Sw/n lg |F|))
if F has size at least n1+Ω(1). Here S is the space usage in number of cells and w
is the cell size. This lower bound holds for randomized data structures with any
constant error probability δ < 1/2. For linear space (i.e. S = O(n lg |F|/w)),
this lower bound simplifies to t = Ω(lg |F|).

2.2 Dynamic Data Structures

In this section, we present a new technique for proving lower bounds for dynamic
data structures. For dynamic data structures, the two performance metrics of
interest are query time and update time. Observe however that the space usage
is tightly coupled to the update time: If the update time is tu, then in n update
operations, the largest data structure that can be constructed has space usage
ntu.

We start by reviewing some of the previous techniques for proving dynamic
lower bounds. Following that, we introduce our new technique and apply it
to the two problems of dynamic polynomial evaluation and dynamic weighted
orthogonal range counting.

43

2.2.1 Techniques

In this section, we first review the two previous techniques most important to
this work, and then present our new technique.

Fredman and Saks [42]. This technique is known as the chronogram tech-
nique. The basic idea is to consider batches, or epochs, of updates to a data
structure problem. More formally, one defines an epoch i for each i = 1, . . . , lgβ n,
where β > 1 is a parameter. The i’th epoch consists of performing βi randomly
chosen updates. The epochs occur in time from largest to smallest epoch, and
at the end of epoch 1, every cell of the constructed data structure is associated
to the epoch in which it was last updated. The goal is to argue that to answer
a query after epoch 1, the query algorithm has to probe one cell associated to
each epoch. Since a cell is only associated to one epoch, this gives a total query
time lower bound of Ω(lgβ n).

Arguing that the query algorithm must probe one cell associated to each
epoch is done by setting β somewhat larger than the worst case update time tu
and the cell size w. Since cells associated to an epoch j cannot contain useful
information about an epoch i < j (the updates of epoch j were performed before
knowing what the updates of epoch i was), one can ignore cells associated to
such epochs when analysing the probes to an epoch i. Similarly, since all epochs
following epoch i (future updates) writes a total ofO(βi−1tu) = o(βi) cells, these
cells do not contain enough information about the βi updates of epoch i to be
of any use (recall the updates are random, thus there is still much randomness
left in epoch i after seeing the cells written in epochs j < i). Thus if the answer
to a query depends on an update of epoch i, then the query algorithm must
probe a cell associated to epoch i to answer the query.

We note that Fredman and Saks also defined the notion of epochs over a
sequence of intermixed updates and queries. Here the epochs are defined relative
to each query, and from this approach they obtain their amortized bounds.

Pǎtraşcu [69]. This technique uses the same setup as the chronogram tech-
nique, i.e. one considers epochs i = 1, . . . , lgβ n of updates, followed by one
query. The idea is to use a static Ω(lgβ n) lower bound proof to argue that
the query algorithm must probe Ω(lgβ n) cells from each epoch if the update
time is o((lg n/ lg lgn)2). Summing over all epochs, this gives a lower bound of
Ω(lg2

β n). In the following, we give a coarse overview of the general framework
for doing so.

One first proves a lower bound on the amount of communication in the
following (static) communication game (for every epoch i): Bob receives all
epochs of updates to the dynamic data structure problem and Alice receives a
set of queries and all updates of the epochs preceding epoch i. The goal for
them is to compute the answer to Alice’s queries after all the epochs of updates.

When such a lower bound has been established, one considers each epoch
i in turn and uses the dynamic data structure to obtain an efficient protocol
for the above communication game between Alice and Bob. The key idea is to
let Alice simulate the query algorithm of the dynamic data structure on each

44

of her queries, and whenever a cell associated to epoch i is requested, she asks
Bob for the contents. Bob replies and she continues the simulation. Clearly
the amount of communication is proportional to the number of probes to cells
associated to epoch i, and thus a lower bound follows from the communication
game lower bound. The main difficulty in implementing this protocol is that
Alice must somehow recover the contents of the cells not associated to epoch
i without asking Bob for it. This is accomplished by first letting Bob send all
cells associated to epochs j < i to Alice. For sufficiently large β, this does
not break the communication lower bound. To let Alice know which cells that
belong to epoch i, Bob also sends a Bloom filter specifying the addresses of
the cells associated to epoch i. A Bloom filter is a membership data structure
with a false positive probability. By setting the false positive probability to
1/ lgc n for a large enough constant c > 0, the Bloom filter can be send using
O(lg lg n) bits per cell associated to epoch i. If tu = o((lg n/ lg lg n)2), this
totals o(βi lg2 n/ lg lgn) bits.

Now Alice can execute the updates of the epochs preceding epoch i (epochs
j > i) herself, and she knows the cells (contents and addresses) associated
to epochs j < i. She also has a Bloom filter specifying the addresses of the
cells associated to epoch i. Thus to answer her queries, she starts simulating
the query algorithm. Each time a cell is requested, she first checks if it is
associated to epochs j < i. If so, she has the contents herself and can continue
the simulation. If not, she checks the Bloom filter to determine whether it
belongs to epoch i. If the Bloom filter says no, the contents of the cell was not
updated during epochs j ≤ i and thus she has the contents from the updates
she executed initially. Finally, if the Bloom filter says yes, she asks Bob for the
contents. Clearly the amount of communication is proportional to the number
of probes to cells associated to epoch i plus some additional communication
due to the tq/ lgc n false positives.

To get any lower bound out of this protocol, sending the Bloom filter must
cost less bits than it takes to describe the updates of epoch i (Bob’s input). This
is precisely why the lower bound of Pǎtraşcu requires large weights assigned to
the input points.

Our Technique. Our new technique elegantly circumvents the limitations of
Pǎtraşcu’s technique by exploiting the cell sampling idea from Section 2.1.2.
The basic setup is the same, i.e. we consider epochs i = 1, . . . , lgβ n, where
the i’th epoch consists of βi updates. As with the two previous techniques, we
associate a cell to the epoch in which it was last updates. Lower bounds now
follow by showing that any data structure must probe Ω(lgβ n) cells associated
to each epoch i when answering a query at the end of epoch 1. Summing over
all lgβ n epochs, this gives us a lower bound of Ω(lg2

β n).

To show that Ω(lgβ n) probes to cells associated to an epoch i are required,
we assume for contradiction that a data structure probing o(lgβ n) cells asso-
ciated to epoch i exists. Using this data structure, we then consider a game
between an encoder and a decoder. The encoder receives as input the updates
of all epochs, and must from this send a message to the decoder. The decoder

45

then sees this message and all updates preceding epoch i and must from this
uniquely recover the updates of epoch i. If the message is smaller than the en-
tropy of the updates of epoch i (conditioned on preceding epochs), this gives an
information theoretic contradiction. The trick is to find a way for the encoder
to exploit the small number of probed cells to send a short message.

As mentioned, we use the cell sampling idea from to exploit the small num-
ber of probes. In Section 2.1.2 we saw that if C is a set of cells, and if the
query algorithm of a data structure probes o(lgβ n) cells from C on average
over all queries (for large enough β), then there is a subset of cells C ′ ⊆ C
which resolves a large number of queries. Similarly to Section 2.1.2, we say
that a subset of cells C ′ ⊆ C resolves a query, if the query algorithm probes
no cells in C \ C ′ when answering that query. What this observation gives us
compared to the approach of Pǎtraşcu, is that we can find a large set of queries
that are all resolved by the same small subset of cells associated to an epoch
i. Thus we no longer have to specify all cells associated to epoch i, but only a
small fraction.

With this observation in mind, the encoder proceeds as follows: First he
executes all the updates of all epochs on the claimed data structure. He then
sends all cells associated to epochs j < i. For large enough β, this message is
smaller than the entropy of the βi updates of epoch i. Letting Ci denote the
cells associated to epoch i, the encoder then finds a subset of cells C ′i ⊆ Ci, such
that a large number of queries are resolved by C ′i. He then sends a description
of those cells and proceeds by finding a subset Q of the queries resolved by C ′i,
such that knowing the answer to all queries in Q reduces the entropy of the
updates of epoch i by more than the number of bits needed to describe C ′i, Q
and the cells associated to epochs j < i. He then sends a description of Q
followed by an encoding of the updates of epoch i, conditioned on the answers
to queries in Q. Since the entropy of the updates of epoch i is reduced by
more bits than was already send, this gives our contradiction (if the decoder
can recover the updates from the above messages).

To recover the updates of epoch i, the decoder first executes the updates
preceding epoch i. His goal is to simulate the query algorithm for every query
in Q to recover all the answers. He achieves this in the following way: For each
cell c requested when answering a query q ∈ Q, he examines the cells associated
to epochs j < i (those cells were send by the encoder), and if c is contained
in one of those he immediately recovers the contents. If not, he proceeds by
examining the set C ′i. If c is included in this set, he has again recovered the
contents and can continue the simulation. Finally, if c is not in C ′i, then c must
be associated to an epoch preceding epoch i (since queries in Q probe no cells
in Ci \C ′i), thus the decoder recovers the contents of c from the updates that he
executed initially. In this manner, the decoder can recover the answer to every
query in Q, and from the last part of the message he recovers the updates of
epoch i.

The main technical challenge in using our technique lies in arguing that
if o(lgβ n) cells are probed amongst the cells associated to epoch i, then the
claimed cell set C ′i and query set Q exists.

In Section 2.2.2 we first use our technique to prove a lower bound for dy-

46

namic polynomial evaluation. This problem is tailored towards giving as clean
an introduction of our technique as possible. In Section 2.2.3 we then prove our
lower bound for weighted range counting.

2.2.2 Dynamic Polynomial Evaluation

In this section, we prove a lower bound for dynamic polynomial evaluation. In
this problem, we are given an input polynomial P over a finite field F, where
we assume |F| = Ω(n2). We think of P as being represented by its n roots
r1, . . . , rn, i.e. P (x) = (x − r1)(x − r2) · · · (x − rn)1. The goal is to support
updating the roots, i.e. given an element y0 ∈ F and an index i ∈ {1, . . . , n},
we must support updating ri to y0. Initially, we have r1 = · · · = rn = 0. A
query to this problem asks to evaluate P (x0) for a query element x0 ∈ F. The
lower bound we prove for this problem holds for randomized data structures
with a constant probability of error δ < 1/2.

While the problem may seem slightly artificial, we note that the problem
has been chosen to give the cleanest possible introduction of our new technique.

The Lower Bound Proof.

Our aim is to prove a lower bound of tq = Ω(lg |F| lg n/ lg(wtu/ lg |F|) lg(wtu))
for randomized data structures with a constant probability of error δ < 1/2. At
first sight, this bound looks rather complicated, thus we note that it simplifies
to tq = Ω((lg n/ lg lgn)2) in that natural case of w = lgO(1) n, tu = lgO(1) n and
|F| = nO(1).

In the proof, we give a lower bound on the expected query cost of a deter-
ministic data structure, and not on the worst case query cost using a reduction
as in Section 2.1.2. We also assume there is some arbitrary, but fixed ordering
on the elements of F.

We prove the lower bound by giving a hard distribution over sequences of
updates followed by one random query. We then bound the expected query cost
of any deterministic data structure with error probability at most 1/18 over the
distribution. To be precise, the expectation in the query cost is measured over
a uniform random choice of query and a sequence of updates drawn from the
hard distribution. Similarly, the error probability is defined as the probability
that the data structure returns an incorrect answer on a uniform random query
and a sequence of updates drawn from the hard distribution. By arguments
similar to those in Section 2.1.2, this translates into an equivalent lower bound
on the expected query cost for randomized data structures with any constant
error probability δ < 1/2.

The first step of the proof is thus to design a hard distribution over updates,
followed by a uniform random query.

1Note that if the field is not algebraically closed, it is not possible to represent all poly-
nomials over the field in this form. Since we are considering lower bounds, this is not an
issue.

47

Hard Distribution. The hard distribution is simple: We first execute n
updates, where the ith update sets the ith root of the maintained polynomial
to a uniform random element from F. Following the n updates, we execute an
evaluation query at a uniform random element in F. This concludes the hard
distribution.

We use xi to denote the random variable giving the uniform random element
from F that is used in the ith update operation. We let X = x1 · · ·xn be the
random variable giving all the n updates. Finally we let q denote the uniform
random element in F that is used in the query.

High-Level Proof. For the remainder of this section, we assume the avail-
ability of a deterministic data structure for dynamic polynomial evaluation,
having worst case update time tu and error probability 1/18 over the hard dis-
tribution. Our goal is to lower bound the expected query cost of this data
structure.

For this, conceptually divide the updates X = x1 · · ·xn into lgβ n epochs of
size βi for i = 0, . . . , lgβ n − 1, where β = (wtu)2. Epoch 0 consists of the last
update xn, and generally epoch i consists of updates xni+1, . . . ,xni+βi where

ni = n−
∑i

j=0 β
j .

We let Xi = xni+1 · · ·xni+βi denote the random variable giving the updates
of epoch i. For a sequence of updates X, we define D(X) as the set of cells
stored by the available data structure after the sequence of updates X. We
additionally partition D(X) into sets Di(X) for i = 0, . . . , lgβ n − 1, where
Di(X) consists of the subset of cells in D(X) that was updated in epoch i,
but not in epochs j < i, i.e. Di(X) is the set of cells last updated in epoch i.
Finally, we define ti(X,q) as the number of cells in Di(X) that is probed by the
query algorithm when answering q after the updates X. With this notation,
our goal is to show

Lemma 2.2. If β = (wtu)2, then E[ti(X, q)] = Ω(lg |F|/ lg(wtu/ lg |F|)) for all
epochs i ≥ 1.

Before giving the proof of Lemma 2.2, we show that it immediately gives
the claimed lower bound. Since the cells sets Di(X) are disjoint, we get that
the number of cells probed when answering q is at least

∑
i ti(X,q) (due to

rounding, there are some updates happening before epoch lgβ n − 1, therefore
at least and not exactly). It now follows from linearity of expectation that the
expected number of cells probed when answering q is Ω(lg |F|/ lg(wtu/ lg |F|) ·
lgβ n) = Ω(lg |F|/ lg(wtu/ lg |F|) · lg n/ lg(wtu)).

What remains is thus to prove Lemma 2.2, which will be the focus of the
remainder of this section.

Bounding the Probes to Epoch i (Proof of Lemma 2.2).

To prove Lemma 2.2 we assume for contradiction that the available data struc-
ture satisfies E[ti∗(X,q)] = o(lg |F|/ lg(wtu/ lg |F|)) for some epoch i∗ ≥ 1. Now
observe that H(X | x1 · · ·xni∗) = H(X)−ni∗ lg |F| = (n−ni∗) lg |F| ≥ βi∗ lg |F|.
We finish the proof by showing that, conditioned on x1 · · ·xni∗ , we can use the

48

claimed data structure to encode X in less than H(X | x1 · · ·xni∗) bits in ex-
pectation, i.e. a contradiction. As a technical detail, note that in contrast to
Section 2.1.2, we are encoding a sequence of updates and not just a polyno-
mial, thus it is important that the encoding not only recovers the polynomial
corresponding to the updates X, but it must also recover the ordering of the
updates.

Before giving the encoding and decoding procedures, we present the main
technical lemma. This lemma shows exactly what happens if the data structure
probes too few cells from epoch i∗.

Lemma 2.3. Let i∗ ≥ 1 be the epoch where E[ti∗(X, q)] = o(lg |F|/ lg(wtu/ lg |F|)).
Partition the field F into |F|1/4 consecutive groups of |F|3/4 elements, denoted
F1, . . . ,F|F|1/4 (based on the ordering on F). Then there exists a choice of in-

dex 1 ≤ j∗ ≤ |F|1/4 such that with probability at least 1/2 over the choice of X,
there exists a subset of cells Ci∗ ⊆ Di∗(X) such that the following holds

• All updates x1, . . . ,xn are unique, i.e. xi 6= xj for i 6= j.

• |Ci∗ | ≤ 1/25 · βi∗ lg |F|/w.

• Let G
Ci∗
j∗ (X) denote the subset of queries from Fj∗ that do not err on

input X, and where furthermore the query algorithm probes no cells in
Di∗(X) \ Ci∗ when answering a query in G

Ci∗
j∗ (X) after the updates X.

Then |GCi∗
j∗ (X)| = |F|74/100−o(1) ≥ n+ 1.

As with Lemma 2.1, this lemma shows that if a data structure is too effi-
cient, then there must exist a small subset of cells that solves many queries.
However, in the dynamic setting, we need several additional properties to ob-
tain a contradiction. As we explained when giving the high-level overview of
our new technique (Section 2.2.1), we can reach a contradiction by encoding
a subset of queries for which to simulate the query algorithm and obtain the
corresponding answers. Since the answer to an evaluation query reveals at most
lg |F| bits, encoding these queries must take less than lg |F| bits per query to
obtain a contradiction. This is the reason why we focus on one particular subset
of queries Fj∗ : Since |Fj∗ | = |F|3/4, encoding queries from Fj∗ can be done in
lg |F|3/4 bits. This buys us lg |F| − lg |F|3/4 = 1/4 lg |F| bits per query, which
is enough to reach the contradiction.

We defer the proof of Lemma 2.3 to the end of the section, and instead move
on to show how we use Lemma 2.3 in the encoding and decoding procedures.

Encoding. Given the sequence of updates X, we first construct the claimed
data structure on X and obtain the cell set D(X) as well as the partitions into
subsets Dlgβ n−1(X), . . . , D0(X). We now encode X using the following simple
procedure:

1. We first examine D(X) to determine whether a cell set Ci∗ ⊆ Di∗(X) and

a query set G
Ci∗
j∗ (X) exists, satisfying all the properties of Lemma 2.3.

This is done simply by trying all choices for Ci∗ and G
Ci∗
j∗ (X) (note that

49

j∗ is the same for all choices of X, thus it is assumed known both in
the encoding and decoding procedure). If such sets do not exist, or if
x1, . . . ,xn are not all distinct, we first write a 0-bit, followed by a naive
encoding of updates xni∗+1, . . . ,xn, taking a total of 1+d(n−ni∗) lg |F|e ≤
2 +H(X | x1 · · ·xni∗) bits.

2. If the claimed sets Ci∗ and G
Ci∗
j∗ (X) exists and x1, . . . ,xn are all dis-

tinct, we instead start by writing a 1-bit. We then examine G
Ci∗
j∗ (X)

and find a subset, Qi∗ ⊆ G
Ci∗
j∗ (X), of βi

∗
+ 1 queries, such that none

of the queries in Qi∗ evaluate the polynomial at one of the roots that
was set during the updates of epochs j 6= i∗, i.e. no query in Qi∗ is

amongst x1, . . . ,xni∗ ,xni∗−1+1, . . . ,xn. Since G
Ci∗
j∗ (X) contains at least

n + 1 elements, we can always find such a set of queries. We now write
down a description of Ci∗ and Qi∗ , including addresses and contents of
the cells in Ci∗ . Accounting for also writing down |Ci∗ | this takes a total

of 1 +w+ |Ci∗ |2w+ lg
(|F|3/4
|Qi∗ |

)
≤ 3/25 · βi∗ lg |F|+ lg

(|F|3/4
βi∗+1

)
bits (here we

exploit that G
Ci∗
j∗ (X) ⊆ Fj∗ to get the exponent 3/4).

3. Next we write down all updates following epoch i∗, xni∗−1+1, . . . ,xn, and

all cell setsDi∗−1(X), . . . , D0(X). This takes another
∑i∗−1

j=0 O(|Dj(X)|w+

βj lg |F|) = O(βi
∗−1(lg |F|+ wtu)) bits.

