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Abstract

Union volume estimation is a classical algorithmic problem. Given a family of objects
O1, . . . , On ⊆ Rd, we want to approximate the volume of their union. In the special case
where all objects are boxes (also known as hyperrectangles) this is known as Klee’s measure
problem. The state-of-the-art algorithm [Karp, Luby, Madras ’89] for union volume estimation
as well as Klee’s measure problem in constant dimension d computes a (1 + ε)-approximation
with constant success probability by using a total of O(n/ε2) queries of the form (i) ask for the
volume of Oi, (ii) sample a point uniformly at random from Oi, and (iii) query whether a given
point is contained in Oi.

First, we show that if one can only interact with the objects via the aforementioned three
queries, the query complexity of [Karp, Luby, Madras ’89] is indeed optimal, i.e., Ω(n/ε2)
queries are necessary. Our lower bound already holds for estimating the union of equiponderous
axis-aligned polygons in R2, and even if the algorithm is allowed to inspect the coordinates
of the points sampled from the polygons, and still holds when a containment query can ask
containment of an arbitrary (not necessarily sampled) point.

Second, guided by the insights of the lower bound, we provide a more efficient approximation
algorithm for Klee’s measure problem improving the O(n/ε2) time to O((n + 1

ε2 ) · log
O(d) n).

We achieve this improvement by exploiting the geometry of Klee’s measure problem in various
ways: (1) Since we have access to the boxes’ coordinates, we can split the boxes into classes
of boxes of similar shape. (2) Within each class, we show how to sample from the union of all
boxes, by using orthogonal range searching. And (3) we exploit that boxes of different classes
have small intersection, for most pairs of classes.
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1 Introduction

We revisit the classical problem of union volume estimation: given objects O1, . . . , On ⊆ Rd, we
want to estimate the volume of O1 ∪ . . . ∪ On.

1 This problem has several important applications
such as DNF Counting and Network Reliability; see the discussion in Section 1.2.

The state-of-the-art solution [19] works in a model where one has access to each input object
Oi by three types of queries: (i) determine the volume of the object, (ii) sample a point uniformly
at random from the object, and (iii) ask whether a point is contained in the object. Apart from
these types of queries, the model allows arbitrary computations. The complexity of algorithms is
thus measured by the number of queries to the input objects.

After Karp and Luby [19] introduced this model, Karp, Luby and Madras [20] showed that one
can (1+ ε)-approximate the volume of n objects in this model using O(n/ε2) queries with constant
success probability2, by an algorithm that uses O(n/ε2) additional time (and their solution only
asks containment queries of previously sampled points). This improved earlier related algorithms
by Karp and Luby [19] and Luby [23]. In the last 35 years this problem has seen no improvement of
the upper bound. Hence, it is natural to ask whether this classical upper bound is best possible and
whether one can give a matching lower bound. We resolve this question in this work by providing
a matching lower bound.

The union volume estimation problem was also studied very recently in the streaming setting [26,
24]. Here, the objects come in a stream O1, . . . , On, and when we are at position i in the stream,
we can only query object Oi. Assuming the objects are subsets of a universe Ω, this line of work
gives a streaming algorithm using O(polylog(|Ω|) log(1/δ)/ε2) queries per object (the same bound
holds for the space usage and update time additional to the queries). Summed over n boxes this
yields the same total running time as the general tool, apart from the polylog(|Ω|) factor. So,
interestingly, even in the streaming setting the same running time can be achieved.3

The perhaps most famous application of the algorithm by Karp, Luby, and Madras [20] is
Klee’s measure problem [22]: This is a fundamental problem in computational geometry in which
we are given n axis-aligned boxes in Rd and want to compute the volume of their union. Here
an axis-aligned box is any set of the form [a1, b1] × . . . × [ad, bd] ⊂ Rd, and the input consists of
the coordinates a1, b1, . . . , ad, bd of each box. A long line of research on this problem and various
special cases (e.g., for fixed dimensions or for cubes) [32, 27, 11, 2, 1, 12, 33, 3] lead to an exact
algorithm running in time O(nd/2+n log n) for constant d [13]. A conditional lower bound suggests
that any faster algorithm would require fast matrix multiplication techniques [12], but it is unclear
how to apply fast matrix multiplication to this problem. On the approximation side, note that
for a d-dimensional axis-aligned box, the three queries can be implemented in time O(d). Thus,
the union volume estimation algorithm can be applied, and it computes a (1 + ε)-approximation
of Klee’s measure problem in time O(nd/ε2), as has been observed in [4]. This direct application
of union volume estimation was the state of the art for approximate solutions for Klee’s measure
problem until our work. See Section 1.2 for interesting applications of Klee’s measure problem.