4. In the last step, we consider the sorted sequence of the updates in epoch
i∗, i.e. sorted by the ordering in F of the values they assign the roots, and
not by the time of executing the updates. From this sequence, we write
down the permutation that brings the sequence back into sorted order of
execution time, taking a total of dlg(βi

∗
!)e bits.

Decoding. In the following we show how to recover X from the encoding.
Recall that we are recovering X conditioned on the updates preceding epoch
i∗, i.e. we are given access to x1 · · ·xni∗ when recovering X. The decoding
procedure does the following:

1. We start by examining the first bit of the encoding. If this is a 0-bit, we
immediately recover X from the remainder of the encoding and the given
updates x1 · · ·xni∗ .

2. If the first bit of the encoding is a 1, we start by executing updates
x1 · · ·xni∗ on the claimed data structure. From this, we construct the
cell sets D∗lgβ n−1(X), . . . , D∗i∗+1(X), where D∗i (X) denotes the set of cells

that were updated in epoch i but not during epochs i − 1, . . . , i∗ + 1.
Note that Di(X) ⊆ D∗i (X) for i = lgβ n − 1, . . . , i∗ + 1. From the en-
coding, we furthermore recover Di∗−1(X), . . . , D0(X) as well as updates
xni∗−1+1, . . . ,xn. Finally, we recover Ci∗ and Qi∗ from the encoding.

3. The next step is to recover the answer to each query in Qi∗ as if the
query was executed after all updates X. For this, we examine each query

50

in Qi∗ in turn. For a query q ∈ Qi∗ , we execute the query algorithm
of the claimed data structure. For each cell c that is requested by the
query algorithm, we first examine cell sets Di∗−1(X), . . . , D0(X) and if c
is contained in any of them, we have immediately recovered the contents
of c as it is in D(X). If c is not in Di∗−1(X), . . . , D0(X) we continue
by examining Ci∗ . If c is contained therein, we have again recovered the
contents of c in D(X) and we continue executing the query algorithm. If

c is also not in Ci∗ , then since Qi∗ ⊆ G
Ci∗
i∗ (X) we know by Lemma 2.3

that c is not in Di∗(X) \Ci∗ . Therefore, the contents of c has not been
updated during epochs i∗, . . . , 0 and therefore we recover the contents of
c in D(X) from D∗lgβ n−1(X), . . . , D∗i∗+1(X). Thus regardless of which cell

the query algorithm requests, we can recover the contents as it is in D(X).
It follows that the query algorithm terminates with the answer to q after
updates X. Finally, since no queries in Qi∗ err on input X, we conclude
that the recovered answers are also correct.

4. Recovering X is now straightforward. From updates x1, . . . ,xni∗ and
xni∗−1+1, . . . ,xn we know n − βi∗ points on the polynomial P (X) corre-
sponding to X since all xi’s are unique. Since the queries in Qi∗ do not
evaluate P (X) at x1, . . . ,xni∗ ,xni∗−1+1, . . . ,xn and |Qi∗ | = βi

∗
+ 1, the

answers to queries in Qi∗ give us another βi
∗

+ 1 points on P (X). Hence
P (X) is uniquely determined from the encoding. From P (X), we find the
βi
∗

roots that are not amongst x1, . . . ,xni∗ ,xni∗−1+1, . . . ,xn, i.e. we find

the βi
∗

unique elements of F corresponding to xni∗+1, . . . ,xni∗−1
, but we

do not know how they are permuted in X. We finally recover X from the
encoding of how to permute these elements.

Analysis. In the following, we bound the expected size of the encoding and
finally reach a contradiction. We start by analysing the size of the encoding
when the conditions of Lemma 2.3 are satisfied. In this case, we write down a
total of

3/25 · βi∗ lg |F|+ lg

(
|F|3/4

βi∗ + 1

)
+O(βi

∗−1(lg |F|+ wtu)) + lg(βi
∗
!)

bits. Since β = (wtu)2, this is bounded by

3/25 · βi∗ lg |F|+ (βi
∗

+ 1) lg(|F|3/4/βi∗) +O(βi
∗

lg |F|/wtu) + βi
∗

lg(βi
∗
) +O(1).

This is again upper bounded by

βi
∗
(lg |F|3/4 + 3/25 lg |F|+ o(lg |F|))

bits, which finally gives

(87/100 + o(1))βi
∗

lg |F| ≤ 9/10H(X | x1 · · ·xni∗)

bits. From Lemma 2.3, we get that this is the amount of bits spend with
probability at least 1/2, hence the expected size of the encoding is at most

1/2 · (2 +H(X | x1 · · ·xni∗) + 9/10H(X | x1 · · ·xni∗)) < H(X | x1 · · ·xni∗),

i.e. a contradiction.

51

Proof of Lemma 2.3. To prove Lemma 2.3, let i∗ ≥ 1 be an epoch in which
E[ti∗(X,q)] = o(lg |F|/ lg(wtu/ lg |F|)). We first partition F into the |F|1/4
consecutive groups F1, . . . ,F|F|1/4 of |F|3/4 elements each (i.e. based on the
ordering on F). We choose j∗ in the following way:

Let δj denote the error probability of the data structure when restricted
to the queries in Fj , i.e. δj is the probability of returning an incorrect result
when answering a query drawn uniformly from Fj after a sequence of updates
drawn from the hard distribution. Clearly

∑
j δj/|F|1/4 ≤ 1/18 since the error

probability over all queries is at most 1/18. Also let tji∗(X) denote the av-
erage number of cells probed from Di∗(X) by the queries in Fj on input X,

i.e. tji∗(X) =
∑

q∈Fj ti∗(X, q)/|Fj |. We similarly have
∑

j E[tji∗(X)]/|F|1/4 =

E[ti∗(X,q)] = o(lg |F|/ lg(wtu/ lg |F|)). It follows immediately from Markov’s
inequality and a union bound that there must exist a choice of j∗ such that
both δj∗ ≤ 4/18 and E[tj

∗

i∗ (X)] ≤ 4E[ti∗(X,q)] = o(lg |F|/ lg(wtu/ lg |F|)). We
let j∗ equal an arbitrary such choice of index.

The last step is to show that the cell set Ci∗ exists with probability at least
1/2 over the choice of X. For this, let Gj∗(X) denote the subset of queries
in Fj∗ that succeed on input X. Now using a union bound and Markov’s
inequality, we get that with probability at least 1/2, there are both at most
|Fj∗ |17/18 queries in Fj∗ that err on input X, i.e. |Gj∗(X)| ≥ 1/18|Fj∗ |, and

at the same time, we have tj
∗

i∗ (X) ≤ 100E[tj
∗

i∗ (X)] = o(lg |F|/ lg(wtu/ lg |F|))
and finally all xi’s are unique (we have |F| = Ω(n2), thus all queries are unique
with a very good constant probability when the constant in Ω(n2) is large
enough). When this happens, we show that the cell set Ci∗ exists. First ob-
serve that since |Gj∗(X)| = Ω(|Fj∗ |) it follows that the average number of

cells from Di∗(X) probed when answering a query in Gj∗(X) is O(tj
∗

i∗ (X)) =
o(lg |F|/ lg(wtu/ lg |F|)). Hence there are Ω(|Gj∗(X)|) = Ω(|Fj∗ |) queries in
Gj∗(X) that probe o(lg |F|/ lg(wtu/ lg |F|)) cells from Di∗(X). We thus prune
Gj∗(X) by deleting all queries that probe at least 1/100(lg |F|/ lg(wtu/ lg |F|))
cells from Di∗(X) and we still have |Gj∗(X)| = Ω(|Fj∗ |) = Ω(|F|3/4).

Now consider all subsets of ∆ = 1/25 · βi∗ lg |F|/w cells in Di∗(X). Since
any remaining query inGj∗(X) probes at most µ = 1/100(lg |F|/ lg(wtu/ lg |F|))
cells from Di∗(X), we get that there must exist a subset C′ ⊆ Di∗(X) of ∆ cells,

for which at least |Gj∗(X)|
(|Di∗ (X)|−µ

∆−µ
)
/
(|Di∗ (X)

∆

)
queries in Gj∗(X) probes no

cells in Di∗(X) \C′. Since

|Gj∗(X)|
(|Di∗ (X)|−µ

∆−µ
)(|Di∗ (X)|

∆

) = Ω

(
|F|3/4 (|Di∗(X)| − µ)!∆!

|Di∗(X)|!(∆− µ)!

)
= Ω

(
|F|3/4 (∆− µ)µ

|Di∗(X)|µ

)
= |F|3/4

(
Ω

(
lg |F|
wtu

))µ
= |F|74/100−o(1),

we conclude that the claimed set Ci∗ exists. We finally get

52

Theorem 2.2. Any dynamic cell probe data structure for evaluating an n-
degree polynomial over a finite field F must have query cost, tq, satisfying tq =
Ω(lg |F| lg n/ lg(wtu/ lg |F|) lg(wtu)) if F has size Ω(n2). Here tu is the worst
case update time and w is the cell size. This lower bound holds for randomized
data structures with any constant error probability δ < 1/2.

2.2.3 Dynamic Weighted Orthogonal Range Counting

In this section we prove our lower bound for dynamic weighted orthogonal range
counting. An update to this problem consists of the insertion of a point on the
two-dimensional grid [n] × [n]. Each inserted point is assigned a δ-bit integer
weight. A query is specified by a point (x, y) ∈ [n]× [n] and the goal is to return
the sum of the weights assigned to the points dominated by (x, y). Here we say
that a point (x′, y′) is dominated by (x, y) iff x′ ≤ x and y′ ≤ y.

The lower bound we aim to prove states that any data structure for dynamic
weighted orthogonal range counting must satisfy tq = Ω((lg n/ lg(wtu))2), where
tq is the expected query time, tu the worst case update time and w the cell size
in bits. This lower bound holds when the weights of the inserted points are
Θ(lg n)-bit integers.

As in Section 2.2.2, we prove the lower bound by devising a hard distri-
bution over updates, followed by one uniform random query. We then lower
bound the expected cost (over the distribution) of answering the query for any
deterministic data structure with worst case update time tu. In the proof we
assume the weights are 4 lg n-bit integers and note that the lower bound applies
to any ε lg n-bit weights, where ε > 0 is an arbitrarily small constant, simply
because a data structure for ε lg n-bit integer weights can be used to solve the
problem for any O(lg n)-bit integer weights with a constant factor overhead by
dividing the bits of the weights into dδ/(ε lg n)e = O(1) chunks and maintaining
a data structure for each chunk. We begin the proof by presenting the hard
distribution over updates and queries.

Hard Distribution. Again, updates arrive in epochs of exponentially de-
creasing size. For i = 1, . . . , lgβ n we define epoch i as a sequence of βi updates,
for a parameter β > 1 to be fixed later. The epochs occur in time from biggest
to smallest epoch, and at the end of epoch 1 we execute a uniform random
query in [n]× [n].

What remains is to specify which updates are performed in each epoch i.
The updates of epoch i are chosen to mimic the hard input distribution for
static orthogonal range counting on a set of βi points (see e.g. [69]). We first
define the following point set known as the Fibonacci lattice:

Definition 2.1 (Matoušek [60]). The Fibonacci lattice Fm is the set of m two-
dimensional points defined by Fm = {(i, ifk−1 mod m) | i = 0, . . . ,m − 1},
where m = fk is the k’th Fibonacci number.

The βi updates of epoch i now consists of inserting each point of the Fi-
bonacci lattice Fβi , but scaled to fit the input region [n] × [n], i.e. the j’th
update of epoch i inserts the point with coordinates (n/βi · j, n/βi · (jfki−1

53

mod βi)), for j = 0, . . . , βi. The weight of each inserted point is a uniform
random integer amongst [∆], where ∆ is the largest prime number smaller than
24 lgn = n4. This concludes the description of the hard distribution.

The Fibonacci lattice has the desirable property that it is very uniform.
This plays an important role in the lower bound proof, and we have formulated
this property in the following lemma:

Lemma 2.4 (Fiat and Shamir [41]). For the Fibonacci lattice Fβi, where the
coordinates of each point have been multiplied by n/βi, and for α > 0, any
axis-aligned rectangle in [0 : n−n/βi]× [0 : n−n/βi] with area αn2/βi contains
between bα/a1c and dα/a2e points, where a1 ≈ 1.9 and a2 ≈ 0.45.

Note that we assume each βi to be a Fibonacci number (denoted fki), and
that each βi divides n. These assumptions can easily be removed by fiddling
with the constants, but this would only clutter the exposition.

For the remainder of this chapter, we let Ui denote the random variable
giving the sequence of updates in epoch i, and we let U = Ulgβ n · · ·U1 denote
the random variable giving all updates of all lgβ n epochs. Finally, we let q be
the random variable giving the query.

A Chronogram. Having defined the hard distribution over updates and
queries, we proceed as in Section 2.2.2. Assume a deterministic data struc-
ture solution exists with worst case update time tu. From this data structure
and a sequence of updates U = Ulgβ n, . . . ,U1, we define D(U) to be the set
of cells stored in the data structure after executing the updates U. Associate
each cell in D(U) to the last epoch in which its contents were updated, and
let Di(U) denote the subset of D(U) associated to epoch i for i = 1, . . . , lgβ n.
Also let ti(U, q) denote the number of cells in Di(U) probed by the query
algorithm of the data structure when answering the query q ∈ [n] × [n] af-
ter the sequence of updates U. Finally, let ti(U) denote the average cost
of answering a query q ∈ [n] × [n] after the sequence of updates U, i.e. let
ti(U) =

∑
q∈[n]×[n] ti(U, q)/n

2. Then the following holds:

Lemma 2.5. If β = (wtu)9, then E[ti(U, q)] = Ω(lgβ n) for all i ≥ 15
16 lgβ n.

Since the cell sets Dlgβ n(U), . . . , D1(U) are disjoint, we get by linearity of

expectation that the expected query time must be at least Ω((lg n/ lg(wtu))2).
Thus what remains is to prove Lemma 2.5. This is the focus in the following:

Bounding the Probes to Epoch i (Proof of Lemma 2.5).

The proof of Lemma 2.5 is again based on an encoding argument. The frame-
work is identical to Section 2.2.2, but arguing that a “good” set of queries to
simulate exists is significantly more difficult.

Assume for contradiction that there exists a data structure solution such
that under the hard distribution, with β = (wtu)9, there exists an epoch i∗ ≥
15
16 lgβ n, such that the claimed data structure satisfies E[ti∗(U,q)] = o(lgβ n).

First observe that Ui∗ is independent of Ulgβ n · · ·Ui∗+1, i.e. H(Ui∗ |
Ulgβ n · · ·Ui∗+1) = H(Ui∗). Furthermore, we have H(Ui∗) = βi

∗
lg ∆, since the

54

updates of epoch i∗ consists of inserting βi
∗

fixed points, each with a uniform
random weight amongst the integers [∆]. Our goal is to show that, conditioned
on Ulgβ n · · ·Ui∗+1, we can use the claimed data structure solution to encode
Ui∗ in less than H(Ui∗) bits in expectation, which provides the contradiction.

Before presenting the encoding and decoding procedures, we show what
happens if a data structure probes too few cells from epoch i∗. For this, we
first introduce some terminology. For a query point q = (x, y) ∈ [n] × [n], we
define for each epoch i = 1, . . . , lgβ n the incidence vector χi(q), as a {0, 1}-
vector in [∆]β

i
. The j’th coordinate of χi(q) is 1 if the j’th point inserted

in epoch i is dominated by q, and 0 otherwise. More formally, for a query
q = (x, y), the j’th coordinate χi(q)j is given by:

χi(q)j =

{
1 if jn/βi ≤ x ∧ (jfki−1 mod βi)n/βi ≤ y
0 otherwise

Similarly, we define for a sequence of updates Ui, the βi-dimensional vector
ui for which the j’th coordinate equals the weight assigned to the j’th inserted
point in Ui. We note that Ui and ui uniquely specify each other, since Ui

always inserts the same fixed points, only the weights vary.

Finally observe that the answer to a query q after a sequence of updates

Ulgβ n, . . . ,U1 is
∑lgβ n

i=1 〈χi(q),ui〉. With these definitions, we now present the
main result forcing a data structure to probe many cells from each epoch:

Lemma 2.6. Let i ≥ 15
16 lgβ n be an epoch. If ti(U) = o(lgβ n), then there exists

a subset of cells Ci(U) ⊆ Di(U) and a set of query points Q(U) ⊆ [n] × [n]
such that:

1. |Ci(U)| = O(βi−1w).

2. |Q(U)| = Ω(βi−3/4).

3. The set of incidence vectors χi(Q(U)) = {χi(q) | q ∈ Q(U)} is a linearly
independent set of vectors in [∆]β

i
.

4. The query algorithm of the data structure solution probes no cells in
Di(U) \ Ci(U) when answering a query q ∈ Q(U) after the sequence
of updates U.

Comparing to Lemma 2.3, it is not surprising that this lemma gives the lower
bound. We note that Lemma 2.6 essentially is a generalization of the results
proved in the static range counting papers [69, 49], simply phrased in terms
of cell subsets answering many queries instead of communication complexity.
Since the proof contains only few new ideas, we have deferred it a bit and
instead move on to the encoding and decoding procedures.

Encoding. Let i∗ ≥ 15
16 lgβ n be the epoch for which E[ti∗(U,q)] = o(lgβ n).

The encoding procedure follows the same overall approach as in Section 2.2.2:

55

1. First the encoder executes the sequence of updates U on the claimed
data structure, and from this obtains the sets Dlgβ n(U), . . . , D1(U). He
then simulates the query algorithm on the data structure for every query
q ∈ [n]× [n]. From this, the encoder computes ti∗(U).

2. If ti∗(U) > 2E[ti∗(U,q)], then the encoder writes a 1-bit, followed by
dβi∗ lg ∆e = H(Ui∗) + O(1) bits, simply specifying each weight assigned
to a point in Ui∗ . This is the complete message send to the decoder when
ti∗(U) > 2E[ti∗(U,q)].

3. If ti∗(U) ≤ 2E[ti∗(U,q)], then the encoder first writes a 0-bit. Now since
ti∗(U) ≤ 2E[ti∗(U,q)] = o(lgβ n), we get from Lemma 2.6 that there must
exist a set of cells Ci∗(U) ⊆ Di∗(U) and a set of queries Q(U) ⊆ [n]× [n]
satisfying 1-4 in Lemma 2.6. The encoder finds such sets Ci∗(U) andQ(U)
simply by trying all possible sets in some arbitrary but fixed order. The
encoder now writes down these two sets, including addresses and contents

of the cells in Ci∗(U), for a total of at most O(w)+2|Ci∗(U)|w+lg
(

n2

|Q(U)|
)

bits (the O(w) bits specifies |Ci∗(U)| and |Q(U)|).

4. The encoder now constructs a setX, such thatX = χi∗(Q(U)) = {χi∗(q) |
q ∈ Q(U)} initially. Then he iterates through all vectors in [∆]β

i∗
, in some

arbitrary but fixed order, and for each such vector x, checks whether x
is in span(X). If not, the encoder adds x to X. This process continues
until dim(span(X)) = βi

∗
, at which point the encoder computes and

writes down (〈x,ui∗〉 mod ∆) for each x that was added to X. Since
dim(span(χi∗(Q(U)))) = |Q(U)| (by point 3 in Lemma 2.6), this adds a
total of d(βi∗ − |Q(U)|) lg ∆e bits to the message.

5. Finally, the encoder writes down all of the cell sets Di∗−1(U), . . . , D1(U),
including addresses and contents, plus all of the vectors ui∗−1, . . . ,u1.
This takes at most

∑i∗−1
j=1 (2|Dj(U)|w + βj lg ∆ + O(w)) bits. When this

is done, the encoder sends the constructed message to the decoder.

Next we present the decoding procedure:

Decoding. The decoder receives as input the updates Ulgβ n, . . . ,Ui∗+1 and
the message from the encoder. The decoder now recovers Ui∗ by the following
procedure:

1. The decoder examines the first bit of the message. If this bit is 1,
then the decoder immediately recovers Ui∗ from the encoding (step 2
in the encoding procedure). If not, the decoder instead executes the up-
dates Ulgβ n · · ·Ui∗+1 on the claimed data structure solution and obtains
the cells sets D∗lgβ n(U), . . . , D∗i∗+1(U), where D∗j (U) contains the cells

that were last updated during epoch j when executing only the updates
Ulgβ n, . . . ,Ui∗+1. We have Dj(U) ⊆ D∗j (U) for all j ≥ i∗ + 1.

56

2. The decoder now recovers the sets Q(U), Ci∗(U), Di∗−1(U), . . . , D1(U)
and ui∗−1, . . . ,u1 from the encoding. For each query q ∈ Q(U), the de-
coder then computes the answer to q as if all updates Ulgβ n, . . . ,U1 had
been performed. The decoder accomplishes this by simulating the query
algorithm on q, and for each cell requested, the decoder recovers the con-
tents of that cell as it would have been if all updates Ulgβ n, . . . ,U1 had
been performed. This is done as follows: When the query algorithm re-
quests a cell c, the decoder first determines whether c is in one of the sets
Di∗−1(U), . . . , D1(U). If so, the correct contents of c is directly recovered.
If c is not amongst these cells, the decoder checks whether c is in Ci∗(U).
If so, the decoder has again recovered the contents. Finally, if c is not in
Ci∗(U), then from point 4 of Lemma 2.6, we get that c is not in Di∗(U).
Since c is not in any of Di∗(U), . . . , D1(U), this means that the contents of
c has not changed during the updates Ui∗ , . . . ,U1, and thus the decoder
finally recovers the contents of c from D∗lgβ n(U), . . . , D∗i∗+1(U). The de-

coder can therefore recover the answer to each query q in Q(U) if it had
been executed after the sequence of updates U, i.e. for all q ∈ Q(U), he

knows
∑lgβ n

i=1 〈χi(q),ui〉.

3. The next decoding step consists of computing for each query q in Q(U),
the value 〈χi∗(q),ui∗〉. For each q ∈ Q(U), the decoder already knows the

value
∑lgβ n

i=1 〈χi(q),ui〉 from the above. From the encoding of ui∗−1, . . . ,u1,

the decoder can compute the value
∑i∗−1

i=1 〈χi(q),ui〉 and finally from

Ulgβ n, . . . ,Ui∗+1 the decoder computes
∑lgβ n

i=i∗+1〈χi(q),ui〉. The decoder
can now recover the value 〈χi∗(q),ui∗〉 simply by observing that:

〈χi∗(q),ui∗〉 =

lgβ n∑
i=1

〈χi(q),ui〉 −
∑
i 6=i∗
〈χi(q),ui〉.

4. Now from the query set Q(U), the decoder construct the set of vectors

X = χi∗(Q(U)), and then iterates through all vectors in [∆]β
i∗

, in the
same fixed order as the encoder. For each such vector x, the decoder again
verifies whether x is in span(X), and if not, adds x to X and recovers
(〈x,ui∗〉 mod ∆) from the encoding. The decoder now constructs the
βi
∗×βi∗ matrix A, having the vectors inX as rows. Similarly, he construct

the vector z having one coordinate for each row of A. The coordinate of z
corresponding to a row vector x, has the value (〈x,ui∗〉 mod ∆). Since A
has full rank, it follows that the linear system of equations A⊗y = z has a

unique solution y ∈ [∆]β
i∗

. Here ⊗ denotes matrix-vector multiplication

modulo ∆. But ui∗ ∈ [∆]β
i∗

and A ⊗ ui∗ = z, thus the decoder solves
the linear system of equations A⊗ y = z and uniquely recovers ui∗ , and
therefore also Ui∗ . This completes the decoding procedure.

Analysis. We now analyse the expected size of the encoding of Ui∗ . We first
analyse the size of the encoding when ti∗(U) ≤ 2E[ti∗(U,q)]. In this case, the

57

encoder sends a message of

2|Ci∗(U)|w + lg

(
n2

|Q(U)|

)
+ (βi

∗ − |Q(U)|) lg ∆

+O(w lgβ n) +
i∗−1∑
j=1

(2|Dj(U)|w + βj lg ∆)

bits. Since βi
∗

lg ∆ = H(Ui∗) and |Ci∗(U)|w = o(|Q(U)|), the above is upper
bounded by

H(Ui∗)− |Q(U)| lg(∆/n2) + o(|Q(U)|) +
i∗−1∑
j=1

(2|Dj(U)|w + βj lg ∆).

Since β ≥ 2, we also have
∑i∗−1

j=1 βj lg ∆ ≤ 2βi
∗−1 lg ∆ = o(|Q(U)| lg ∆). Simi-

larly, we have |Dj(U)| ≤ βjtu, which gives us
∑i∗−1

j=1 2|Dj(U)|w ≤ 4βi
∗−1wtu =

o(|Q(U)|). From standard results on prime numbers, we have that the largest
prime number smaller than n4 is at least n3 for infinitely many n, i.e. we can
assume lg(∆/n2) = Ω(lg ∆). Therefore, the above is again upper bounded by

H(Ui∗)− Ω(|Q(U)| lg ∆) = H(Ui∗)− Ω(βi
∗−3/4 lg ∆).

This part thus contributes at most

Pr[ti∗(U) ≤ 2E[ti∗(U,q)]] · (H(Ui∗)− Ω(βi
∗−3/4 lg ∆))

bits to the expected size of the encoding. The case where ti∗(U) > 2E[ti∗(U,q)]
similarly contributes Pr[ti∗(U) > 2E[ti∗(U,q)]] · (H(Ui∗) + O(1)) bits to the
expected size of the encoding. Now since q is uniform, we have E[ti∗(U)] =
E[ti∗(U,q)], we therefore get from Markov’s inequality that

Pr[ti∗(U) > 2E[ti∗(U,q)]] < 1
2 .

Therefore the expected size of the encoding is upper bounded by

O(1) + 1
2H(Ui∗) + 1

2(H(Ui∗)− Ω(βi
∗−3/4 lg ∆)) < H(Ui∗).

This completes the proof of Lemma 2.5.

The Static Setup (Proof of Lemma 2.6).

In the following, we prove the last piece in the lower bound proof. As already
mentioned, we prove Lemma 2.6 by extending on previous ideas for proving
lower bounds on static range counting. We note that we have chosen a more
geometric (and we believe more intuitive) approach to the proof than the pre-
vious papers.

For the remainder of the section, we let U = Ulgβ n, . . . , U1 be a fixed se-

quence of updates, where each Uj is a possible outcome of Uj , and i ≥ 15
16 lgβ n

an epoch. Furthermore, we assume that the claimed data structure satisfies

58

ti(U) = o(lgβ n), and our task is to show that the claimed cell set Ci and query
set Q exists (see Lemma 2.6).

The first step is to find a geometric property of a set of queries Q, such that
χi(Q) is a linearly independent set of vectors. One property that ensures this,
is that the queries in Q are sufficiently well spread. To make this more formal,
we introduce the following terminology:

A grid G with width µ ≥ 1 and height γ ≥ 1, is the collection of grid cells
[jµ : (j + 1)µ) × [hγ : (h + 1)γ) such that 0 ≤ j < n/µ and 0 ≤ h < n/γ. We
say that a query point q = (x, y) ∈ [n]× [n] hits a grid cell [jµ : (j+1)µ)× [hγ :
(h+1)γ) ofG, if the point (x, y) lies within that grid cell, i.e. if jµ ≤ x < (j+1)µ
and hγ ≤ y < (h+ 1)γ. Finally, we define the hitting number of a set of queries
Q′ on a grid G, as the number of distinct grid cells in G that is hit by a query
in Q′.

With this terminology, we have the following lemma:

Lemma 2.7. Let Q′ be a set of queries and G a grid with width µ and height
n2/βiµ for some parameter n/βi ≤ µ ≤ n. Let h denote the hitting number of
Q′ on G. Then there is a subset of queries Q ⊆ Q′, such that |Q| = Ω(h −
6n/µ− 6µβi/n) and χi(Q) is a linearly independent set of vectors in [∆]β

i
.

We defer the proof of Lemma 2.7 and instead continue the proof of Lemma 2.6.
In light of Lemma 2.7, we set out to find a set of cells Ci ⊆ Di(U) and a grid

G, such that the set of queries QCi that probe no cells in Di(U)\Ci, hit a large
number of grid cells in G. For this, first define the grids G2, . . . , G2i−2 where
Gj has width n/βi−j/2 and height n/βj/2. The existence of Ci is guaranteed by
the following lemma:

Lemma 2.8. Let i ≥ 15
16 lgβ n be an epoch and Ulgβ n, . . . , U1 a fixed sequence of

updates, where each Uj is a possible outcome of Uj. Assume furthermore that
the claimed data structure satisfies ti(U) = o(lgβ n). Then there exists a set of
cells Ci ⊆ Di(U) and an index j ∈ {2, . . . , 2i − 2}, such that |Ci| = O(βi−1w)
and QCi has hitting number Ω(βi−3/4) on the grid Gj.

To not remove focus from the proof of Lemma 2.6 we have moved the proof of
this lemma to the end of this section. We thus move on to show that Lemma 2.7
and Lemma 2.8 implies Lemma 2.6. By assumption we have ti(U) = o(lgβ n).
Combining this with Lemma 2.8, we get that there exists a set of cells Ci ⊆
Di(U) and an index j ∈ {2, . . . , 2i−2}, such that |Ci| = O(βi−1w) and the set of
queries QCi has hitting number Ω(βi−3/4) on the grid Gj . Furthermore, we have
that grid Gj is a grid of the form required by Lemma 2.7, with µ = n/βi−j/2.
Thus by Lemma 2.7 there is a subset Q ⊆ QCi such that |Q| = Ω(βi−3/4 −
12βi−1) = Ω(βi−3/4) and χi(Q) is a linearly independent set of vectors in [∆]β

i
.

This completes the proof of Lemma 2.6.

Proof of Lemma 2.7.

We prove the lemma by giving an explicit construction of the set Q.
First initialize Q to contain one query point from Q′ from each cell of G

that is hit by Q′. We will now repeatedly eliminate queries from Q until the

59

remaining set is linearly independent. We do this by crossing out rows and
columns of G. By crossing out a row (column) of G, we mean deleting all
queries in Q that hits a cell in that row (column). The procedure for crossing
out rows and columns is as follows:

First cross out the bottom two rows and leftmost two columns. Amongst the
remaining columns, cross out either the even or odd columns, whichever of the
two contains the fewest remaining points in Q. Repeat this once again for the
columns, with even and odd redefined over the remaining columns. Finally, do
the same for the rows. We claim that the remaining set of queries are linearly
independent. To see this, order the remaining queries in increasing order of
column index (leftmost column has lowest index), and secondarily in increasing
order of row index (bottom row has lowest index). Let q1, . . . , q|Q| denote the
resulting sequence of queries. For this sequence, it holds that for every query
qj , there exists a coordinate χi(qj)h, such that χi(qj)h = 1, and at the same
time χi(qk)h = 0 for all k < j. Clearly this implies linear independence. To
prove that the remaining vectors have this property, we must show that for
each query qj , there is some point in the scaled Fibonacci lattice Fβi that is
dominated by qj , but not by any of q1, . . . , qj−1: Associate each remaining query
qj to the two-by-two crossed out grid cells to the bottom-left of the grid cell
hit by qj . These four grid cells have area 4n2/βi and are contained within the
rectangle [0 : n− n/βi]× [0 : n− n/βi], thus from Lemma 2.4 it follows that at
least one point of the scaled Fibonacci lattice Fβi is contained therein, and thus
dominated by qj . But all qk, where k < j, either hit a grid cell in a column with
index at least three less than that hit by qj (we crossed out the two columns
preceding that hit by qj), or they hit a grid cell in the same column as qj but
with a row index that is at least three lower than that hit by qj (we crossed
out the two rows preceding that hit by qj). In either case, such a query cannot
dominate the point inside the grid cells associated to qj .

What remains is to bound the size of Q. Initially, we have |Q| = h. The
bottom two rows have a total area of 2n3/βiµ, thus by Lemma 2.4 they con-
tain at most 6n/µ points. The leftmost two columns have area 2nµ and thus
contain at most 6µβi/n points. After crossing out these rows and column we
are therefore left with |Q| ≥ h − 6n/µ − 6µβi/n. Finally, when crossing out
even or odd rows we always choose the one eliminating fewest points, thus the
remaining steps at most reduce the size of Q by a factor 16. This completes
the proof of Lemma 2.7.

Proof of Lemma 2.8.

We prove the lemma using another encoding argument. However, this time we
do not encode an update sequence, but instead we define a distribution over
query sets, such that if Lemma 2.8 is not true, then we can encode such a query
set in too few bits.

Let U = Ulgβ n, . . . , U1 be a fixed sequence of updates, where each Uj is a
possible outcome of Uj . Furthermore, assume for contradiction that the claimed
data structure satisfies both ti(U) = o(lgβ n) and for all cell sets C ⊆ Di(U) of
size |C| = O(βi−1w) and every index j ∈ {2, . . . , 2i−2}, it holds that the hitting

60

number of QC on grid Gj is o(βi−3/4). Here QC denotes the set of all queries q
in [n]× [n] such that the query algorithm of the claimed data structure probes
no cells in Di(U) \C when answering q after the sequence of updates U . Under
these assumptions we will construct an impossible encoder. As mentioned, we
will encode a set of queries:

Hard Distribution. Let Q denote a random set of queries, constructed by
drawing one uniform random query (with integer coordinates) from each of the
βi−1 vertical slabs of the form:

[hn/βi−1 : (h+ 1)n/βi−1)× [0 : n),

where h ∈ [βi−1]. Our goal is to encode Q in less than H(Q) = βi−1 lg(n2/βi−1)
bits in expectation. Before giving the encoding and decoding procedures, we
prove some simple properties of Q:

Define a query q in a query set Q′ to be well-separated if for all other queries
q′ ∈ Q′, where q 6= q′, q and q′ do not lie within an axis-aligned rectangle of
area n2/βi−1/2. Finally, define a query set Q′ to be well-separated if at least
1
2 |Q

′| queries in Q′ are well-separated. We then have:

Lemma 2.9. The query set Q is well-separated with probability at least 3/4.

Proof. Let qh denote the random query in Q lying in the h’th vertical slab.
The probability that qh lies within a distance of at most n/βi−3/4 from the
x-border of the h’th slab is precisely (2n/βi−3/4)/(n/βi−1) = 2/β1/4. If this is
not the case, then for another query qk in Q, we know that the x-coordinates
of qh and qk differ by at least (|k − h| − 1)n/βi−1 + n/βi−3/4. This implies
that qh and qk can only be within an axis-aligned rectangle of area n2/βi−1/2 if
their y-coordinates differ by at most n/((|k−h|− 1)β1/2 +β1/4). This happens
with probability at most 2/((|k − h| − 1)β1/2 + β1/4). The probability that a
query qh in Q is not well-separated is therefore bounded by

2

β1/4
+

(
1− 2

β1/4

)∑
k 6=j

2

(|k − h| − 1)β1/2 + β1/4
≤ 10

β1/4
+
∑
k 6=j

2

|k − h|β1/2

= O

(
1

β1/4
+

lg n

β1/2

)
.

Since β = (wtu)9 = ω(lg2 n) this probability is o(1), and the result now follows
from linearity of expectation and Markov’s inequality. ut

Now let Di(Q,U) ⊆ Di(U) denote the subset of cells in Di(U) probed by
the query algorithm of the claimed data structure when answering all queries
in a set of queries Q after the sequence of updates U (i.e. the union of the cells
probed for each query in Q). Since a uniform random query from Q is uniform
in [n] × [n], we get by linearity of expectation that E[|Di(Q, U)|] = βi−1ti(U).
From this, Lemma 2.9, Markov’s inequality and a union bound, we conclude

Lemma 2.10. The query set Q is both well-separated and |Di(Q, U)| ≤ 4βi−1ti(U)
with probability at least 1/2.

With this established, we are now ready to encode Q.

61

Encoding. In the following we describe the encoding procedure. The encoder
receives as input the set of queries Q. He then executes the following procedure:

1. The encoder first executes the fixed sequence of updates U on the claimed
data structure, and from this obtains the sets Dlgβ n(U), . . . , D1(U). He
then runs the query algorithm for every query q ∈ Q and collects the set
Di(Q, U).

2. If Q is not well-separated or if |Di(Q, U)| > 4βi−1ti(U), then the encoder
sends a 1-bit followed by a straightforward encoding of Q using H(Q) +
O(1) bits in total. This is the complete encoding procedure when either
Q is not well-separated or |Di(Q, U)| > 4βi−1ti(U).

3. If Q is both well-separated and |Di(Q, U)| ≤ 4βi−1ti(U), then the encoder
first writes a 0-bit and then executes the remaining four steps.

4. The encoder examines Q and finds the at most 1
2 |Q| queries that are

not well-separated. Denote this set Q′. The encoder now writes down
Q′ by first specifying |Q′|, then which vertical slabs contain the queries
in Q′ and finally what the coordinates of each query in Q′ is within its
slab. This takes O(w) + lg

(|Q|
|Q′|
)

+ |Q′| lg(n2/βi−1) = O(w) + O(βi−1) +

|Q′| lg(n2/βi−1) bits.

5. The encoder now writes down the cell set Di(Q, U), including only the
addresses and not the contents. This takes o(H(Q)) bits since

lg

(
|Di(U)|
|Di(Q, U)|

)
= O(βi−1ti(U) lg(βtu))

= o(βi−1 lg(n2/βi−1)),

where in the first line we used that |Di(U)| ≤ βitu and |Di(Q, U)| ≤
4βi−1ti(U). The second line follows from having ti(U) = o(lgβ n) =
O(lg(n2/βi−1)/ lg(βtu)) since β = ω(tu).

6. Next we encode the x-coordinates of the well-separated queries in Q.
Since we have already encoded which vertical slabs contain well-separated
queries (we really encoded the slabs containing queries that are not well-
separated, but this is equivalent), we do this by specifying only the offset
within each slab. This takes (|Q|−|Q′|) lg(n/βi−1)+O(1) bits. Following
that, the encoder considers the last grid G2i−2, and for each well-separated
query q, he writes down the y-offset of q within the grid cell of G2i−2

hit by q. Since the grid cells of G2i−2 have height n/βi−1, this takes
(|Q| − |Q′|) lg(n/βi−1) + O(1) bits. Combined with the encoding of the
x-coordinates, this step adds a total of (|Q| − |Q′|) lg(n2/β2i−2) + O(1)
bits to the size of the encoding.