1Technically, the objects need to be measurable. In fact, a generalization of this problem allows O1, . . . , On to be
any measurable subsets of a measure space, and we want to estimate the measure of their union. However, throughout
this paper the objects will always be boxes in Rd (in our algorithm) or polygons in the plane (in our lower bound
construction), and thus these technicalities are irrelevant in our context.

2The success probability can be boosted to 1 − δ at the cost of a factor log(1/δ) in the number of queries and
running time.

3See also [31] for earlier work studying Klee’s measure problem in the streaming setting.
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1.1 Our Contribution

Our contribution is twofold.

Lower bound for union volume estimation

Given the state of the art, a natural question is to ask whether the query complexity of the general
union volume estimation algorithm of [20] can be further improved. Any such improvement would
speed up several important applications, cf. Section 1.2. On the other hand, any lower bound show-
ing that the algorithm of [20] is optimal also implies tightness of the known streaming algorithms
(up to logarithmic factors), as the streaming algorithms match the static running time bound.

We answer this question negatively in the aforementioned query model. Note that the model
allows unbounded computational power, examining the numerical coordinates of sampled points,
and asking containment queries on arbitrary points. In contrast, these powers are not exploited
by [20]. So our lower bound encompasses a much wider paradigm of algorithms. We show a query
complexity lower bound of Ω(n/ε2) for this model, which matches the upper bound of [20]:

Theorem 1. Any algorithm for computing a (1 + ε)-approximation to the cardinality of the union
of n objects via volume, sampling and containment queries with success probability at least 4/5 must
make Ω(ε−2n) queries.

We want to particularly highlight that our lower bound even holds for subsets of Z2, and for
equiponderous, axis-aligned polygons in the plane.

Upper bound for Klee’s measure problem

Our lower bound for union volume estimation implies that we can only achieve an improvement of
the current upper bound of Klee’s measure problem if we exploit the geometric structure of boxes.
Specifically, we exploit that we can split the input boxes into classes of similar boxes, since we have
access to the boxes’ coordinates, and we make use of orthogonal range searching. This allows us to
break the barrier that is possible within the query model and provide an algorithm that improves
Klee’s measure problem from time O(n/ε2) to O((n+ 1

ε2
) · polylog(n)) in constant dimension.

Theorem 2. There is an algorithm that runs in time O
(
log2d+1(n) · (n+ 1

ε2
)
)
and with probability

at least 0.9 computes a (1 + ε)-approximation for Klee’s measure problem.

The success probability can be boosted to any 1 − δ using standard techniques and incurring
an additional log(1/δ) factor in the running time. We also want to highlight that the core of our
algorithm is an efficient method to sample uniformly and independently with a given density from
the union of the input objects. While this allows us to (1+ε)-approximate the volume of the union,
we believe that our efficient sampling method is also of independent interest.

Throughout this work, for simplicity and readability we assume the dimension d to be constant.
We remark that our running time bounds hide factors of the form 2O(d).

1.2 Related Work

A major application of union volume estimation is DNF Counting, in which we are given a formula
in disjunctive normal form and want to count its number of satisfying assignments. Computing
the exact number of satisfying assignments is #P-complete, therefore it likely requires exponential
time. Approximating the number of satisfying assignments can be achieved by an easy application
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of union volume estimation, as described in [20]. Their algorithm remains the state of the art for
this problem to this day, see, e.g., [25]. In particular, a direct application of the union volume
estimation algorithm of [20] gives the best known complexity for approximate DNF Counting. This
has been extended to more general model counting [28, 9, 25], probabilistic databases [21, 15, 29],
and probabilistic queries on databases [6].

We also want to mention Network Reliability as another application for union volume estimation,
which was already discussed in [20]. Additionally, Karger’s famous paper on the problem [18] uses
the algorithm of [20] as a subroutine. However, the current state-of-the-art algorithms no longer
use union volume estimation as a tool [7].

Finally, we want to draw a connection to the following well-known query sampling bound.
Canetti, Even, and Goldreich [5] showed that approximating the mean of a random variable whose
codomain is the unit interval requires Ω(log(1/δ)/ε2) queries, thus obtaining tight bounds for the
sampling complexity of the mean estimation problem. Their bound generalises to Ω(log(1/δ)/(µε2))
on the number of queries needed to estimate the mean µ of a random variable in general. Before
our work it was thus natural to expect that the 1/ε2 dependence in the number of queries for union
volume estimation is optimal. However, whether the factor n is necessary, or the number of queries
could be improved to, say, O(n+ 1/ε2), was open to the best of our knowledge.