7. In the last step of the encoding procedure, the encoder simulates the
query algorithm for every query in [n]× [n] and from this obtains the set
QDi(Q,U), i.e. the set of all those queries that probe no cells in Di(U) \

62

Di(Q, U). Observe that Q ⊆ QDi(Q,U). The encoder now considers each
of the grids Gj , for j = 2, . . . , 2i− 2, and determines both the set of grid

cells G
QDi(Q,U)

j ⊆ Gj hit by a query in QDi(Q,U), and the set of grid cells

GQ
j ⊆ G

QDi(Q,U)

j ⊆ Gj hit by a well-separated query in Q. The last step

of the encoding consists of specifying GQ
j . This is done by encoding which

subset of G
QDi(Q,U)

j corresponds to GQ
j . This takes lg

(|GQDi(Q,U)
j |
|GQ
j |

)
bits for

each j = 2, . . . , 2i− 2.

Since |Di(Q, U)| = o(βi−1 lgβ n) = o(βi−1w) we get from our contradic-
tory assumption that the hitting number of QDi(Q,U) on each grid Gj is

o(βi−3/4), thus |GQDi(Q,U)

j | = o(βi−3/4). Therefore the above amount of
bits is at most

(|Q| − |Q′|) lg(βi−3/4e/(|Q| − |Q′|))(2i− 3) ≤
(|Q| − |Q′|) lg(β1/4)2i+O(βi−1i) ≤

(|Q| − |Q′|)1
4 lg(β)2 lgβ n+O(βi−1 lgβ n) ≤
(|Q| − |Q′|)1

2 lg n+ o(H(Q)).

This completes the encoding procedure, and the encoder finishes by send-
ing the constructed message to the decoder.

Before analysing the size of the encoding, we show that the decoder can
recover Q from the encoding.

Decoding. In this paragraph we describe the decoding procedure. The de-
coder only knows the fixed sequence U = Ulgβ n, . . . , U1 and the message received
from the encoder. The goal is to recover Q, which is done by the following steps:

1. The decoder examines the first bit of the message. If this is a 1-bit, the
decoder immediately recovers Q from the remaining part of the encoding.

2. If the first bit is 0, the decoder proceeds with this step and all of the
below steps. The decoder executes the updates U on the claimed data
structure and obtains the sets Dlgβ n(U), . . . , D1(U). From step 4 of the

encoding procedure, the decoder also recovers Q′.

3. From step 5 of the encoding procedure, the decoder now recovers the ad-
dresses of the cells in Di(Q, U). Since the decoder has the data structure,
he already knows the contents. Following this, the decoder now simu-
lates every query in [n]× [n], and from this and Di(Q, U) recovers the set
QDi(Q,U).

4. From step 6 of the encoding procedure, the decoder now recovers the x-
coordinates of every well-separated query in Q (the offsets are enough
since the decoder knows which vertical slabs contain queries in Q′, and
thus also those that contain well-separated queries). Following that, the

63

decoder also recovers the y-offset of each well-separated query q ∈ Q
within the grid cell of G2i−2 hit by q (note that the decoder does not
know what grid cell it is, he only knows the offset).

5. From the set QDi(Q,U) the decoder now recovers the set G
QDi(Q,U)

j for each
j = 2, . . . , 2i − 2. This information is immediate from the set QDi(Q,U).

From G
QDi(Q,U)

j and step 7 of the encoding procedure, the decoder now

recovers GQ
j for each j. In grid G2, we know that Q has only one query in

every column, thus the decoder can determine uniquely from GQ
2 which

grid cell of G2 is hit by each well-separated query in Q. Now observe that
the axis-aligned rectangle enclosing all β1/2 grid cells in Gj+1 that inter-
sects a fixed grid cell in Gj has area n2/βi−1/2. Since we are considering
well-separated queries, i.e. queries where no two lie within an axis-aligned
rectangle of area n2/βi−1/2, this means that GQ

j+1 contains at most one

grid cell in such a group of β1/2 grid cells. Thus if q is a well-separated
query in Q, we can determine uniquely which grid cell of Gj+1 that is hit

by q, directly from GQ
j+1 and the grid cell in Gj hit by q. But we already

know this information for grid G2, thus we can recover this information
for grid G3, G4, . . . , G2i−2. Thus we know for each well-separated query in
Q which grid cell of G2i−2 it hits. From the encoding of the x-coordinates
and the y-offsets, the decoder have thus recovered Q.

Analysis. Finally we analyse the size of the encoding. First consider the case
where Q is both well-separated and |Di(Q, U)| ≤ 4βi−1ti(U). In this setting,
the size of the message is bounded by

|Q′| lg(n2/βi−1) + (|Q| − |Q′|)(lg(n2/β2i−2) + 1
2 lg n) + o(H(Q))

bits. This equals

|Q| lg(n2+1/2/β2i−2) + |Q′| lg(βi−1/n1/2) + o(H(Q))

bits. Since we are considering an epoch i ≥ 15
16 lgβ n, we have lg(n2+1/2/β2i−2) ≤

lg(n5/8β2), thus the above amount of bits is upper bounded by

|Q| lg(n5/8β2) + |Q′| lg(n1/2) + o(H(Q)).

Since |Q′| ≤ 1
2 |Q|, this is again bounded by

|Q| lg(n7/8β2) + o(H(Q))

bits. But H(Q) = |Q| lg(n2/βi) ≥ |Q| lg n, i.e. our encoding uses less than
15
16H(Q) bits.

Finally, let E denote the event that Q is well-separated and at the same
time |Di(Q, U)| ≤ 4βi−1ti(U), then the expected number of bits used by the
entire encoding is bounded by

O(1) + Pr[E](1− Ω(1))H(Q) + (1− Pr[E])H(Q).

64

The contradiction is now reached by invoking Lemma 2.10 to conclude that
Pr[E] ≥ 1/2. We have thus proved Lemma 2.8, which was the last missing step
of our lower bound proof. We hence conclude:

Theorem 2.3. Any data structure for dynamic weighted orthogonal range count-
ing in the cell probe model, must satisfy tq = Ω((lg n/ lg(wtu))2). Here tq is the
expected query time and tu the worst case update time. This lower bound holds
when the weights of the inserted points are Θ(lg n)-bit integers.

2.3 Concluding Remarks

In this chapter we presented new techniques for proving both static and dynamic
cell probe lower bounds. In both cases, our new techniques allowed us to obtain
the highest lower bounds to date.

While our results have taken the field of cell probe lower bounds one step
further, there is still a long way to go. Amongst the results that seems within
grasp, we find it a very intriguing open problem to prove an ω(lg n) dynamic
lower bound for a problem where the queries have a one bit output (decision
problems). Our new technique crucially relies on the output having more bits
than it takes to describe a query, since otherwise the encoder cannot afford to
tell the decoder which queries to simulate. Since many interesting data structure
problems have a one bit output size, finding a technique for handling this case
would allow us to attack many more fundamental data structure problems. As a
technical remark, we note that when proving static lower bounds using the cell
sampling idea, the encoder does not have to write down the queries to simulate.
This is because queries are completely solved from the cell sample and need not
read any other cells. Hence the decoder can simply try to simulate the query
algorithm for every possible query and simply discard those that read cells
outside the sample. In the dynamic case, we still have to read cells associated
to other epochs. For the future epochs (small epochs), this is not an issue since
we know all such cells. However, when simulating the query algorithm for a
query that is not resolved by the sample, i.e. it reads other cells from the epoch
we are deriving a contradiction for, we cannot recognize that the query fails.
Instead, we will end up using the cell contents written in past epochs and could
potentially obtain an incorrect answer for the query and we have no way of
recognizing this. We believe that finding a way to circumvent the encoding of
queries is the most promising direction for improvements.

Applying our new techniques to other problems is also an important task.
However, for the dynamic case, such problems must again have a logarithmic
number of bits in the output of queries.

65

66

Chapter 3

The Group Model

Our contribution to the field of range searching in the group model is two
new techniques for proving lower bounds for oblivious data structures. The
first technique establishes a connection between dynamic range searching in
the group model and combinatorial discrepancy. We present this result in Sec-
tion 3.1. Our second technique draws a connection to range reporting in the
pointer machine model. This result is presented in Section 3.2.

As mentioned in Section 1.4, our results require a notion of bounded coeffi-
cients. We elaborate on this in the following: Recall from Section 1.4 that an
oblivious data structure preprocesses an input set of n geometric objects into
a collection of group elements, each corresponding to a linear combination over
the weights assigned to the input objects. Queries are answered by again com-
puting linear combinations over the precomputed group elements, and updates
are supported by re-evaluating every linear combination involving the weight
of the updated point. We define the multiplicity of an oblivious data structure
as the largest absolute value occurring as a coefficient in any of these linear
combinations. We note that every known data structure uses only coefficients
amongst {−1, 0,+1}, thus all known data structures have multiplicity 1, but
there is nothing inherent in the group model that prevents larger coefficients.
Both of our new techniques gives lower bounds depending non-trivially on the
multiplicity of the data structure. See Section 3.1 and Section 3.2 for details.
Also note that we give a more formal and mathematical definition of oblivious
data structures and multiplicity in Section 3.3.

3.1 Connection to Combinatorial Discrepancy

In the field of combinatorial discrepancy, the focus lies on understanding set
systems. In particular, if (Y,A) is a set system, where Y = {1, . . . , n} are the
elements and A = {A1, . . . ,Am} is a family of subsets of Y , then the minimum
discrepancy problem asks to find a 2-coloring χ : Y → {−1,+1} of the elements
in Y , such that each set in A is colored as evenly as possible, i.e. find χ

67

minimizing disc∞(χ, Y,A), where

disc∞(χ, Y,A) = max
j

∣∣∣∣∣∣
∑
i∈Aj

χ(i)

∣∣∣∣∣∣ .
Understanding the best achievable colorings for various families of set systems
has been an active line of research for decades, and the results obtained have
found numerous applications in other areas of computer science, see for in-
stance the seminal books of Matoušek [60] and Chazelle [37] for introductions
to discrepancy theory, and for applications in complexity lower bounds, com-
putational geometry, pseudo-randomness and communication complexity.

The results most important to our work are those related to families of set
systems with a range searching flavor to them. More formally, if we let X be a
universe of geometric objects (think of X as all possible input geometric objects
to a range searching problem, for instance all points d-dimensional space), P ⊂
X a set of n geometric input objects {p1, . . . , pn} (a concrete input to a range
searching problem) and R a collection of query ranges, where each query range
R ∈ R is a subset of X (for every query to the range searching problem, R
contains a set consisting of those elements in X that intersects the query range),
then we define the induced set system (P,AP,R), where AP,R = {R∩P : R ∈ R}
is the family of sets containing for each R ∈ R, the set consisting of all input
objects that are contained in R (AP,R is also known in the literature as the trace
of R on P). With this definition, we define the `∞-discrepancy disc∞(P,R) as

disc∞(P,R) = min
χ:P→{−1,+1}

disc∞(χ, P,AP,R)

= min
χ:P→{−1,+1}

max
Aj∈AP,R

∣∣∣∣∣∣
∑
pi∈Aj

χ(pi)

∣∣∣∣∣∣ ,
thus the `∞-discrepancy measures the best achievable 2-coloring of the induced
set system of P andR. A similar measure, called the `2-discrepancy disc2(P,R),
also plays a key role in our results

disc2(P,R) = min
χ:P→{−1,+1}

√√√√√ 1

|AP,R|
∑

Aj∈AP,R

 ∑
pi∈Aj

χ(pi)

2

.

Observe that we always have disc2(P,R) ≤ disc∞(P,R). Finally, we define the
number of distinct query ranges of an induced set system as |AP,R|, that is, as
the number of distinct sets (AP,R is not a multiset).

To make absolutely clear the connection to range searching, consider as
an example the d-dimensional orthogonal range searching problem. Here X is
simply Rd, i.e. the set of all d-dimensional points. The family R contains all
axis-aligned rectangles in Rd (each axis-aligned rectangle is a subset of Rd).
Finally, we see that for any induced set system (P,AP,R), where P is a set of n
input points in X, the number of distinct query ranges is bounded by O(n2d)
since each axis-aligned rectangle defining a range in R can be shrunk to have
one point from P on each of its 2d sides without changing the set of input points
contained in the query range.

68

Previous Results. In the following, we review the discrepancy upper and
lower bounds related to the most fundamental types of range searching. We
note that a lower bound on the discrepancy of a range searching problem is
a proof that there exists a subset P ⊂ X of n input objects to the range
searching problem, for which disc∞(P,R) or disc2(P,R) is bounded from below,
while upper bounds on the discrepancy imply that disc∞(P,R) or disc2(P,R)
is bounded from above for all subsets P ⊂ X of n input objects. Since
disc2(P,R) ≤ disc∞(P,R) we also get that lower bounds on the `2-discrepancy
translates directly to lower bounds on the `∞-discrepancy, and similarly, up-
per bounds for the `∞-discrepancy translates to upper bounds for the `2-
discrepancy. Hence when the upper bounds or lower bounds achieved for the
two measures match, we only state the strongest result in the following.

The discrepancy of halfspace range searching is particularly well understood.
If we let Hd denote the set of all halfspaces in d-dimensional space (where each
halfspace H ∈ Hd is a subset of Rd), then Alexander [10] proved that there
exists a set P of n points in Rd, such that disc2(P,Hd) = Ω(n1/2−1/2d). A
matching upper bound was subsequently established by Matoušek [59], even
for the `∞-discrepancy.

For orthogonal range searching (or axis-aligned rectangles), the picture is
more muddy. On the lower bound side, Beck [20] proved that there exists a set
P of n points in R2, such that disc∞(P,B2) = Ω(lg n), where we use Bd to denote
the family containing all axis-aligned rectangles in Rd. However, in dimensions
d ≥ 3, the highest achieved lower bounds achieved are only disc∞(P,Bd) =
Ω(lg(d−1)/2+µ(d) n), where µ(d) > 0 is some small but strictly positive function
of d [25]. For the `2-discrepancy, the highest lower bound is disc2(P,Bd) =
Ω(lg(d−1)/2 n) [76, 35]. On the upper bound side, Srinivasan [80] proved that
disc∞(P,B2) = O(lg5/2 n) for any set P of n points in R2, and for dimensions
d ≥ 3, the best upper bound is disc∞(P,Bd) = O(lgd+1/2 n

√
lg lg n) [60].

If the ranges are balls with arbitrary radius, then an `2-discrepancy lower
bound of Ω(n1/2−1/2d) can be established from the results on halfspace ranges [60]
(a large enough ball looks locally like a halfspace). A matching lower bound
for the `∞-discrepancy was proved in the two-dimensional case, even when all
balls (discs) have a fixed radius [21].

For line range searching, Chazelle and Lvov proved that there exists a set
P of n points in R2, such that disc∞(P,L2) = Ω(n1/6) [39]. Here L2 denotes
the set of all lines in two-dimensional space.

Another interesting lower bound is related to arithmetic progressions. Let
(Y,A) be the set system where Y = {0, . . . , n− 1} and A contains every arith-
metic progression on Y , i.e. for every pair of integers i, d satisfying 0 ≤ i, d < n,
A contains the set Ai,d = {i + jd | j ∈ {0, . . . , b(n − i − 1)/dc}}. Then Roth
proved disc2(Y,A) = Ω(n1/4) [77].

Finally, we conclude by mentioning some additional discrepancy upper bounds
that are related to the later proofs in this paper. If (Y,A) is a set system in
which every pi ∈ Y is contained in at most t sets in A, then Banaszczyk [16]
proved that disc∞(Y,A) = O(

√
t lg |A|) and disc2(Y,A) = O(

√
t). The best

bound for the `∞-version of this problem, that is independent of |A| and |Y |,
is due to Beck and Fiala [22] and it states that disc∞(Y,A) = O(t). We note

69

that there exist results [23] improving on the additive constants in the bound of
Beck and Fiala. While many discrepancy upper bounds are purely existential,
we mention that Bansal [17] recently gave constructive discrepancy minimiza-
tion algorithms for several central problems.

The Connection.

With the definitions of combinatorial discrepancy well established, we are ready
to present the connection to range searching in the group model. The connection
is very clean and allows us to immediately translate discrepancy lower bounds
to data structure lower bounds. We have formulated our result in the following
theorem:

Theorem 3.1. Let R be the query ranges of a range searching problem, where
each set in R is a subset of a universe X. Furthermore, let P ⊂ X be a
set of n geometric input objects to the range searching problem. Then any
oblivious data structure for the range searching problem must satisfy tutq =
Ω(disc∞(P,R)2/∆4 lgm) on the input set P . Here ∆ denotes the multiplicity
of the data structure, tu its worst case update time, tq its worst case query time
and m the number of distinct query ranges in (P,AP,R), i.e. m = |AP,R|. For
the `2-discrepancy, any oblivious data structure for the range searching problem
must satisfy tutq = Ω(disc2(P,R)2/∆4).

Thus for constant multiplicity oblivious data structures (which includes all
known upper bounds), we get extremely high lower bounds compared to pre-
vious results. We mention these lower bounds in the following (for constant
multiplicity), and note that the number of distinct query ranges for all of the
considered problems is polynomial in the input size (i.e. lgm = Θ(lg n)):

For halfspace range searching in d-dimensional space we get a lower bound
of

tutq = Ω(n1−1/d),

simply by plugging in the `2-discrepancy lower bound of Ω(n1/2−1/2d). This
comes within a lg lg n factor of Chan’s upper bound, and is exponentially
larger than the highest previous lower bound for any explicit problem of tq =
Ω((lg n/ lg(lg n+ tu))2) (see Section 1.4). We note that halfspace range search-
ing is a special case of simplex range searching, this bound therefore also applies
to simplex range searching.

For orthogonal range searching, we do not improve on the best bounds in
the two-dimensional case, but for d-dimensional orthogonal range searching we
get a lower bound of

tutq = Ω(lgd−1 n),

from the `2-discrepancy lower bound Ω(lg(d−1)/2 n). By a standard reduction,
this bound also applies to the well-studied problem of d-dimensional rectangle
stabbing (range searching where the input set contains axis-aligned rectangles,
and the queries are points).

For d-dimensional ball range searching, our lower bound matches that for
halfspace range searching, and in the two-dimensional case, we get a lower

70

bound of tutq = Ω(n1/2/ lg n) even when all query balls (discs) have the same
fixed radius.

For line range searching, that is, range searching where the input is a set
of n two-dimensional points and a query ask to sum the weights of all points
intersecting a query line, we get a lower bound of tutq = Ω(n1/3/ lg n).

Finally, for the arithmetic progression range searching problem, i.e. the
range searching problem where the input is a set of n ordered points p0, . . . , pn−1

and a query asks to sum the weights of the points in an arithmetic progression,
we get a lower bound of tutq = Ω(n1/2).

For more lower bounds we refer the reader to the books by Matoušek [60]
and Chazelle [37].

Our result also has implications for the field of combinatorial discrepancy.
By contraposition of Theorem 3.1, we get a discrepancy upper bound for d-
dimensional orthogonal range searching (axis-aligned rectangles) of disc∞(P,Bd) =
O(lgd+1/2 n) directly from the textbook range tree data structures with tu =
tq = O(lgd n). While the improvement over the best previous result is only a√

lg lg n factor in dimensions d ≥ 3, we still find this a beautiful example of the
interplay between data structures and combinatorial discrepancy.

Finally, we mention that our proof of Theorem 3.1 relies on what we believe
to be a novel application of discrepancy upper bound techniques.

3.2 Connection to Range Reporting

The second technique we present for proving lower bounds in the group model
draws a connection to previous work on lower bounds in the pointer machine
model (see Section 1.5). As mentioned in Section 1.5, most pointer machine
lower bounds have been proved by constructing favorable query sets. We recall
the definition of (t, h)-favorable from Section 1.5: Let P be a set of input objects
to a range searching problem and let R be a set of query ranges. Then we say
that R is (t, h)-favorable if

1. |R ∩ P | ≥ t for all R ∈ R.

2. |R1∩R2∩· · ·∩Rh∩P | = O(1) for all sets of h different queries R1, . . . , Rh ∈
R.

Favorable query sets were used in combination with the following theorem:

Restatement of Theorem 1.1 (Chazelle and Rosenberg [40]). Let P be a set
of n input objects to a range searching problem and R a set of m query ranges.
If R is (Ω(tq), h)-favorable, then any pointer machine data structure for P with
query time tq +O(k) must use space Ω(mtq/h).

Since favorable query sets play an important role in our group model results,
we also mention a number of previous favorable query set constructions. All
these results were used to prove pointer machine range reporting lower bounds
by invoking Theorem 1.1. Chazelle [34] (or alternatively [35]), showed that
one can construct a (t, 2)-favorable set of Θ(n/t · (lg n/ lg t)d−1) queries for

71

orthogonal range reporting in d-dimensional space. Henceforth, t = Ω(1) is
an adjustable parameter. For the “dual” problem of d-dimensional rectangle
stabbing (the input is n axis-aligned rectangles and a query asks to report
all rectangles containing a query point), Afshani et al. [5] showed that one

can construct a (t, 2)-favorable set of n/t · 2Θ
(

lgn

t1/(d−1)

)
queries. For line range

reporting (the input consists of n two-dimensional points and a query asks
to report all points on a query line), a classical construction of Erdös (see
e.g. [67]) shows that one can construct a (Θ(n1/3), 2)-favorable set of n query
lines. Finally, for convex polytope intersection reporting in R3 (the input is an
n-vertex convex polytope and a query asks to report all edges of the polytope
intersecting a query plane), Chazelle and Liu [38] showed that one can construct
a (t, 2)-favorable set of Θ(n2/t3) query planes.

The Connection.

Our second main result in the group model is an alternative to the connection
to discrepancy theory. This relation allows us to almost immediately translate
range reporting lower bounds in the pointer machine to dynamic group model
lower bounds for data structures with bounded multiplicity. More specifically,
let P be a set of n input objects to a range searching problem and R a set of
m query ranges. We say that R is strongly (t, h)-favorable for P if

1. |R ∩ P | = Θ(t) for all R ∈ R.

2. |R1∩R2∩· · ·∩Rh∩P | = O(1) for all sets of h different queries R1, . . . , Rh ∈
R.

3. |{R ∈ R | p ∈ R}| = O(mt/n) for all p ∈ P .

Thus a favorable query set is strongly favorable, if in addition, all query ranges
contain roughly equally many input objects and all input objects are contained
in roughly equally many query ranges. With this definition, we prove the fol-
lowing result:

Theorem 3.2. Let P be a set of n input objects to a range searching problem
and R a set of m ≤ n query ranges. If R is strongly (t, 2)-favorable for P ,
then any oblivious data structure for the range searching problem must have
tqtu = Ω(m2t/n2∆4) on the input set P . Here tq denotes the worst case query
time, tu the worst case update time and ∆ the multiplicity of the data structure.
For m = Θ(n) and ∆ = O(1), this bound simplifies to tqtu = Ω(t).

Fortunately, all the favorable query sets described earlier are also strongly
favorable. By adjusting the parameter t (in the favorable query set construc-
tions) such that the number of queries in the favorable query sets is m = Θ(n)
and m ≤ n, we immediately obtain the following lower bounds (listed here for
constant multiplicity):

For d-dimensional orthogonal range searching, we get a lower bound of

tqtu = Ω((lg n/ lg lgn)d−1).

72

This is slightly weaker than the bound obtained through discrepancy, but we
still find it an interesting example of the connection. For line range searching,
we get a lower bound of tqtu = Ω(n1/3), which is an improvement of a lg n factor
over the result obtained using the discrepancy connection. Additionally, we get
a lower bound for convex polytope intersection searching in R3 of tqtu = Ω(n1/3)
using the result of Chazelle and Liu [38].

Our proof of Theorem 3.2 is based on carefully bounding the eigenvalues of
the incidence matrix corresponding to P and R. In fact, we prove the following
stronger theorem during our establishment of Theorem 3.2:

Theorem 3.3. Let P be a set of n input objects to a range searching problem,
R a set of m query ranges over P and A the corresponding incidence matrix.
Then for every 3 ≤ k ≤ n, any oblivious data structure for the range searching
problem must have tqtu = Ω(λkk

2/mn∆4) on the input set P . Here λk denotes
the k’th largest eigenvalue of ATA, tq the worst case query time of the data
structure, tu the worst case update time and ∆ the multiplicity of the data
structure.

This theorem can be considered a complement to Chazelle’s theorem [36]
for establishing lower bounds on offline range searching in the group model
(see Section 1.4), however our dependence on λk is exponentially better than
the one of Chazelle. Using this theorem, we also obtain a lower bound of
tqtu = nΩ(1/ lg lgn) for orthogonal range searching in non-constant dimension
d = Ω(lg n/ lg lg n) (see Section 3.4.3 for a proof).

3.3 Preliminaries

In the following we define range searching, oblivious data structures and dis-
crepancy in terms of matrices.

Incidence Matrices. Let (P,AP,R) be the induced set system of a set P
of n geometric objects {p1, . . . , pn} and a family R of query ranges. Then we
define the incidence matrix CP,R ∈ {0, 1}|AP,R|×n of R and P as the {0, 1}-
matrix having a column for each input object in P and a row for each set in
the induced set system AP,R = {A1, . . . ,A|AP,R|}. The i’th row of CP,R has a
1 in the j’th column if pj ∈ Ai and a 0 otherwise.

Oblivious Data Structures. Consider a range searching problem where the
query ranges R are subsets of a universe X. Then an oblivious data structure
for the range searching problem is a factorization of each incidence matrix CP,R,
where P ⊂ X is a set of n geometric input objects, into two matrices QP,R and
DP,R such that QP,R ·DP,R = CP,R [43].

The data matrix DP,R ∈ ZS×n represents the precomputed group sums
stored by the data structure on input P . Each of the S rows is interpreted as
a linear combination over the weights assigned to the n input objects, and we
think of the data structure as maintaining the corresponding group sums when
given an assignment of weights to the input objects.

73

The query matrix QP,R ∈ Z|AP,R|×S specifies the query algorithm. It has
one row for each set Ai in the induced set system AP,R, and we interpret
this row as a linear combination over the precomputed group sums, denoting
which elements to add and subtract when answering a query range intersecting
precisely the input objects in Ai.

With the above interpretations of the data and query matrix, we get that
QP,R ·DP,R = CP,R ensures that when given a query range R ∈ R, the query
algorithm adds and subtracts a subset of the precomputed linear combinations
to finally yield the linear combination summing precisely the weights assigned
to the input objects intersecting R. For a concrete example of what the ma-
trices corresponding to a data structure might look like, we refer the reader to
Section 3.4.2 where we review the classic data structure solution for orthogonal
range searching.

The worst case query time of an oblivious data structure on an input set P , is
defined as the maximum number of non-zero entries in a row of QP,R. The worst
case update time on an input set P is similarly defined as the maximum number
of non-zero entries in a column of DP,R. The space of the data structure is the
number of columns in QP,R (equivalently number of rows in DP,R). Finally,
we define the multiplicity as the largest absolute value of an entry in DP,R and
QP,R.

Combinatorial Discrepancy and Matrices. The definitions of discrep-
ancy can also be stated in terms of matrices. Let P be a set of n geometric
input objects and R a family of query ranges. Then

disc∞(P,R) = min
x∈{−1,+1}n

‖CP,R · x‖∞

disc2(P,R) = min
x∈{−1,+1}n

1√
m
‖CP,R · x‖2

are easily seen to be the exact same definition of disc∞(P,R) and disc2(P,R)
as the ones presented in the introduction. Here m denotes the number of rows
in CP,R, ‖ · ‖∞ gives the `∞-norm of a vector (largest absolute value amongst
the coordinates) and ‖ · ‖2 gives the `2-norm of a vector.

3.4 Establishing the Connections

In this section we give the proofs of our three main theorems for proving group
model lower bounds, namely Theorem 3.1, Theorem 3.2 and Theorem 3.3. We
start by establishing the connection to discrepancy.

3.4.1 Combinatorial Discrepancy

In this section we prove our first main result, Theorem 3.1. We have restated
the theorem here for ease of reference:

Restatement of Theorem 3.1. Let R be the query ranges of a range searching
problem, where each set in R is a subset of a universe X. Furthermore, let P ⊂

74

X be a set of n geometric input objects to the range searching problem. Then
any oblivious data structure for the range searching problem must satisfy tutq =
Ω(disc∞(P,R)2/∆4 lgm) on the input set P . Here ∆ denotes the multiplicity
of the data structure, tu its worst case update time, tq its worst case query time
and m the number of distinct query ranges in (P,AP,R), i.e. m = |AP,R|. For
the `2-discrepancy, any oblivious data structure for the range searching problem
must satisfy tutq = Ω(disc2(P,R)2/∆4).

Let R be a collection of query ranges, all subsets of a universe X. Also let
P ⊂ X be a set of n geometric input objects. Our goal is to show that CP,R
cannot be factored into two matrices QP,R and DP,R, unless QP,R has a row
with many non-zero entries, or DP,R has a column with many non-zero entries,
i.e. either the query or update time of an oblivious data structure for the input
set P must be high.

Our key idea for proving this, is to multiply a factorization by a cleverly
chosen vector. More formally, if QP,R ·DP,R = CP,R is a factorization provided
by the oblivious data structure, then we find a vector x ∈ Rn such that QP,R ·
DP,R ·x has small coefficients if QP,R and DP,R are too sparse, and at the same
time CP,R ·x has large coefficients. Since QP,R ·DP,R ·x = CP,R ·x this gives us
our lower bound. The trick in finding a suitable vector x is to consider vectors in
{−1,+1}n. Making this restriction immediately allows us to use combinatorial
discrepancy lower bounds to argue that CP,R · x has large coefficients, and at
the same time we can use combinatorial discrepancy upper bound techniques
to exploit the sparse rows and columns of QP,R and DP,R.

Proof of Theorem 3.1. Let R be the query ranges of the range searching
problem and P a set of n geometric input objects. Furthermore, let m denote
the number of distinct query ranges in (P,AP,R), and assume that an oblivious
data structure for the input set P exists, having worst case update time tu,
worst case query time tq and multiplicity ∆.

Let QP,R ·DP,R = CP,R denote the corresponding factorization provided by
the oblivious data structure. Our first step is to argue that there exists a vector
x ∈ {−1,+1}n for which ‖QP,R · DP,R · x‖∞ (or ‖QP,R · DP,R · x‖2) is small.
The existence of this vector is guaranteed by the following theorem:

Theorem 3.4. Let Q ∈ Rm×p and D ∈ Rp×n be two matrices of reals, such
that every row of Q has at most tQ non-zero entries, and every column of D has
at most tD non-zero entries. Finally, let ∆ be an upper bound on the absolute
value of any entry in Q and D. Then, for the `∞-norm, there exists a vector
x ∈ {−1,+1}n, such that ‖QDx‖∞ = O(∆2

√
tDtQ lgm). For the `2-norm,

there exists a vector x ∈ {−1,+1}n, such that ‖QDx‖2 = O(∆2
√
tDtQm).

Before proving the theorem, we show that it implies Theorem 3.1. Recall
that all coefficients in QP,R and DP,R are bounded in absolute value by the
multiplicity ∆ of the oblivious data structure. At the same time, each row of
QP,R has at most tq non-zero entries, and each column of DP,R has at most tu
non-zero entries. Finally, since (P,AP,R) has at most m distinct query ranges,
we get that QP,R has at most m rows. Thus by Theorem 3.4, there must exist a

75

vector x∗ ∈ {−1,+1}n such that ‖QP,R ·DP,R ·x∗‖∞ = O(∆2
√
tutq lgm). Since

x∗ ∈ {−1,+1}n, we also have ‖CP,R·x∗‖∞ ≥ disc∞(P,R). But QP,R·DP,R·x∗ =
CP,R · x∗, thus it must hold that ∆2

√
tutq lgm = Ω(disc∞(P,R)). For the `2-

norm, we similarly get that there exists a vector x∗ ∈ {−1,+1}n such that
‖QP,R·DP,R·x∗‖2 = O(∆2√tutqm). At the same time, we have by the definition
of `2-discrepancy that ‖CP,R ·x∗‖2 ≥

√
m·disc2(P,R) which completes the proof

of Theorem 3.1.

What remains is to prove Theorem 3.4.

Proof of Theorem 3.4.

This section is devoted to proving our main technical result, Theorem 3.4.
Throughout the section, we let Q ∈ Rm×p and D ∈ Rp×n be matrices satisfying
the constraints of Theorem 3.4. The main tool in our proof is a result in
discrepancy theory due to Banaszczyk [16]. We first introduce some terminology
and then present his result.

Let Bp
2 denote the closed Euclidean unit ball in Rp. Let γp denote the (stan-

dard) p-dimensional Gaussian measure on Rp with density (2π)−p/2e−‖x‖
2
2/2.

Then the following holds

Theorem 3.5 (Banaszczyk [16]). There is a numerical constant c > 0 with
the following property. Let K be a convex body in Rp with γp(K) ≥ 1/2. Then
to each sequence u1, . . . , un ∈ cBp

2 there correspond signs ε1, . . . , εn ∈ {−1,+1}
such that ε1u1 + · · ·+ εnun ∈ K.

To prove Theorem 3.4, we seek a column vector x ∈ {−1,+1}n that some-
how simultaneously exploits the sparse rows of Q and the sparse columns of D.
We argue for the existence of this vector by carefully defining a convex body
capturing the sparsity of Q, and a sequence of vectors in cBp

2 capturing the
sparsity of D. The application of Theorem 3.5 on this choice of convex body
and vectors in cBp

2 then yields the desired vector x. We define two different
convex bodies for the `∞ and the `2 bounds.

Convex Body for the `∞-norm. For the `∞ result, we define the following
convex body Kα in Rp:

Kα := {y = (y1, . . . , yp) ∈ Rp | |〈Q1, y〉| ≤ α ∧ · · · ∧ |〈Qm, y〉| ≤ α},

where Qi denotes the i’th row vector of Q, 〈Qi, y〉 =
∑p

j=1Qi,jyj is the standard
inner product, and α ≥ 0 is a parameter to be fixed later. This body is clearly
convex since each constraint |〈Qi, y〉| ≤ α corresponds to the intersection of two
halfspaces. Therefore Kα is the intersection of 2m halfspaces, i.e. Kα is convex.

In understanding our choice of Kα, think of each coordinate in Rp as repre-
senting a coordinate of Dx. In this setting, each of the constraints |〈Qi, y〉| ≤ α
intuitively forces the coordinates of QDx to be small. Our goal is to apply
Theorem 3.5 on Kα, thus we find a value of α such that γp(Kα) ≥ 1/2:

Lemma 3.1. If α = Ω(∆
√
tQ lgm), then γp(Kα) ≥ 1/2.

76

Proof. Recall that γp(Kα) denotes the probability that a random vector z ∈ Rp,
with each coordinate distributed independently as a Gaussian with mean 0
and variance 1, lies within Kα. In computing Pr[z ∈ Kα], we first bound
Pr[|〈Qi, z〉| > α] for a fixed i. Since each row Qi has at most tQ non-zero
entries, we get that 〈Qi, z〉 is a linear combination of at most tQ independent
Gaussians, each with mean 0 and variance 1. Furthermore, each coefficient
in the linear combination is bounded by ∆ in absolute value, thus 〈Qi, z〉 is
itself Gaussian with mean 0 and variance σ2

i ≤ tQ∆2. By standard tail bounds

for Gaussian distributions, we get that Pr[|〈Qi, z〉| > α] = e−O(α2/σ2
i). Setting

α = Ω(∆
√
tQ lgm) = Ω(σi

√
lgm) this is less than 1/m2. By a union bound over

all m constraints in the definition of Kα, we conclude that Pr[z /∈ Kα] < 1/m,
i.e. γp(Kα) > 1− 1/m > 1/2. ut

Convex Body for the `2-norm. For the `2 result, we define the convex
body:

Cα := {y ∈ Rp | ‖Qy‖2 ≤ α}.

To see that this body is convex, let y1, y2 ∈ Cα. We must show that ty1 + (1−
t)y2 ∈ Cα for any t ∈ [0 : 1]. But ‖Q(ty1 +(1−t)y2)‖2 = ‖Qty1 +(1−t)Qy2‖2 ≤
‖Qty1‖2+‖(1−t)Qy2‖2 ≤ α. Again, we find a value of α such that γp(Cα) ≥ 1/2:

Lemma 3.2. If α = Ω(∆
√
mtQ), then γp(Cα) ≥ 1/2.

Proof. Again let z ∈ Rp be a random vector with each coordinate distributed
independently as a Gaussian with mean 0 and variance 1. We want to bound
Pr[z ∈ Cα]. For this, we first prove a bound on E[〈Qi, z〉2]. From the arguments
above, we have that 〈Qi, z〉 is a Gaussian with mean 0 and variance σ2

i ≤ tQ∆2.
It follows that E[〈Qi, z〉2] ≤ tQ∆2. By linearity of expectation, we have

E

[∑
i

〈Qi, z〉2
]

= mtQ∆2.

From Markov’s inequality it follows that
∑

i〈Qi, z〉2 ≤ 2mtQ∆2 with probability
at least 1/2. This implies ‖Qz‖2 ≤

√
2mtQ∆ with probability at least 1/2,

which completes the proof. ut

Sequence of Vectors. We are now ready to define a sequence of vectors in
cBp

2 and apply Theorem 3.5. Letting Dj denote the j’th column vector of D,
we define the vectors d1, . . . , dn, where dj = c/(∆

√
tD) · Dj , and c > 0 is the

constant in Theorem 3.5. Since each column of D has at most tD non-zero
entries, each bounded by ∆ in absolute value, we get that ‖Dj‖2 ≤

√
tD∆ for

all j, and thus d1, . . . , dn ∈ cBp
2 .

For the `∞ result, let α = Θ(∆
√
tQ lgm). We now get by Theorem 3.5, that

there exist signs ε1, . . . , εn ∈ {−1,+1} such that
∑n

j=1 εjdj ∈ Kα. Now define

the vector x = (ε1, . . . , εn). We claim that ‖QDx‖∞ = O(∆2
√
tDtQ lgm). To

see this, note that Dx =
∑n

j=1 εjDj = c−1∆
√
tD
∑n

j=1 εjdj . Now consider
the i’th coordinate of QDx. This coordinate is given by the inner product

77

〈Qi, Dx〉 = c−1∆
√
tD〈Qi,

∑n
j=1 εjdj〉. But since

∑n
j=1 εjdj ∈ Kα, this is by

definition of Kα bounded in absolute value by c−1∆
√
tDα = O(∆2

√
tDtQ lgm).

For the `2 result, let α = Θ(∆
√
mtQ). We again get from Theorem 3.5,

that there exist signs ε1, . . . , εn ∈ {−1,+1} such that
∑n

j=1 εjdj ∈ Cα. By
similar arguments as above, it follows that the vector x = (ε1, . . . , εn) satisfies
‖QDx‖2 = O(∆2

√
tDtQm). This concludes the proof of Theorem 3.4.