Klee’s measure problem is an important problem in computational geometry. One reason for its
importance is that techniques that have been developed for Klee’s measure problem can often be
adapted to solve various related problems, such as the depth problem (given a set of boxes, what
is the largest number of boxes that can be stabbed by a single point?) [13] or Hausdorff distance
under translation in L∞ [14]. Moreover, various other problems can be reduced to Klee’s measure
problem or to its related problems, e.g., deciding whether a set of boxes covers its boundary box
can be reduced to Klee’s Measure problem [13], the continuous k-Center problem on graphs (i.e.,
finding centers that can lie on the edges of a graph that cover the vertices of a graph) can also be
reduced to Klee’s measure problem [30], and finding the smallest hypercube containing at least k
points among n given points can be reduced to the depth problem [17, 10, 13]. In light of this, it
would be interesting to see whether our approximation techniques generalize to any of these related
problems.

1.3 Technical Overview

We now give an overview of our results, starting with our upper bound result for Klee’s measure
problem. We keep the statements on an intuitive level and hide many technical details. For the
formal statements and proofs, see Section 2 for the upper bound and Section 3 for the lower bound.

Upper bound for Klee’s measure problem

We first remark that due to our lower bound result, we know that we have to exploit the structure
of the input to obtain a running time of the form O((n + 1

ε2
) · polylog(n)). Following a common

algorithmic approach, we use sampling to approximate the volume of the union. Specifically, we
want to draw a sample S from the union of boxes with density p, such that in the end |S|/p is a
good estimate of the volume of the union of input boxes. We defer how to set p to the end of this
overview and first focus on the main difficulty, i.e., how to create a sample for a given p.

We start with a simple classification of the input boxes into classes of similar shape. Two boxes
are in the same class if the side lengths of both boxes in each dimension i ∈ [d] lie in the same
interval [2j , 2j+1) for some j ∈ Z. We call two classes similar if their side lengths are polynomially
related (e.g., within a factor of n4) in each dimension.
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We use the following three crucial insights to obtain an efficient algorithm:

1. We can efficiently sample from the union of boxes of a single class, see Lemma 4 (and Figure 1).

2. Each class has only few (i.e., a polylogarithmic number of) classes that are similar to it, see
Observation 1.

3. Classes that are not similar have a small intersection compared to their union, see Observa-
tion 2 (and Figure 2).

In the remainder we give some more details on these insights and how they lead us to an efficient
algorithm. The rough idea of our algorithm is as follows. We go through the classes in arbitrary
order. For each class we sample with density p from the union of the boxes of this class, but we
only keep a point if it is not contained in any class that comes later in the order. To efficiently
check for containment in a later class, we use an orthogonal range searching data structure (with
an additional dimension for the index of the class).

To understand why our algorithm is efficient, we have to look at two different parts:

Sampling from a class: One of our main technical ingredients is to sample from the union of
boxes of similar shape. Note that efficient sampling implies efficient volume estimation, so to
break our lower bound we must exploit additional input structure than those offered in the
query model. Our main approach here is simple but powerful: We can sample points from the
union of similar shaped boxes uniformly by (1) gridding the space into cells of side lengths
comparable to these boxes, (2) sampling points from the relevant cells, and (3) discarding
points not in the union by querying an orthogonal range searching data structure. As the
grid size is similar to the shape of the boxes in the class, we ensure that a significant fraction
of the points sampled in (2) are contained in the union, i.e., not discarded. The orthogonal
range searching data structure allows us to quickly check for containment.

Bound the number of drawn samples: As we discard samples that appear in later classes, this
is a potential source of inefficiency. Therefore, we need to bound the number of samples that
we discard using the second and third insight from above. The second insight states that there
are only few, i.e., polylogarithmically many, similar classes. Hence, a point might be discarded
because it is contained in one of these similar classes, but as there are only few, this will only
happen a polylogarithmic number of times. On the other hand, the third insight states that
the intersection of dissimilar classes is small. Thus, the probability that we discard a sampled
point because of a dissimilar class is small, and such events will not have a significant impact
on the running time.

Finally, to set the sampling probability p, we need a crude estimate of the volume. To obtain a
constant factor approximation, one can use the classical algorithms (by Karp and Luby [19] or Karp,
Luby, Madras [20]) with a constant error parameter (say, 1

2), to obtain a constant approximation
factor in near-linear time. To keep our work self-contained, we provide a brief description and a
simplified correctness proof of this case for union volume estimation, based on Karp and Luby [19],
in Section 2.1.

Lower bound

We now give an overview of our lower bound result. The lower bound is proven by a reduction from
a variant of the Gap-Hamming problem, defined as follows: Given two vectors x, y ∈ {−1,+1}T ,
distinguish whether their inner product is greater than

√
T or less than −

√
T . It is known that any
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Figure 1: We sample points in the grid cells G that are intersected by a box Oi from a fixed
class. We then use orthogonal range searching to determine whether a sampled point is in a box
from the class and should be kept ( ), or is not and should be discarded (×).