3.4.2 Implications for Combinatorial Discrepancy

Having established Theorem 3.1, we now get to all of the immediate implica-
tions. To not waste space on repeating ourselves, we refer the reader to the
list of results presented in Section 3.1 for an overview of the range search-
ing lower bounds achieved (they follow directly by plugging in the discrepancy
lower bounds from Section 3.1 in Theorem 3.1). Thus for the remainder of the
section, we present our combinatorial discrepancy upper bound for orthogonal
range searching (axis-aligned rectangles).

Combinatorial Discrepancy Upper Bounds. In this section we review
the classic data structure solution to orthogonal range searching [24]. We give
a rather thorough review to also make clear the translation of a data structure
into matrix factorization. We finally summarize the implications of combining
the solution with Theorem 3.1.

1-d Orthogonal Range Searching. We set out in the one-dimensional case.
Here the input to orthogonal range searching is a set P of n points on the real
line, and the goal is to support computing the group sum of the weights assigned
to the input points intersecting a query interval. This problem clearly includes
the partial sums problem as a special case.

The standard solution to this problem, is to construct a complete binary
tree T over the input points ordered by their coordinates. Each leaf of T is
associated to one input point, and each internal node v is associated to the
range of points associated to the leaves of the subtree rooted at v. The data
structure stores one group sum for each node in T . The group sum stored for a
node v is simply the sum of the weights assigned to the input points associated
to v.

Let [x1 : x2] be a range query. To answer the range query, we first find the
two leaves v1 and v2 containing the successor of x1 and the predecessor of x2,
respectively. Let u denote the lowest common ancestor of v1 and v2. We now
traverse the path from the left child of u to v1, and for each node w that is a
right child of a node on this path, but not itself on the path, we add up the
group sum stored at w. We then do the same with v1 replaced by v2 and the
roles of left and right reversed, and finally we add up the group sums stored at
v1 and v2. This is easily seen to sum precisely the weights of the points with a
coordinate in the range [x1 : x2].

Since the height of T is O(lg n), we get that the data structure answers
queries in tq = O(lg n) group operations. The weight of each input point p is
associated to one node at each level of the tree, namely the ancestor nodes of

78

the leaf that is associated to p. Thus the update time is also tu = O(lg n), since
an update consists of re-evaluating the group sums stored in these nodes.

For completeness, we also sketch what the matrices QP,R and DP,R look like
for this data structure. DP,R has one row for each node in T and one column
for each input point. The row corresponding to a node v has a 1 in the column
corresponding to a point p if v is associated to p, and a 0 otherwise. QP,R has
a column for each node in T (i.e. for each stored group sum). Furthermore, if
p1, . . . , pn denotes the input points ordered by their coordinate, then QP,R has
one row for every pair of points pi and pj , (i ≤ j). For the row corresponding
to a pair pi and pj , let [xi : xj] denote a query range containing precisely
the coordinates of the points pi, . . . , pj . Then that row has a 1 in each column
corresponding to a node for which the stored group sum is added when executing
the above query algorithm on [xi : xj], and a 0 elsewhere.

Higher Dimensions. The above data structure is easily extended to higher
dimensions: Construct the one-dimensional layout on the last coordinate of the
input points, i.e. construct a complete binary tree over the sorted list of points.
Each node in the tree no longer maintains the group sum of the weights assigned
to points in the subtree, but instead stores a (d−1)-dimensional data structure
on the projection of the points in the subtree onto the first (d− 1) dimensions.

A query range [x1 : x2]×· · ·× [x2d−1 : x2d] is answered analogous to the one-
dimensional approach, except that whenever the one-dimensional data structure
adds up the group sum stored in a node, we instead project the query range onto
the first d−1 dimensions, and ask the resulting query to the (d−1)-dimensional
data structure stored in that node. Since each queried (d − 1)-dimensional
data structure is implemented only on points with a d’th coordinate inside
[x2d−1 : x2d], this correctly computes the answer to the query range.

It is easily seen that the weight of a point is included in O(lgd n) stored
group sums, thus the update time of this data structure is tu = O(lgd n). The
query algorithm similarly adds up tq = O(lgd n) stored group sums. Finally,
we observe that this data structure has multiplicity 1 since the corresponding
matrix factorizations use only coefficients amongst {0, 1}. By contraposition of
Theorem 3.1 we thus conclude

Corollary 3.1. For any set P of n points in Rd, it holds that disc∞(P,Bd) =
O(lgd+1/2 n), where Bd denotes the set of all axis-aligned rectangles in Rd.

3.4.3 Range Reporting

As we saw in Section 3.4.1, proving lower bounds for oblivious data structures
boils down to arguing when an incidence matrix cannot be factored into two
sparse matrices Q and D. The key insight in this section is that for sparse
matrices Q and D, with bounded coefficients, the product QD must have small
singular values (i.e. (QD)TQD has small eigenvalues). Thus if A has large
singular values, Q and D cannot be sparse if QD = A. This is precisely the
intuition behind our proof of Theorem 3.3. We have restated the theorem here
for convenience:

79

Restatement of Theorem 3.3. Let P be a set of n input objects to a range
searching problem, R a set of m query ranges over P and A the corresponding
incidence matrix. Then for every 3 ≤ k ≤ n, any oblivious data structure for
the range searching problem must have tqtu = Ω(λkk

2/mn∆4) on the input set
P . Here λk denotes the k’th largest eigenvalue of ATA, tq the worst case query
time of the data structure, tu the worst case update time and ∆ the multiplicity
of the data structure.

Proof of Theorem 3.3. Let P , R and A be as in Theorem 3.3. Further-
more, let QD = A be the factorization of A provided by an oblivious data
structure, where Q is an m × S matrix such that each row has at most tq
non-zero entries and where D is an S × n matrix where each column has at
most tu non-zero entries. Finally, let ∆ be the multiplicity of the oblivious
data structure, i.e. any coefficient in Q and D is bounded in absolute value by
∆. Now let U(D)Σ(D)V (D)T be the singular value decomposition of D. Here
U(D) and V (D) are unitary matrices and Σ(D) is a diagonal matrix where the
diagonal entries equals the singular values of D, i.e. if we let γi(D

TD) ≥ 0
denote the i’th largest eigenvalue of the n × n positive semi-definite matrix
DTD, then the i’th diagonal entry of Σ(D) is σi,i(D) =

√
γi(DTD). Simi-

larly, let U(Q)Σ(Q)V (Q)T be the singular value decomposition of Q. Letting
γi(Q

TQ) ≥ 0 denote the i’th largest eigenvalue of QTQ, we have that the i’th
diagonal entry of Σ(Q) is σi,i(Q) =

√
γi(QTQ). Letting di,j denote entry (i, j)

in D, it now follows from DTD being square and real that∑
i

γi(D
TD) = tr(DTD) =

∑
i,j

d2
i,j ≤ tu∆2n,

where we used that the coefficients of D are bounded in absolute value by ∆.
Similarly, we have

∑
i γi(Q

TQ) ≤ tq∆2m. Finally since γi(D
TD) and γi(Q

TQ)
are non-negative for all i, we conclude that γbk/2c(D

TD) = O(tu∆2n/k) and

γdk/2e−1(QTQ) = O(tq∆
2m/k).

Our last step is to bound from above the eigenvalues of (QD)TQD. Letting
γk((QD)TQD) denote the k’th largest eigenvalue of (QD)TQD, we get from
the Courant-Fischer characterization of eigenvalues that

γk((QD)TQD) = min
S:dim(S)≥n−k+1

max
x∈S:‖x‖2=1

‖QDx‖22,

i.e. γk((QD)TQD) equals the minimum over all subspaces S of Rn of dimen-
sion at least n − k + 1, of the maximum square of the stretch of a unit length
vector x when multiplying with QD. We thus aim to find a subspace S of
dimension at least n − k + 1, such that every unit vector in S is scaled as
little as possible when multiplied with QD. We choose the subspace S con-
sisting of all vectors x, for which 〈vi(D), x〉 = 0 for i = 1, . . . , bk/2c and
〈vi(Q), Dx〉 = 0 for i = 1, . . . , dk/2e − 1. Here vi(D) denotes the i’th col-
umn vector of V (D) and vi(Q) denotes the i’th column vector of V (Q). Clearly
dim(S) ≥ n − k + 1. Now let x ∈ S be a unit length vector and consider first
the product Dx = U(D)Σ(D)V (D)Tx. Since x is orthogonal to the first bk/2c

80

row vectors in V (D)T and since σi,i(D) = O(
√
tun/k∆) for i ≥ bk/2c, we

get that ‖Σ(D)V (D)Tx‖2 = O(
√
tun/k∆). Since U(D) is unitary, this implies

‖Dx‖2 = O(
√
tun/k∆). Finally, since Dx is orthogonal to the first dk/2e − 1

row vectors of V (Q)T , we conclude ‖QDx‖22 = O(tqtu∆4mn/k2). We have thus
shown that γk((QD)TQD) = O(tqtu∆4mn/k2). But ATA = (QD)TQD and
hence γk((QD)TQD) = λk, i.e. tqtu = Ω(λkk

2/mn∆4). This completes the
proof of Theorem 3.3.

With Theorem 3.3 established, we can now prove Theorem 3.2 which con-
nects range reporting and group model range searching. The theorem is restated
here:

Restatement of Theorem 3.2. Let P be a set of n input objects to a range
searching problem and R a set of m ≤ n query ranges over P . If R is strongly
(t, 2)-favorable, then any oblivious data structure for the range searching prob-
lem must have tqtu = Ω(m2t/n2∆4) on the input set P . Here tq denotes the
worst case query time, tu the worst case update time and ∆ the multiplicity
of the data structure. For m = Θ(n) and ∆ = O(1), this bound simplifies to
tqtu = Ω(t).

Proof of Theorem 3.2. Let P and R be as in Theorem 3.2, i.e. R is a
strongly (t, 2)-favorable set of queries. Furthermore, let A be the m×n incidence
matrix corresponding to P and R, where m ≤ n. Our proof is based on lower
bounding the eigenvalues of M = ATA, and then applying Theorem 3.3. We
lower bound these eigenvalues using the following theorem of Chazelle and Lvov:

Theorem 3.6 (Chazelle and Lvov [39]). Let A be an m× n real matrix where
m ≤ n and let M = ATA. Then M has at least

n

16 tr(M2)n/9 tr(M)2 − 7/9

eigenvalues that are greater than or equal to tr(M)/4n.

To use Theorem 3.6, we bound tr(M) and tr(M2). The first is easily seen
to be tr(M) =

∑
R∈R |R| = Ω(mt) and the latter is bounded by

tr(M2) =
∑
R1∈R

∑
R2∈R

|R1 ∩R2|2

=
∑
R∈R
|R|2 +

∑
R1∈R

∑
R2∈R|R1 6=R2

|R1 ∩R2|2

= O(mt2) +∑
p∈P

∑
R1∈R|p∈R1

∑
R2∈R|p∈R2∧R1 6=R2

|R1 ∩R2|

= O(mt2) +
∑
p∈P

∑
R1∈R|p∈R1

∑
R2∈R|p∈R2∧R1 6=R2

O(1)

= O(mt2) +
∑
p∈P

O((mt/n)2)

= O(mt2).

81

Plugging these values into Theorem 3.6, we conclude that M = ATA has
Ω(nm2t2/mt2n) = Ω(m) eigenvalues greater than Ω(mt/n). Finally invoking
Theorem 3.3, we get that tqtu = Ω(mt/n ·m2/mn∆4) = Ω(m2t/n2∆4), which
completes the proof of Theorem 3.2.

Implications. As already mentioned in Section 3.2, we obtain a number of
lower bounds from Theorem 3.2 by reusing favorable query sets constructed for
proving pointer machine range reporting lower bounds. Thus in the following,
we only mention our proof of the lower bound for orthogonal range reporting
in non-constant dimension d = Ω(lg n/ lg lg n).

For non-constant dimensions d = Ω(lg n/ lg lgn), Chazelle and Lvov [39]
showed one can construct a set of n points and n query rectangles such that
the corresponding incidence matrix A satisfies tr(ATA) = n1+Ω(1/ lg lgn) and
tr((ATA)2) = O(tr(ATA)2/n). From Theorem 3.6, this means that ATA has
Ω(n) eigenvalues that are greater than nΩ(1/ lg lgn). The result follows immedi-
ately from Theorem 3.3.

3.5 Concluding Remarks

In this chapter we established three powerful theorems relating the update and
query time of dynamic range searching data structures in the group model to
combinatorial discrepancy, eigenvalues and range reporting, respectively. Our
result immediately implied a whole range of data structure lower bounds, and
also an improved upper bound for the discrepancy of axis-aligned rectangles in
dimensions d ≥ 3.

We believe our results represents a big leap in the right direction, but there
are still a number of open problems to consider. Most importantly, we would
like to remove the dependence on the multiplicity of data structures. Proving
lower bounds independent of the multiplicity seems closely related to matrix
rigidity and depth-2 linear circuits computing linear operators, and thus might
turn out to be very challenging. A breakthrough in this direction might also help
towards establishing higher lower bounds for static range searching problems.
On the other hand, it would also be interesting to find an example of a range
searching problem for which high multiplicity helps. If possible, this seems to
involve finding a completely new approach to designing data structures, and
might inspire improved solutions to many natural problems.

Extending the achieved lower bounds to weakly oblivious data structures
would also be a major result, especially if this could be done independent of
the multiplicity. Previous such lower bounds could even be extended to the cell
probe model.

The lower bounds obtained from our technique are all for the product of the
update time and query time. Finding a technique that can prove different types
of tradeoffs between the two would also be extremely interesting. In particular,
such a technique might be used to prove a lower bound for halfspace range
searching that (essentially) matches the entire tradeoff curve of [61].

Finally, we mention that there is some hope of removing the lgm factor in

82

the `∞-discrepancy results. More specifically, the famous Komlós conjecture
states that any sequence of unit length vectors can be assigned signs such that
the signed sum of the vectors have all coordinates bounded by a constant.
Except for the linear transformation with Q, this is exactly the property we
used to derive our `∞-discrepancy bounds. Thus it seems likely that a proof
of Komlós’ conjecture could be extended to our case and thus remove the lgm
factor.

83

84

Chapter 4

The Pointer Machine and the I/O-Model

In this chapter, we first present a new technique for proving lower bounds for
range reporting problems in the pointer machine and the I/O-model. First
recall from Section 1.5 that in the pointer machine model, a data structure for
a range reporting problem is a directed graph, with one node designated as the
root. Each node of the graph stores either an input object or some auxiliary
data, plus a constant number of pointers. When answering queries, the data
structure explores a subset of the nodes in the graph by following pointers.
The exploration always starts at the root node, and at each step, one edge
leaving the currently explored nodes may be chosen and the node pointed to
is retrieved. We require that every input object reported by a query must be
stored in one of the explored nodes. The space is defined as the size of the
graph and the query time is the number of nodes explored when answering a
query.

The bounded degree of the nodes in the graph and the indivisibility re-
quirement (input objects have to be stored in the nodes in “plain” form) are
the two crucial properties that allow us to prove high lower bounds. The lack of
random accesses effectively forces the objects reported by a query to be stored
close together, since otherwise the query time would be high. From the bounded
degree, we know that each node of the graph is close to only a few other nodes
and hence input objects must be replicated many times if they can be reported
by many queries with almost disjoint output sets. This intuition is at the heart
of our new technique.

We apply our new technique to obtain tight lower bounds for the rectangle
stabbing problem, i.e. preprocess a set of d-dimensional axis-aligned rectangles
such that the rectangles containing a query point can be reported efficiently.
By a simple reduction, this gives the lower bounds mentioned in Section 1.5 and
Section 1.6 for orthogonal range reporting. Finally, we present another lower
bound for orthogonal range reporting in the I/O-model, using the indexability
framework of Hellerstein et al. [47].

85

4.1 Lower Bounds for Rectangle Stabbing

In the following, we introduce our new technique for proving lower bounds in the
pointer machine and I/O-model and apply it to the rectangle stabbing problem.
We start by introducing the technique in the pointer machine setting and later
show how to extend the results to the I/O-model. We have stated the main
lower bound proved in this section here:

Theorem 4.1. For d ≥ 2, any pointer machine data structure for rectangle
stabbing in d-dimensional space, having space usage S and query time tq + tkk,
must satisfy tq = Ω(lg n · lgd−2

h n) where h = max{S/n, 2tk}. Here k denotes the
size of the output.

This lower bound is known to be tight for S ≥ n lgd−2+ε n for any con-
stant ε > 0. As mentioned earlier, we also obtain lower bounds for orthogonal
range reporting using a reduction from rectangle stabbing. The reduction is as
follows: Given a set of n input axis-aligned rectangles in d-dimensional space,
we can solve the d-dimensional rectangle stabbing problem using a data struc-
ture for 2d-dimensional orthogonal range reporting. This is done by mapping
each input rectangle [x1,1 : x1,2]× · · · × [xd,1 : xd,2] to the 2d-dimensional point
(x1,1, x1,2, x2,1, . . . , xd,2). To answer a d-dimensional stabbing query with the
query point (y1, . . . , yd), we ask the 2d-dimensional orthogonal range reporting
query (−∞ : y1] × [y1 : ∞) × · · · × [yd : ∞). Correctness follows immediately
and we conclude:

Corollary 4.1. For d ≥ 4, any pointer machine data structure for orthogonal
range reporting in d-dimensional space, having space usage S and query time

tq + tkk, must satisfy tq = Ω(lg n · lgbd/2c−2
h n) where h = max{S/n, 2tk}. Here

k denotes the size of the output.

4.1.1 Pointer Machine Lower Bound

Consider a pointer machine data structure D that answers rectangle stabbing
queries in d-dimensional space. Let S be the space used by D. Furthermore,
assume D answers every query in tq + tkk time in which k is the output size.
Define h = max{S/n, 24tk}. Our goal is to prove that tq = Ω(lg n · lgd−2

h n).

We build an input set, R, of rectangles that is in fact a simplification of
the ones used before [5, 34, 35]. Consider a d-dimensional cube C with side
length m, m >

√
n, in which m is a parameter to be determined later. Let

r = crh
3, in which cr is a large enough constant, and let Logrm = blgrmc − 1.

For every choice of d− 1 indices, 1 ≤ i1, · · · , id−1 ≤ Logrm, we divide the j-th
dimension of C into rij equal length pieces for 1 ≤ j ≤ d − 1, and the d-th
dimension of C into bm/ri1+···+id−1c equal length pieces. The number of such
choices is k = Logd−1

r m. Observe that for each such choice of i1, . . . , id−1, we
create between m/2 and m rectangles and thus Θ(mk) rectangles are created in
total. Furthermore, each rectangle has a volume between md−1 and 2md−1. We
pick m such that this number equals n, thus n = Θ(mk). We let R denote the
set of input rectangles. The crucial property of this input set is the following.

86

Observation 4.1. The volume of the intersection of any two rectangles in R
is at most 2md−1/r.

For the lower bound proof, consider a single query point q chosen uniformly
at random inside C. Note that the output size of q is k. The rest of this
section is devoted to proving that with positive probability answering q needs
Ω(k lg h) = Ω(Logd−1

r m · lg h) = Ω(lg n · lgd−2
h n) time.

Let G be the directed graph obtained by implementing D on R. By increas-
ing the space and query time by a constant factor, we can ensure that each node
of G has out-degree at most 2 instead of some larger constant. We thus make
this assumption.