Figure 2: When boxes differ a lot in side length for at least one of their dimensions (in this case,
the y-axis), their intersection is small compared to their union.

algorithm distinguishing these two cases with success probability at least 2/3 must perform Ω(T )
queries into x and y.

We first give the intuition why Ω(1/ε2) samples are necessary to (1+ ε)-approximate the union
of two sets with constant probability in the query model. Given a Gap-Hamming instance x, y, we
construct two sets X = {(i, xi) : i ∈ [T ]} and Y = {(i, yi) : i ∈ [T ]}, see Figure 3 for an example.
Note that for all k ∈ {0, . . . , T}, we have

|X ∪ Y | = T + k ⇐⇒ ⟨x, y⟩ = T − 2k.

Hence, if we have an algorithm A that computes a (1+ε)-approximation of |X∪Y | with probability
2/3, then we can distinguish between ⟨x, y⟩ ≥ εT and ⟨x, y⟩ ≤ −εT . Setting T = 1/ε2, we therefore
distinguish ⟨x, y⟩ ≥ 1/ε =

√
T and ⟨x, y⟩ ≤ −1/ε = −

√
T . Hence, our algorithm A solves the

Gap-Hamming instance.
Note that the volumes of X and Y are fixed (depending only on the length of the vectors x and

y but not their entries), and thus a volume query does not disclose any information about x and y.
Each sample or containment query concerns at most one entry of x or y. Consequently, any union
volume estimation algorithm has to use Ω(T ) = Ω(ε−2) queries to X or Y .

In order to generalize this lower bound for estimating the union of two sets to an Ω(n/ε2) lower
bound for estimating the union of n sets, we need to ensure that the sampled points do not give
away too much information about the entries of x and y. We apply two obfuscations that jointly
ensure a lower bound on the number of queries; see Figure 4. Firstly, we introduce sets X1, . . . , Xn

whose union is X and sets Y1, . . . , Yn whose union is Y . Imagine cutting each rectangle in Figure 3
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Figure 3: The vector x = (+1,−1,+1,+1,−1,−1) represented as the set {(i, xi) : i ∈ [6]}, where
each point is drawn as a rectangle.
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T · n

|

(T + 1) · n

Figure 4: The vector y or x = (+1,−1,+1,+1,−1,−1) gives rise to n polygons; one of these
polygons is illustrated in dark blue. The light blue area indicates the union of all these n polygons.

into n side-by-side pieces and distributing them randomly among X1, . . . , Xn; similarly for Y . The
idea is that one needs to make Ω(n) containment queries on a set in order to hit the correct piece.
Hence, the effort for revealing one bit in x or y is Ω(n). Secondly, we introduce a large set shared
by all Xi and Yi for i ∈ [n]. In Figure 4, this is the long dark-blue rectangle that spans from left to
right. This large set intuitively enforces Ω(n) samples to even obtain a single point that contains
any information about x and y.

2 Approximation Algorithm for Klee’s Measure Problem

In this section we give our upper bound for Klee’s measure problem.

Theorem 2. There is an algorithm that runs in time O
(
log2d+1(n) · (n+ 1

ε2
)
)
and with probability

at least 0.9 computes a (1 + ε)-approximation for Klee’s measure problem.

2.1 Preliminaries

In Klee’s measure problem we are given boxes O1, . . . , On in Rd. Here, a box is an object of the form
Oi = [a1, b1]× . . .× [ad, bd], and as input we are given the coordinates a1, b1, . . . , ad, bd of each input
box. Throughout this section we assume d to be constant. Note that given the coordinates of a box,
it is easy to compute its side lengths and volume. Throughout, we write V := Volume(

⋃n
i=1Oi) for

the volume of the union of boxes. We want to approximate V up to a factor of 1+ε. Our approach
is based on sampling, so now let us introduce the relevant notions.

Recall that Pois(λ) is the Poisson distribution with mean and variance λ. It captures the
number of active points in a space, under the assumption that active points occur uniformly and
independently at random across the space, and that λ points are active on average.

The following definition is usually referred to as a homogeneous Poisson point process at rate p.
Intuitively, we activate each point in space U ⊂ Rd independently with “probability density” p,
thus the number of activated points follows the Poisson distribution with mean p ·Volume(U).

Definition 1 (p-sample). Let U ⊂ Rd be a measurable set, and let p ∈ [0, 1]. We say that a
random subset S ⊆ U is a p-sample of U if for any measurable U ′ ⊆ U we have that |S ∩ U ′| ∼
Pois(p ·Volume(U ′)).
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In particular, if S is a p-sample of U , then |S| ∼ Pois(p ·Volume(U)). Two more useful properties
follow from the definition:

(i) For any measurable subset U ′ ⊆ U , the restriction S ∩ U ′ is a p-sample of U ′.