For a node u ∈ G, let In(u) denote the set of nodes in G that have a directed
path of size at most lg h to u. Similarly, define Out(u) to be the set nodes in G
that can be reached from u using a path of size at most lg h. For a rectangle R,
let VR be the set of nodes of G that store R. We define In(R) =

∑
v∈VR In(v)

and Out(R) =
∑

v∈VR Out(v). We say R is popular if In(R) > ch2.

Lemma 4.1. There are at most n/c popular rectangles.

Proof. As each node in G has at most two out edges, for every u ∈ G, the size
of Out(u) is at most 2lg h = h. Also, if v ∈ Out(u), then u ∈ In(v) and vice
versa. Thus,∑

R∈Q
|In(R)| =

∑
R∈Q
|Out(R)| =

∑
v∈G
|In(v)| =

∑
u∈G
|Out(u)| ≤ Sh ≤ nh2.

Here we used that S ≤ nh by our definition of h. This bound implies that the
number of rectangles R with In(R) > ch2 is at most n/c. ut

Lemma 4.2. With probability at least 3/5, q is enclosed by at most k/4 rect-
angles that are popular, if c is to be a chosen sufficiently large constant.

Proof. By Lemma 4.1, the number of popular rectangles is at most n/c. As each
rectangle has volume at most 2md−1, the total volume of popular rectangles is
at most 2md−1n/c. Let A be the region of C that contains all the points covered
by more than k/4 popular rectangles. We have,

Vol(A)k/4 ≤ 2md−1n/c = Θ(mdk/c)

which implies Vol(A) = O(md/c) < 2md/5 if c is large enough. Thus, with
probability at least 3/5, q will not be picked in A. ut

Let S′ be the subset of rectangles that are not popular and let n′ = |S′|.
We say two rectangles R1, R2 ∈ S′ are close, if there exists a node u ∈ G such
that from u we can reach a node that stores R1 and a node that stores R2 with
directed paths of size at most lg h each.

Lemma 4.3. A rectangle R ∈ S′ can be close to at most ch3 other rectangles
in S′.

87

Proof. If a rectangle R is close to a rectangle R′, then there exists a node
u ∈ In(R) such that R′ is stored in a node in Out(u). For every u ∈ G we
have Out(u) ≤ h, and |In(R)| ≤ ch2. Thus, R can be close to ch3 different
rectangles. ut

Consider a rectangle R ∈ S′. Let RR be the subset of rectangles in R that
are close to R. We call ∪R′∈RR(R∩R′) the close region of R and denote it with
CR.

Lemma 4.4. With probability at least 1/5, answering q needs k/3 · lg h time.

Proof. Consider a rectangleR ∈ S′ and the setRR defined above. By Lemma 4.3,
|RR| ≤ ch3. By Observation 4.1, for every R′ ∈ RR, Vol(R ∩ R′) ≤ 2md−1/r
and thus

Vol(CR) ≤
∑

R′∈RR

Vol(R ∩R′) ≤ 2ch3md−1/r = 2cmd−1/cr.

As there are at most n rectangles in S′, the sum of the volumes of the close
regions of all the rectangles in S′ is at most n · 2cmd−1/cr = Θ(ckmd/cr).
Consider the region B of all the points p such that p is inside the close region
of at least k/4 rectangles of S′. We have,

Vol(B)k/4 ≤
∑
R∈S′

Vol(CR) ≤ Θ(ckmd/cr)

which means Vol(B) = O(cmd/cr). If we choose cr large enough, this volume
is less than 2md/5, which means with probability at least 3/5, the query q will
not be inside B. Combined with Lemma 4.2, this gives the following: with
probability at least 1/5, q will be inside at least 3k/4 rectangles that are in
S′ (by Lemma 4.2) and it will also be inside the close region of at most k/4
rectangles. Consider the event when this happens and let Hq be the subgraph
of G that is explored by the query procedure while answering q. Assume q
needs to output rectangles R1, · · · , Rk′ from S′. We have k′ ≥ 3k/4. Let vi be
a node in Hq that stores Ri, 1 ≤ i ≤ k′. Also, let Wi be the set of nodes in Hq

that are reachable by traversing up to lg h edges from vi, where the direction
of edges have been reversed. If two sets Wi and Wj , 1 ≤ i < j ≤ k′, share a
common node, it means that q is inside the close region of both Ri and Rj .
However, we know that q is inside the close region of at most k/4 rectangles.
This means that there is a subset of at least 3k/4− k/4 = k/2 sets Wi that are
pairwise disjoint. Furthermore, from each vi, there is a path from vi to the root
node of the data structure using only reversed edges. Thus amongst the k/2
disjoint sets, at most one such set can have size less than lg h (since the sets are
disjoint, only one contains the root and hence can reach the root in less than
lg h steps). It follows that the size of Hq is at least (k/2−1)·lg h ≥ k/3·lg h. ut

Since any query reports k rectangles, it must hold that tq + tkk ≥ k/3 · lg h.
But tkk ≤ k/4 · lg h by definition of h. Hence tq = Ω(k lg h) = Ω(lg n · lgd−2

h n).

Defining h′ = max{S/n, 2tk} we get that tq = Ω(lg n·lgd−2
h n) = Ω(lg n·lgd−2

h′ n).
This completes the proof of Theorem 4.1.

88

4.1.2 Extension to the I/O-Model

In the following, we extend the proof technique from the previous section to also
obtain lower bounds in the I/O-model. Recall that in the I/O-model, a data
structure stores input objects in blocks of B elements and we measure the query
cost in the number of blocks that must be read to retrieve all elements inside a
query range. As in the pointer machine model, we again have a notion of two
input objects being stored close to each other, namely two input objects are
close, if they are stored in the same disk block. Thus we have both of the two
key ingredients from the pointer machine lower bound proof: indivisibility and
closeness. It should not come as a surprise that our proof follows the pointer
machine proof almost uneventfully.

Assume an I/O-model data structure exists with query time tq + tkk/B and
space S words (S/B blocks). As in Section 4.1.1, define h = max{S/n, 32tk}
and r = crh

2 for a sufficiently large constant cr (note the dependence on tk is ex-
ponentially better than in the pointer machine setting). Also define α = B/8tk.
We assume throughout the proof that

√
n ≥ B, which is true when making the

standard tall-cache assumption (n ≥ M ≥ B2). Our hard input instance is a
modified version of the input instance used for the pointer machine lower bound
in Section 4.1.1. Again we consider the d-dimensional cube C with side length
m,m >

√
n/α ≥ n1/4, in which m is a parameter to be determined later. We let

Logrm = blgrmc−1. For every choice of d−1 indices, 1 ≤ i1, · · · , id−1 ≤ Logrm,
we divide the j-th dimension of C into rij equal length pieces for 1 ≤ j ≤ d− 1,
and the d-th dimension of C into bm/ri1+···+id−1c equal length pieces. The num-
ber of such choices is k = Logd−1

r m. With each such choice, we create between
m/2 and m rectangles and thus Θ(mk) rectangles are created in total. We pick
m such that this number equals n/α, thus n = Θ(mkα). Also, note that the
volume of each rectangle is between md−1 and 2md−1. We let I denote the set of
constructed rectangles. We call these rectangles the meta-rectangles. For each
meta-rectangle M ∈ I, we make α copies of that meta-rectangle and add the
copies to a set of rectangles R. The set R constitutes the hard input instance
for the I/O-model. Note that |R| = n. The input rectangles have the following
property (the equivalent of Observation 4.1):

Observation 4.2. The volume of the intersection of any two rectangles in R,
that are not copies of the same meta-rectangle, is at most 2md−1/r.

Again we consider a single query point q chosen uniformly at random inside
C. The output size of q is kα. Now consider the set of blocks B stored by a
data structure supporting rectangle stabbing queries on R. Each block b ∈ B
stores B input rectangles from R. We note that |B| ≤ S/B.

We define a pair of rectangles (R1, R2) ∈ R×R to be a close pair for block
b ∈ B, if both R1 and R2 are stored in b, and at the same time, R1 and R2

are not copies of the same meta-rectangle. We also define the close region of
a close pair (R1, R2) for a block b, as the region R1 ∩ R2. By Observation 4.2,
the close region of a close pair has volume at most 2md−1/r.

We now prove:

Lemma 4.5. With probability at least 1/2, answering q needs at least k/4 I/Os.

89

Proof. For each block b ∈ B, let Cb be the set of all close pairs for block b.
Since each disk block contributes at most B2 close pairs, we have

∑
b∈B |Cb| ≤

S/B ·B2 = SB. Combined with Observation 4.2, we get that the total volume
of all close regions is bounded by 2SBmd−1/r. Now consider the region A, of
all the points p, such that p is inside the close region of at least Bαk/h close
pairs (possibly counting the same pair of rectangles multiple times if they are
stored together in multiple blocks). We have

Vol(A)Bαk/h ≤
∑
b∈B

∑
(R1,R2)∈Cb

Vol(R1 ∩R2) ≤ 2SBmd−1/r.

which means that

Vol(A) = O(SBmd−1h/Bαkr) = O(nh2md−1/αkr)

= O(h2md/r) = O(md/cr).

If we choose cr large enough, the volume is less than md/2, which means that
with probability 1/2, the query q will not be inside A.

Consider the event when this happens and let Bq be the subset of blocks
read by the query algorithm when answering the query q. Also let Rq =
{R1,1, . . . , R1,α, . . . , Rk,α} be the set of rectangles containing the query q, where
all Ri,j for a fixed i ∈ {1, . . . , k} are copies of the same meta-rectangle. There
is at least one block in Bq storing each Ri,j . We also have that q ∈ Ri,j ∩Ri′,j′
for any two such rectangles, hence if (Ri,j , Ri′,j′) is a close pair for some block,
then q is inside the close region of that pair.

We now bound the total number of different rectangles from Rq that are
stored in Bq. For this, observe that if a block b stores β ≥ 2α different rectangles
from Rq, then there are at least β(β−α)/2 ≥ β2/4 close pairs for block b, where
q is inside the close region of all those pairs. Now let b1, . . . , b|Bq| be the blocks
in Bq and let βi denote the number of different rectangles from Rq that are
stored in bi. Since q is not in A, we have∑

i:βi≥2α

β2
i /4 ≤ Bkα/h.

This implies ∑
i:βi≥2α

βi ≤ 2
√
|Bq|Bkα/h.

We can finally bound the total number of different rectangles from Rq that are
stored in Bq as |Bq|2α + 2

√
|Bq|Bα/h. But all rectangles from Rq must be

reported and |Rq| = kα, hence we must have

|Bq|2α+ 2
√
|Bq|Bkα/h ≥ kα⇒

|Bq|+
√
|Bq|Bk/hα ≥ k/2.

For this to be satisfied, we must have either |Bq| ≥ k/4 or
√
|Bq|Bk/hα ≥ k/4,

which implies

|Bq| ≥ min{k/4, khα/16B} ≥ min{k/4, 2ktkα/B} ≥ k/4,

90

which completes the proof. ut

We are finally ready to derive the lower bound. Since the query time is
tq+tkkα/B = tq+k/8, we have |Bq| ≤ tq+k/8. Combining this with Lemma 4.5,
we get tq ≥ k/8 = Ω(lgd−1

r m) = Ω(lgd−1
h (n/B)). Since n ≥ B2 under the tall-

cache assumption, the lower bound simplifies to tq = Ω(lgd−1
h n).

4.2 Indexability Lower Bound

In this section we use the indexability theory of Hellerstein et al. [47] to prove a
space lower bound for orthogonal range reporting in the I/O-model. Our lower
bound states that any data structure answering queries in tq+tkk/B I/Os must
use Ω(n(lg n/lg(tqtk))

d−1) space.

Recall from Section 1.6.1 that, in the indexability model [47], an indexing
problem is described by a workload W = (I,Q), where I is a set of input
elements and Q is a set of subsets of I; the elements of Q are called queries.
Given a workload W and a block size B, an indexing scheme S is defined on I
by a block assignment function, B, which is a set of B-sized subsets of I. We
think of all the elements in a set b ∈ B as being stored in one block.

Restatement of Theorem 1.2 (Refined Redundancy Theorem [15]). For a
workload W = (I,Q) where Q = {q1, q2, . . . , qm}, let (I,B) be an indexing
scheme for W with query cost (tq, tk) with tk ≤

√
B/8 such that for any 1 ≤

i, j ≤ m, i 6= j : |qi| ≥ Btq and |qi ∩ qj | ≤ B/(64t2k). Then the space of (I,B) is
at least 1

12

∑m
i=1 |qi|.

Consider a data structure for d-dimensional orthogonal range reporting with
tq + tkk/B query cost. The refined redundancy theorem states that if we can
construct a set of n points and m query rectangles q1, . . . , qm, such that any
rectangle contains at least Btq points and where the intersection of any pair of
rectangles contains at most B/(64t2k) points, then the amount of space needed
by any data structure for that input is Ω(

∑m
i=1 |qi|). The goal is thus to maxi-

mize the sum of the sizes of the queries.

In two-dimensions, the Ω(n lg n/ lg(tqtk)) space lower bound of Hellerstein
et al. [47] was obtained using a Fibonacci workload. However, generalizing the
Fibonacci workload to higher dimensions seems hard, and the previously best
known d-dimensional Ω(n(lgB/ lg(tqtk))

d−1) space lower bound instead utilizes
a simple point set consisting of an n1/d × · · · × n1/d grid. In the pointer ma-
chine, the Ω(n(lg n/ lg(tq))

d−1) space lower bound for d-dimensional orthogonal
range reporting was proved by Chazelle [34]. In 2-d, a fairly simple point set
(workload) was used to prove the bounds, whereas a much more complex point
set and a randomized argument was used in higher dimensions.

Here we generalize Chazelle’s planar point set to higher dimensions using
a deterministic construction. Such a deterministic generalization was given by
Chazelle as well, but for offline orthogonal range searching in the semi-group
model [35]. In fact, by modifying the parameters used in his proof, one can
prove the Ω(n(lg n/ lg(tqtk))

d−1) space lower bound we are after; however, the

91

lower bound will be valid only if B = (tqtk)
O(1), which is not an interesting

setting when e.g. tq = lgB n and tk = O(1). Relaxing this constraint seems to
require more substantial changes, e.g., changing the query or the point set. Here
we present an alternate but similar construction that achieves this. Our lower
bound holds for 2 ≤ B ≤

√
M ≤

√
n, i.e. the tall-cache assumption, which is a

much more reasonable assumption. Throughout the proof, we assume tq ≤ n1/4.
This is not an issue, since otherwise we only claim a linear space lower bound.

Point set I. Let a1 = 64tqt
2
k and aj = (

∏j−1
i=1 ai) + 1 for j = 2, . . . , d−1. It is

easily verified that a1, a2, . . . , ad−1 are relatively prime (for any ai and aj where
i 6= j, the greatest common divisor satisfies gcd(ai, aj) = 1). We define the
point set I := {(pa1(i), pa2(i), . . . , pad−1

(i), i) | i = 0, 1, . . . , N − 1}, where paj (i)

is obtained by first writing i in base aj , then removing all but the blgaj n
1
4d c

least significant digits, and finally reversing all the digits of the constructed
number (adding leading 0-digits first if the number has less than blgaj n

1
4d c

digits). We will use ←−−−−−−−−mk−1 . . .m0 to denote the reversal of mk−1 . . .m0, that is,
←−−−−−−−−mk−1 . . .m0 = m0 . . .mk−1. The following lemma is an easy consequence of the
definitions given above.

Lemma 4.6. Consider the i’th point pi = (pa1(i), . . . , pad−1
(i), i) in I. The k

most significant digits of the j’th coordinate paj (i) are precisely
←−−−−−−
i mod akj for

k ≤ blgaj n
1
4d c.

Let C be the rectangle in the positive quadrant anchored at the origin

(0, 0, . . . , 0) with dimensions a
blga1 n

1/4dc
1 × · · · × a

blgad−1
n1/4dc

d−1 × n; C contains
all points in I. Now consider a rectangle q inside C, and let [x1 : x2] be
the range it spans in the j’th dimension. If x1 = m0 . . .mk−100 . . . 0 and
x2 = m0 . . .mk−1(aj − 1)(aj − 1) . . . (aj − 1) in base aj for some m0 . . .mk−1, it
follows from Lemma 4.6 that each point pi with (i mod akj) =←−−−−−−−−m0 . . .mk−1 has
the j’th coordinate in the range [x1 : x2]. If this holds for each of the first d− 1
dimensions, we can determine whether a point is inside q simply by looking at
its d’th coordinate.

Query set Q. Consider the set R consisting of one rectangle with each of

the following dimensions ai11 × a
i2
2 × · · · × a

id−1

d−1 × Btqa
k1
1 a

k2
2 . . . a

kd−1

d−1 for ij ∈
{0, . . . , blgaj n

1
4d c} and kj = blgaj n

1
4d c − ij .

Lemma 4.7. Any r ∈ R placed at the origin in d-dimensional space is com-
pletely contained in C. Furthermore, |R| = Ω((lg n/ lg tqtk)

d−1)

Proof. The first d − 1 dimensions of r are obviously within C. Using the tall-
cache assumption we get that Btq ≤

√
ntq which by our assumption tq ≤ n1/4

is bounded by n3/4. Thus the size of the d’th dimension of r is bounded by

Btq ·
∏d−1
i=1 a

blgai n
1/4dc

i ≤ n
3
4 · (n

1
4d)d−1 ≤ n, and therefore r fits within C.

92

To see the bound on the size of R, simply count the number of combinations
of ij in the definition of R

|R| =
d−1∏
i=1

blgai n
1
4d c+ 1 ≥

d−1∏
i=1

lgai n
1
4d

≥
(

lgad−1
n

1
4d

)d−1
≥
(

lg
a2
d

1
n

1
4d

)d−1

=
(

lga1 n
1

4d·2d
)d−1

=

(
lga1 n

4d · 2d

)d−1

=

(
lga1 n

)d−1

(4d)d−1 · 2d2−d
= Ω

((
lga1 n

)d−1
)

= Ω

((
lgtqt2k

n
)d−1

)
= Ω

((
lg n

lg tqtk

)d−1
)
.

ut

Our query set Q consists of the rectangles obtained by tiling C with each
of the rectangles r ∈ R in turn, starting at the origin. Notice that we will use
only those queries that are completely contained in C.

Lemma 4.8. For any query q ∈ Q, |q| = Btq.

Proof. Let q be a rectangle inQ with dimensions ai11 ×· · ·×a
id−1

d−1×Btqa
k1
1 . . . a

kd−1

d−1 ,
and consider its j’th dimension (j < d). Since q was placed by tiling from the

origin, q will span the range Ij = [cja
ij
j : (cj + 1)a

ij
j) in the j’th dimension for

some cj = m0m1 . . .mkj−1, where cj is written in base aj . From Lemma 4.6
it then follows that the i’th point pi = (pa1(i), . . . , pd−1(i), i) of I is inside q if
and only if

∀ 1 ≤ j ≤ d− 1, (i mod a
kj
j) =←−cj (4.1)

and
cdBtqa

k1
1 . . . a

kd−1

d−1 ≤ i < (cd + 1)Btqa
k1
1 . . . a

kd−1

d−1 .

As a1, . . . , ad−1 are relatively prime, by the Chinese Remainder Theorem (see

below), there is a unique value of i modulo ak11 a
k2
2 . . . a

kd−1

d−1 that satisfies all of
the d− 1 requirements in (1). Since q ⊂ C, it follows from the last requirement

on i that q contains precisely (Btqa
k1
1 . . . a

kd−1

d−1)/(ak11 . . . a
kd−1

d−1) = Btq points. ut

Theorem 4.2 (Chinese Remainder Theorem). Let n = a1a2 . . . ak such that
a1, a2, . . . , ak ∈ Z \ {0} and gcd(ai, aj) = 1 for i 6= j. Then for the system of
congruences

X ≡ n1 (mod a1)

X ≡ n2 (mod a2)

...