(ii) The union of p-samples of two disjoint sets U,U ′ is a p-sample of U ∪ U ′.

We will make use of orthogonal range searching. Specifically, we need the query appears(x, i),
which upon receiving x ∈ Rd and i ∈ N returns true if x ∈ Oi ∪ · · · ∪On and false otherwise.

Lemma 1. We can build a data structure in O(n logd+1 n) time that answers appears(x, i) queries
in O(logd+1 n) time.

Proof. For each j ∈ [n], map the box Oj ⊂ Rd to a higher-dimensional box

O+
j := Oj × (−∞, j] ⊂ Rd+1.

We then apply orthogonal range searching, specifically we build a multi-level segment tree over
{O+

1 , . . . , O
+
n }, which takes O(n logd+1 n) time; see [16, Section 10.4]. To answer the request

appears(x, i) where x ∈ Rd and i ∈ N, we query the segment tree whether there exists a box
O+

j that contains the point (x, i); or phrased differently, whether x ∈ Oj for some j ≥ i. The query

takes only O(logd+1 n) time.

For our main algorithm to work, we need a constant-factor approximation of the volume V . It
is known that this can be computed in O(n) time [20]. In order stay simple and self-contained,
we prove a weaker result by implementing an algorithm of Karp and Luby [19] with the use of
appears queries.

Lemma 2 (Adapted from Karp and Luby [19]). Given the data structure from Lemma 1, there
exists an algorithm that computes in time O(n logd+1 n) a 2-approximation to V with probability at
least 0.9.

Algorithm 1 Crude volume estimator

1. Compute prefix sums Sj :=
∑j

i=1Volume(Oi) for all j ∈ {0, . . . , n}.

2. Initialise counter N := 0.

3. Repeat 40n times:

• Sample u ∈ [0, 1] uniformly at random. Binary search for the smallest i such that u ≤ Si
Sn

.

• Sample x ∈ Oi uniformly at random.

• Increment N if not appears(x, i+ 1).

4. Output Ṽ := N
40n · Sn.

Proof. We claim that Algorithm 1 has the desired properties. The time bound is easy to see: The
computation of the prefix sums takes O(n) time. In each iteration, binary searching for i costs
O(log n) time, sampling of x costs O(1) time, and calling appears takes O(logd+1 n) time. So in
total we spend O(n logd+1 n) time.
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For the correctness argument, we define two sets

P := {(i, x) : i ∈ [n], x ∈ Oi},
Q := {(i, x) : i ∈ [n], x ∈ Oi \ (Oi+1 ∪ . . . ∪On)}.

Consider an iteration in step 3. For any fixed value j ∈ [n], we have

Pr(i = j) = Pr

(
Sj−1

Sn
< u ≤ Sj

Sn

)
=

Sj − Sj−1

Sn
=

Volume(Oj)

Sn
.

With this we can calculate the probability that the counter N increments in this iteration:

Pr((i, x) ∈ Q) =

n∑
j=1

Pr((i, x) ∈ Q | i = j) · Pr(i = j)

=

n∑
j=1

Volume(Oj \ (Oj+1 ∪ . . . ∪On))

Volume(Oj)
· Volume(Oj)

Sn
=

V

Sn
.

Since all iterations are independent, at the end of the algorithm we have N ∼ Bin(40n, V/Sn).
Hence Ṽ is an unbiased estimator for V .

To analyse deviation, we observe that V ≥ maxni=1Volume(Oi) ≥ Sn/n. Therefore, E[N ] =
40nV/Sn ≥ 40. By Chebyshev and as E[N ] ≥ Var[N ], we have

Pr

(
|N − E[N ]| ≥ E[N ]

2

)
≤ 4Var[N ]

(E[N ])2
≤ 4

E[N ]
≤ 0.1.

That is, with probability at least 0.9 the output Ṽ is a 2-approximation to V .

2.2 Classifying Boxes by Shapes

As our first step in the algorithm, we classify boxes by their shapes.

Definition 2. Let L1, . . . , Ld ∈ Z. We say that a box O ⊂ Rd is of type (L1, . . . , Ld) if its side
length in dimension i is contained in [2Li , 2Li+1), for each i ∈ [d].

Using this definition, we partition the input boxes O1, . . . , On into classes C1, . . . , Cm such that
each class corresponds to one type of boxes. We will fix this notation throughout. For each t ∈ [m],
let us also define Ut :=

⋃
O∈Ct

O ⊆ Rd, namely the union of boxes in class Ct.

Similar to appears, we can answer queries of the form: Is a given point x ∈ Rd contained
in Ut? We call this an inClass(x, t) query.

Lemma 3. We can build a data structure in O(n logd+1(n)) time that answers inClass(x, t) queries
in O(logd+1 n) time.

Proof. Similar to the proof of Lemma 1, we transform each Oi ∈ Ct to a higher-dimensional box

Oi × {t} ⊂ Rd+1

and build a multi-level segment tree on top. The query inClass(x, t) is thus implemented by
querying the point x× {t} ∈ Rd+1 in the segment tree.
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Sampling from a class

The next lemma shows that we can obtain a p-sample of any Ut efficiently by rejection sampling.

Lemma 4. Given t ∈ [m], p ∈ [0, 1] and the data structure from Lemma 3, one can generate a
p-sample of Ut in expected time O(|Ct| log |Ct|+ p ·Volume(Ut) · logd+1 n).

Proof. Write (L1, . . . , Ld) for the type corresponding to class Ct. We subdivide Rd into the grid

G∞ := {[i1 2L1 , (i1 + 1) 2L1)× · · · × [id 2
Ld , (id + 1) 2Ld) | i1, . . . , id ∈ Z}.

We call each element of G∞ a cell. Let G := {G ∈ G∞ | G ∩ Ut ̸= ∅} be the set of cells that have a
non-empty intersection with Ut. Write U :=

⋃
G∈G G.

First we create a p-sample S of U as follows. Generate K ∼ Pois(p · Volume(U)), which
determines the number of points we are going to sample. Then sample K points uniformly at
random from U by repeating the following step K times: Select a cell G ∈ G uniformly at random
and then sample a point from G uniformly at random. The sampled points constitute our set S.

Next we compute S ∩Ut: For each x ∈ S, we query inClass(x, t); if the answer is true then we
keep x, otherwise we discard it. The resulting set S ∩ Ut is a p-sample of Ut, since restricting to a
fixed subset preserves the p-sample property.

Before we analyze the running time, we show that Ut makes up a decent proportion of U . Recall
that every box in class Ct is of type (L1, . . . , Ld). In any dimension k ∈ [d], one projected box from
Ct can intersect at most three projected cells from G. So each box from Ct intersects at most 3d

cells from G, implying that |G| ≤ 3d |Ct|. Moreover, since the volume of any cell is at most the
volume of a box in Ct, we have Volume(U) ≤ 3d Volume(Ut).

Regarding the running time, recall that we assume d to be constant and hence drop factors
only depending on d. The computation of G takes O(|G| log |G|) ⊆ O(|Ct| log |Ct|) time. The
remaining time is dominated by the inClass queries. The expected size of S is p · Volume(U) ≤
3d p Volume(Ut). As we query the data structure from Lemma 1 once for each point of S, the
expected time of the inClass queries is O(p ·Volume(Ut) · logd+1 n).

Classes do not overlap much

We show the following interesting property of classes, that the sum of their volumes is within a
polylogarithmic factor of the total volume V .

Lemma 5. We have that
∑m

t=1Volume(Ut) ≤ 23d+1 logd(n) · V .

We later use this property to draw p-samples from
⋃n

i=1Oi =
⋃m

t=1 Ut efficiently. To show this
property, we first need some simple definitions and observations.

Definition 3. We call classes of type (L1, . . . , Ld) and (L′
1, . . . , L

′
d) similar if for all k ∈ [d] we

have 2|Lk−L′
k| < n4. Otherwise we call them dissimilar.

Observation 1. Every class is similar to at most 8d logd n classes.

Proof. Fix a type (L1, . . . , Ld). For each k ∈ [d], there are at most 8 log n many integers L′
k such

that 2|Lk−L′
k| < n4.

Observation 2. Let O and O′ be boxes in dissimilar classes, then Volume(O ∩O′) ≤ 2V/n4.
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Proof. Let (L1, . . . , Ld) be the type of O, and (L′
1, . . . , L

′
d) be the type of O′. Since the boxes

belong to dissimilar classes, there is a dimension k ∈ [d] such that 2|Lk−L′
k| ≥ n4. Without loss

of generality, assume 2Lk−L′
k ≥ n4; the other case is symmetric. Let [ak, bk] and [a′k, b

′
k] be the

intervals resulting from projecting the boxes O and O′ onto dimension k, respectively. Note that
bk − ak ∈ [2Lk , 2Lk+1) and b′k − a′k ∈ [2L

′
k , 2L

′
k+1). So we have bk−ak

b′k−a′k
≥ 2Lk−(L′

k+1) ≥ n4/2. In other

words, at most a 2/n4 fraction of the interval [ak, bk] intersects the interval [a′k, b
′
k]. Hence,

Volume(O ∩O′) ≤ Volume(O) · 2/n4 ≤ 2V/n4.