X ≡ nk (mod ak)

there is precisely one remainder class X mod n that satisfies the system.

93

Having defined our workload W = (I,Q), we now bound the number of
points in the intersection of any two query rectangles in Q.

Lemma 4.9. For any two query rectangles q1, q2 ∈ Q, |q1 ∩ q2| ≤ B/(64t2k)
1.

Proof. If q1 and q2 have the same dimensions, we get from the tiling that
q1 ∩ q2 = ∅ and the lemma follows. Now consider the case where q1 and q2

differ in at least one dimension. Let ai11 × · · · × a
id−1

d−1 × Btqa
k(i,1)
1 . . . a

k(i,d−1)

d−1

be the dimensions of q1 and aj11 × · · · × a
jd−1

d−1 × Btqa
k(j,1)
1 . . . a

k(j,d−1)

d−1 be the
dimensions of q2. Let l < d be any dimension where il 6= jl. W.l.o.g we assume
that il > jl. Since aill is just a multiplicative of ajll , it follow from the tiling
that the intersection of q1 and q2 is either empty in the l’th dimension, or spans
the same range as q2. If the range is empty, our proof is done, so assume it
equals the range of q2. Now consider the rectangle J that spans exactly the
same ranges as q1, except in the l’th dimension, where it spans the same range
as q2. Clearly q1 ∩ q2 ⊂ J . Using the Chinese Remainder Theorem, we get that
J contains at most

Btqa
k(i,1)
1 . . . a

k(i,d−1)

d−1

a
k(i,1)
1 . . . a

k(j,l)
l . . . a

k(i,d−1)

d−1

≤ Btq
al
≤ B

64t2k

points. Since q1 ∩ q2 ⊂ J , we have that |q1 ∩ q2| ≤ |J | ≤ B/(64t2k) and the
lemma follows. ut

We now apply the redundancy theorem. By Lemma 4.8 and Lemma 4.9,
our workload W = (I,Q) fulfills the requirements of the Refined Redundancy
Theorem. Thus the space of any solution for this workload is at least 1

12

∑
|qi|.

Now consider any rectangle r ∈ R. By Lemma 4.7 we know that r will be
contained in C if placed at the origin. We also get from the definition of R, that
the d − 1 first dimensions of C are multiplicative of the d − 1 first dimensions
of r. It then follows from the tiling that every point in I will have its d − 1
first coordinates inside one query rectangle for every r ∈ R, and at least half
the points will have their d’th coordinate inside one query rectangle for every
r ∈ R. Therefore

∑
|qi| ≥ |R|n2 . Using Lemma 4.7 we thus conclude that the

space must be at least Ω(n(lg n/ lg tqtk)
d−1).

Theorem 4.3. There exist a workload (i.e., a set of points and a set of queries)
W for d-dimensional orthogonal range reporting such that any data structure
for W that can answer queries in tq + tkk/B I/Os needs Ω(n(lg n/ lg(tqtk))

d−1)
space.

4.3 Concluding Remarks

In this chapter, we first presented a new technique for proving lower bounds in
the pointer machine and I/O-model. The idea of using geometry and volume

1This property is one of the main difference between our point set and the one developed
by Chazelle; his construction ensures that |q1 ∩ q2| = O(1) which is a more strict condition
than ours that results in a weaker lower bound.

94

based arguments to prove lower bounds is quite novel, and as mentioned, it
has already led to improved simplex range reporting lower bounds [1]. Finding
further applications of our technique is still open.

Another important implication of our lower bounds is that the optimal query
time for orthogonal range reporting in the pointer machine has to increase
from O(lg n + k) to Ω((lg n/ lg lgn)2 + k) somewhere between four and six
dimensions (in 4-d, the best obtained query time was lg n

√
lg n/ lg lg n with

n lgO(1) n space). One intriguing open problem is of course to pinpoint the
dimension where the optimal query bound jumps. For the I/O-model, we find it
an extremely interesting consequence of our lower bounds that it is not possible

to obtain a query time of lg
O(1)
B n+O(k/B) in dimensions d ≥ 4.

All known upper bounds in the pointer machine and I/O-model have a query
time that increases by almost a lg n factor every dimension while the increase
in the lower bound happens only every other dimension. Another interesting
question is therefore which of the two is closer to the behavior of the optimal
query bound. In this context, it is worth noting that many other bounds in
computational geometry (such as the worst case convex hull complexity, and
halfspace range reporting query bounds) increase every other dimension.

Finally, we used the indexability framework of Hellerstein et al. [47] to
tighten the I/O-model lower bounds for orthogonal range reporting.

95

Bibliography

[1] P. Afshani. Improved pointer machine and I/O lower bounds for simplex
range reporting and related problems. In Proc. 28th ACM Symposium on
Computational Geometry, pages 339–346, 2012.

[2] P. Afshani, P. K. Agarwal, L. Arge, K. G. Larsen, and J. M. Phillips.
(approximate) uncertain skylines. In Proc. 14th International Conference
on Database Theory, pages 186–196, 2011.

[3] P. Afshani, M. Agrawal, B. Doerr, K. Mehlhorn, K. G. Larsen, and
C. Winzen. The query complexity of finding a hidden permutation.
Manuscript.

[4] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal range reporting in three
and higher dimensions. In Proc. 50th IEEE Symposium on Foundations of
Computer Science, pages 149–158, 2009.

[5] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal range reporting: Query
lower bounds, optimal structures in 3d, and higher dimensional improve-
ments. In Proc. 26th ACM Symposium on Computational Geometry, pages
240–246, 2010.

[6] P. Afshani, L. Arge, and K. G. Larsen. Higher-dimensional orthogonal
range reporting and rectangle stabbing in the pointer machine model. In
Proc. 28th ACM Symposium on Computational Geometry, pages 323–332,
2012.

[7] P. Afshani and T. M. Chan. Optimal halfspace range reporting in three
dimensions. In Proc. 20th ACM/SIAM Symposium on Discrete Algorithms,
pages 180–186, 2009.

[8] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and
related problems. Communications of the ACM, 31:1116–1127, 1988.

[9] M. Ajtai. A lower bound for finding predecessors in yao’s cell probe model.
Combinatorica, 8(3):235–247, 1988.

[10] R. Alexander. Geometric methods in the study of irregularities of distri-
bution. Combinatorica, 10(2):115–136, 1990.

97

[11] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In
Proc. 39th IEEE Symposium on Foundations of Computer Science, pages
534–544, 1998.

[12] A. Andoni, P. Indyk, and M. Pǎtraşcu. On the optimality of the dimension-
ality reduction method. In Proc. 47th IEEE Symposium on Foundations
of Computer Science, pages 449–458, 2006.

[13] L. Arge and K. G. Larsen. I/O-efficient spatial data structures for range
queries. SIGSPATIAL Special, 4(2):2–7, July 2012.

[14] L. Arge, K. G. Larsen, T. Mølhave, and F. van Walderveen. Cleaning
massive sonar point clouds. In Proc. 18th ACM SIGSPATIAL Interna-
tional Symposium on Advances in Geographic Information Systems, pages
152–161, 2010.

[15] L. Arge, V. Samoladas, and K. Yi. Optimal external-memory planar point
enclosure. In Proc. 12th European Symposium on Algorithms, pages 40–52,
2004.

[16] W. Banaszczyk. Balancing vectors and gaussian measures of n-dimensional
convex bodies. Random Structures & Algorithms, 12:351–360, July 1998.

[17] N. Bansal. Constructive algorithms for discrepancy minimization. In Proc.
51st IEEE Symposium on Foundations of Computer Science, pages 3–10,
2010.

[18] O. Barkol and Y. Rabani. Tighter bounds for nearest neighbor search and
related problems in the cell probe model. In Proc. 32nd ACM Symposium
on Theory of Computation, pages 388–396, 2000.

[19] P. Beame and F. E. Fich. Optimal bounds for the predecessor problem
and related problems. Journal of Computer and System Sciences, 65:38–
72, August 2002.

[20] J. Beck. Balanced two-colorings of finite sets in the square I. Combinator-
ica, 1(4):327–335, 1981.

[21] J. Beck. On irregularities of point sets in the unit square. In Combinatorics.
Proc. 7th Hungarian colloquium, pages 63–74, 1988.

[22] J. Beck and T. Fiala. Integer-making theorems. Discrete Applied Mathe-
matics, 3:1–8, February 1981.

[23] D. Bednarchak and M. Helm. A note on the Beck-Fiala theorem. Combi-
natorica, 17(1):147–149, 1997.

[24] J. L. Bentley. Multidimensional divide-and-conquer. Communications of
the ACM, 23(4):214–229, 1980.

[25] D. Bilyk, M. T. Lacey, and A. Vagharshakyan. On the small ball inequality
in all dimensions. Journal of Functional Analysis, 254:2470–2502, May
2008.

98

[26] K. Bringmann and K. G. Larsen. Succinct sampling from discrete distri-
butions. In Proc. 45th ACM Symposium on Theory of Computation, 2013.
To appear.

[27] G. S. Brodal and K. G. Larsen. Optimal planar orthogonal skyline counting
queries. Manuscript.

[28] J. Brody and K. G. Larsen. Adapt or die: Polynomial lower bounds for
non-adaptive dynamic data structures. Manuscript.

[29] M. E. Caspersen, K. D. Larsen, and J. Bennedsen. Mental models and
programming aptitude. In Proc. 12th SIGCSE Conference on Innovation
and Technology in Computer Science Education, pages 206–210, 2007.

[30] T. M. Chan. Optimal partition trees. In Proc. 26th ACM Symposium on
Computational Geometry, pages 1–10, 2010.

[31] T. M. Chan, S. Durocher, K. G. Larsen, J. Morrison, and B. T. Wilkinson.
Linear-space data structures for range mode query in arrays. In Proc. 29th
Symposium on Theoretical Aspects of Computer Science, pages 290–301,
2012.

[32] T. M. Chan, K. G. Larsen, and M. Pătraşcu. Orthogonal range searching
on the RAM, revisited. In Proc. 27th ACM Symposium on Computational
Geometry, pages 1–10, 2011.

[33] A. Chattopadhyay, J. Edmonds, F. Ellen, and T. Pitassi. A little advice
can be very helpful. In Proc. 23rd ACM/SIAM Symposium on Discrete
Algorithms, pages 615–625, 2012.

[34] B. Chazelle. Lower bounds for orthogonal range searching: I. the reporting
case. Journal of the ACM, 37(2):200–212, 1990.

[35] B. Chazelle. Lower bounds for off-line range searching. In Proc. 27th ACM
Symposium on Theory of Computation, pages 733–740, 1995.

[36] B. Chazelle. A spectral approach to lower bounds with applications to
geometric searching. SIAM Journal on Computing, 27:545–556, 1998.

[37] B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cam-
bridge University Press, 2000.

[38] B. Chazelle and D. Liu. Lower bounds for intersection searching and frac-
tional cascading in higher dimension. In Proc. 33rd ACM Symposium on
Theory of Computation, pages 322–329, 2001.

[39] B. Chazelle and A. Lvov. A trace bound for the hereditary discrepancy.
In Proc. 16th ACM Symposium on Computational Geometry, pages 64–69,
2000.

[40] B. Chazelle and B. Rosenberg. Simplex range reporting on a pointer ma-
chine. Computational Geometry: Theory and Applications, 5:237–247, Jan-
uary 1996.

99

[41] A. Fiat and A. Shamir. How to find a battleship. Networks, 19:361–371,
1989.

[42] M. Fredman and M. Saks. The cell probe complexity of dynamic data
structures. In Proc. 21st ACM Symposium on Theory of Computation,
pages 345–354, 1989.

[43] M. L. Fredman. The complexity of maintaining an array and computing
its partial sums. Journal of the ACM, 29:250–260, January 1982.

[44] A. Gál and P. B. Miltersen. The cell probe complexity of succinct data
structures. Theoretical Computer Science, 379:405–417, July 2007.

[45] A. Golynski. Cell probe lower bounds for succinct data structures. In
Proc. 20th ACM/SIAM Symposium on Discrete Algorithms, pages 625–
634, 2009.

[46] M. Greve, A. G. Jørgensen, K. D. Larsen, and J. Truelsen. Cell probe lower
bounds and approximations for range mode. In Proc. 37th International
Colloquium on Automata, Languages, and Programming, pages 605–616,
2010.

[47] J. M. Hellerstein, E. Koutsoupias, D. P. Miranker, C. H. Papadimitriou,
and V. Samoladas. On a model of indexability and its bounds for range
queries. Journal of the ACM, 49(1):35–55, 2002.

[48] J. Iacono and M. Pǎtraşcu. Using hashing to solve the dictionary problem
(in external memory). In Proc. 23rd ACM/SIAM Symposium on Discrete
Algorithms, pages 570–582, 2012.

[49] A. G. Jørgensen and K. G. Larsen. Range selection and median: Tight
cell probe lower bounds and adaptive data structures. In Proc. 22nd
ACM/SIAM Symposium on Discrete Algorithms, pages 805–813, 2011.

[50] K. S. Kedlaya and C. Umans. Fast modular composition in any character-
istic. In Proc. 49th IEEE Symposium on Foundations of Computer Science,
pages 146–155, 2008.

[51] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge Uni-
versity Press, 1997.

[52] K. G. Larsen. On range searching in the group model and combinatorial
discrepancy. In Proc. 52nd IEEE Symposium on Foundations of Computer
Science, pages 542–549, 2011.

[53] K. G. Larsen. The cell probe complexity of dynamic range counting. In
Proc. 44th ACM Symposium on Theory of Computation, pages 85–94, 2012.

[54] K. G. Larsen. Higher cell probe lower bounds for evaluating polynomials. In
Proc. 53rd IEEE Symposium on Foundations of Computer Science, pages
293–301, 2012.

100

[55] K. G. Larsen and H. L. Nguyen. Improved range searching lower bounds. In
Proc. 28th ACM Symposium on Computational Geometry, pages 171–178,
2012.

[56] K. G. Larsen and R. Pagh. I/O-efficient data structures for colored range
and prefix reporting. In Proc. 23rd ACM/SIAM Symposium on Discrete
Algorithms, pages 583–592, 2012.

[57] K. G. Larsen and F. van Walderveen. Near-optimal range reporting struc-
tures for categorical data. In Proc. 24th ACM/SIAM Symposium on Dis-
crete Algorithms, 2013. To appear.

[58] D. Liu. A strong lower bound for approximate nearest neighbor searching.
Information Processing Letters, 92:23–29, October 2004.

[59] J. Matoušek. Tight upper bounds for the discrepancy of half-spaces. Dis-
crete and Computational Geometry, 13:593–601, 1995.

[60] J. Matoušek. Geometric Discrepancy. Springer, 1999.

[61] J. Matoušek. Efficient partition trees. Discrete and Computational Geom-
etry, 8:315–334, 1992.

[62] J. Matoušek. Range searching with efficient hierarchical cuttings. In Proc.
8th ACM Symposium on Computational Geometry, pages 276–285, 1992.

[63] P. B. Miltersen. The bit probe complexity measure revisited. In Proc. 10th
Symposium on Theoretical Aspects of Computer Science, pages 662–671,
1993.

[64] P. B. Miltersen. Lower bounds for union-split-find related problems on
random access machines. In Proc. 26th ACM Symposium on Theory of
Computation, pages 625–634, 1994.

[65] P. B. Miltersen. On the cell probe complexity of polynomial evaluation.
Theoretical Computer Science, 143:167–174, May 1995.

[66] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data struc-
tures and asymmetric communication complexity. Journal of Computer
and System Sciences, 57(1):37–49, 1998.

[67] J. Pach and P. K. Agarwal. Combinatorial geometry. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 1995.

[68] R. Panigrahy, K. Talwar, and U. Wieder. Lower bounds on near neighbor
search via metric expansion. In Proc. 51st IEEE Symposium on Founda-
tions of Computer Science, pages 805–814, 2010.

[69] M. Pǎtraşcu. Lower bounds for 2-dimensional range counting. In Proc.
39th ACM Symposium on Theory of Computation, pages 40–46, 2007.

101

[70] M. Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. In Proc.
49th IEEE Symposium on Foundations of Computer Science, pages 434–
443, 2008.

[71] M. Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In
Proc. 42nd ACM Symposium on Theory of Computation, pages 603–610,
2010.

[72] M. Pǎtraşcu and E. D. Demaine. Logarithmic lower bounds in the cell-
probe model. SIAM Journal on Computing, 35:932–963, April 2006.

[73] M. Pǎtraşcu and M. Thorup. Time-space trade-offs for predecessor search.
In Proc. 38th ACM Symposium on Theory of Computation, pages 232–240,
2006.

[74] M. Pǎtraşcu and M. Thorup. Higher lower bounds for near-neighbor and
further rich problems. SIAM Journal on Computing, 39(2):730–741, 2010.

[75] M. Pǎtraşcu and M. Thorup. Don’t rush into a union: Take time to find
your roots. In Proc. 43rd ACM Symposium on Theory of Computation,
2011. To appear. See also arXiv:1102.1783.

[76] K. F. Roth. On irregularities of distribution. Mathematika, 7:73–79, 1954.

[77] K. F. Roth. Remark concerning integer sequences. Acta Arithmetica,
9:257–260, 1964.

[78] P. Sen and S. Venkatesh. Lower bounds for predecessor searching in the
cell probe model. Journal of Computer and System Sciences, 74:364–385,
May 2008.

[79] C. Sommer, E. Verbin, and W. Yu. Distance oracles for sparse graphs. In
Proc. 50th IEEE Symposium on Foundations of Computer Science, pages
703–712, 2009.

[80] A. Srinivasan. Improving the discrepancy bound for sparse matrices: better
approximations for sparse lattice approximation problems. In Proc. 8th
ACM/SIAM Symposium on Discrete Algorithms, pages 692–701, 1997.

[81] R. E. Tarjan. A class of algorithms that require nonlinear time to maintain
disjoint sets. Journal of Computer and System Sciences, 18:110–127, 1979.

[82] A. C. C. Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628,
1981.

[83] Y. Yin. Cell-probe proofs. ACM Transactions on Computation Theory,
2:1:1–1:17, November 2010.

102

	Abstract
	Acknowledgments
	Preface
	Introduction
	Models of Computation
	The Word-RAM
	The Cell Probe Model
	Previous Results
	Our Contributions

	The Group Model
	Previous Results
	Our Contributions

	The Pointer Machine Model
	Previous Results
	Our Contributions

	The I/O-Model
	Previous Results
	Our Contributions

	The Cell Probe Model
	Static Data Structures
	Techniques
	Static Polynomial Evaluation

	Dynamic Data Structures
	Techniques
	Dynamic Polynomial Evaluation
	Dynamic Weighted Orthogonal Range Counting

	Concluding Remarks

	The Group Model
	Connection to Combinatorial Discrepancy
	Connection to Range Reporting
	Preliminaries
	Establishing the Connections
	Combinatorial Discrepancy
	Implications for Combinatorial Discrepancy
	Range Reporting

	Concluding Remarks

	The Pointer Machine and the I/O-Model
	Lower Bounds for Rectangle Stabbing
	Pointer Machine Lower Bound
	Extension to the I/O-Model

	Indexability Lower Bound
	Concluding Remarks

	Bibliography