We are now ready to prove Lemma 5.

Proof of Lemma 5. Without loss of generality assume Volume(U1) ≥ · · · ≥ Volume(Um). We con-
struct a set of indices T ⊆ [m] by the following procedure:

• Initially T = ∅.

• For t = 1, . . . ,m, if Ct and Cs are dissimilar for all s ∈ T , then add t to T .

We have t ̸∈ T for some t ∈ [m] only if there exists an s ∈ T such that Cs, Ct are similar and
Volume(Us) ≥ Volume(Ut); we thus call s a witness of t. If multiple witnesses exist, then we pick
an arbitrary one. Conversely, every s ∈ T can be a witness at most 8d logd n times by Observation 1.
Hence

m∑
t=1

Volume(Ut) ≤ 8d logd(n) ·
∑
t∈T

Volume(Ut). (1)

It remains to bound
∑

t∈T Volume(Ut). Consider any distinct s, t ∈ T . By construction, Cs and
Ct are dissimilar; and each class contains at most n boxes. So Volume(Us ∩ Ut) ≤ n2 · (2V/n4) =
2V/n2 by Observation 2. Using this and inclusion-exclusion, we bound

∑
t∈T

Volume(Ut) ≤ Volume

(⋃
t∈T

Ut

)
+

∑
{s,t}⊆T

Volume(Us ∩ Ut)

≤ V +

(
m

2

)
2V

n2

≤ 2V.

Plugging this into the right-hand side of Expression (1), we obtain the lemma statement.

2.3 Joining the Classes

Recall that C1, . . . , Cm are the classes of the input boxes and U1, . . . , Um their respective unions.
Assume without loss of generality that the boxes are ordered in accordance with the class ordering,
that is, C1 = {O1, · · · , Oi1} form the first class, C2 = {Oi1+1, · · · , Oi2} form the second class, and
so on. More formally, we ensure that Ct = {Oit−1+1, . . . , Oit} for 0 = i0 < i1 < . . . < im = n.

Let Dt := Ut \ (
⋃m

s=t+1 Us) be the points in Ut that are not contained in later classes. Note that
D1, . . . , Dm is a partition of

⋃m
t=1 Ut =

⋃n
i=1Oi. Hence, to generate a p-sample of

⋃n
i=1Oi, it suffices

to draw p-samples from each Dt and then take their union.4 To this end, we draw a p-sample St

from Ut via Lemma 4. Then we remove all x ∈ St for which appears(x, it + 1) = true; these are
exactly the points that appear in a later class. What remains is a p-sample of Dt. The union of

11



Algorithm 2 Volume estimator

1. Partition the boxes into classes C1, . . . , Cm. Relabel the boxes so that their indices are in
accordance with the class ordering, i.e., Ct = {Oit−1+1, . . . , Oit} for all t ∈ [m].

2. Build the data structures from Lemmas 1 and 3.

3. Call Algorithm 1 to obtain a crude estimate Ṽ . Set p := 8/(ε2Ṽ ).

4. For t = 1, . . . ,m do:

• Draw a p-sample St from the union Ut :=
⋃

O∈Ct
O via Lemma 4.

• Compute S′
t := {x ∈ St : appears(x, it + 1) = false}.

5. Output
∑m

t=1 |S′
t|/p.

these sets thus is a p-sample of
⋃n

i=1Oi, and we can use the size of this p-sample to estimate the
volume V of

⋃n
i=1Oi. The complete algorithm is summarized in Algorithm 2.

Lemma 6. Conditioned on Ṽ ≤ 2V , Algorithm 2 outputs a (1 + ε)-approximation to V with
probability at least 3/4.

Proof. Note that for all t ∈ [m], the set S′
t is a p-sample ofDt. SinceD1, . . . , Dm partition

⋃m
t=1 Ut =⋃n

i=1Oi, their union
⋃m

t=1 S
′
t is a p-sample of

⋃n
i=1Oi. It follows that N :=

∑m
t=1 |S′

t| ∼ Pois(pV ).

The expectation and variance of N are pV = 8V/(ε2Ṽ ) ≥ 4/ε2. So by Chebyshev,

Pr(|N − pV | > εpV ) ≤ Var[N ]

(εpV )2
≤ 1

4
.

In other words, with probability at least 3/4, the output N/p is a 1 + ε approximation to V .

Lemma 7. Conditioned on Ṽ ≥ V
2 , Algorithm 2 runs in expected time O

(
log2d+1(n) · (n+ 1

ε2
)
)
.

Proof. Step 1 takes O(n log n) time: we first compute the side lengths of each box and determine
its class, then we sort the boxes according to class. Step 2 takes O(n logd+1 n) time by Lemmas 1
and 3. Step 3 takes O(n logd+1 n) time by Lemma 2.

In step 4, iteration t, sampling St costs expected time O((it− it−1) log(it− it−1)+pVolume(Ut) ·
logd+1 n) by Lemma 4, and computing S′

t takes expected time O((1 + pVolume(Ut)) · logd+1 n) by
Lemma 1. Therefore, the expected running time over all iterations is

O

(
logd+1(n) ·

(
n+ p

m∑
t=1

Volume(Ut)

))
.

Substituting p = 8/(ε2Ṽ ) ≤ 16/(ε2V ) and applying Lemma 5, we can bound

p

m∑
t=1

Volume(Ut) ≤
16

ε2V

m∑
t=1

Volume(Ut) ≤
23d+5 logd n

ε2
.

Hence, the expected running time of step 5 is O
(
log2d+1(n) · (n+ 1

ε2
)
)
.

4This idea has previously been used on objects, by considering the difference D′
i := Oi \(

⋃n
j=i+1 Oj) [19, 26], while

we use this idea on classes.
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Proof of Theorem 2. We run Algorithm 2 with a time budget tenfold the bound in Lemma 7; if
step 5 spends excessive time then we immediately abort the algorithm. So the stated time bound
is clearly satisfied.

Now consider three bad events:

• Ṽ ̸∈ [V2 , 2V ].

• Ṽ ∈ [V2 , 2V ], but the algorithm is aborted.

• Ṽ ∈ [V2 , 2V ] and the algorithm is not aborted, but it does not output a (1+ε)-approximation
to V .

By Lemma 2, the first event happens with probability at most 0.1. By Markov’s inequality, the
second event happens with probability at most 0.1. Lastly, by Lemma 6, the third event happens
with probability at most 1/4. So the total error probability is at most 0.1 + 0.1 + 1

4 = 9
20 . If none

of the bad events happen, then the algorithm correctly outputs a (1+ ε)-approximation to V . The
success probability of 1 − 9

20 can be boosted to, say, 0.9 by returning the median of a sufficiently
large constant number of repetitions of the algorithm.

2.4 Handling Discrete Boxes

We now argue that our algorithm for boxes in Rd also solves the following discrete variant of Klee’s
measure problem: Given boxes O1, . . . , On in Zd, count the number of points in the union

⋃n
i=1Oi.

To solve this problem, we employ the following embedding of Zd into Rd:

φ : (x1, . . . , xd) ∈ Zd 7→ [x1, x1 + 1]× · · · × [xd, xd + 1] ⊂ Rd.

Note that φ transforms discrete boxes into continuous boxes, and that the cardinality of any U ⊂ Zd

is equal to the volume of its image φ(U) ⊂ Rd. Hence the discrete variant of Klee’s measure problem
reduces to the continuous counterpart.

3 Lower Bound for Union Volume Estimation

We consider estimating the volume of the union of n (measurable) objects O1, . . . , On ⊂ R2. These
objects are only accessible through the following three queries:

• Volume(i): Return the volume of object Oi.

• Sample(i): Draw a uniform random point from Oi.

• Contains((a, b), i): Given a point (a, b) ∈ R2, return whether (a, b) ∈ Oi or not.

It is known that O(nε−2) queries suffice to return with constant probability a (1+ε)-approximation
to the volume of the union O1 ∪ . . . ∪On. Here we prove a matching lower bound.

For convenience, we also consider a discrete version of the problem in which each object Oi is
instead a finite subset of the integer lattice Z2. The queries are then

• Volume(i): Return the cardinality |Oi|.

• Sample(i): Draw a uniform random point from Oi.

• Contains((a, b), i): Given a point (a, b) ∈ Z2, return whether (a, b) ∈ Oi or not.

The goal is to give a (1 + ε)-approximation to the cardinality |O1 ∪ . . . ∪On| of the union.
In Section 3.1 we show a lower bound for the discrete version, and then in Section 3.2 we show

that a lower bound for the discrete version implies a similar lower bound for the continuous version.
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3.1 Lower Bound for Discrete Union

In the remainder, we write [n] := {1, 2, . . . , n}. The starting point is what we call the Query-
Gap-Hamming problem: The input is two (hidden) vectors x, y ∈ {−1, 1}T and we can access an
arbitrary bit of x or y at a time. The goal is to distinguish the cases ⟨x, y⟩ >

√
T and ⟨x, y⟩ < −

√
T

using as few accesses as possible. Query-Gap-Hamming has linear query complexity:

Lemma 8. Any randomized algorithm solving Query-Gap-Hamming with probability at least 2/3
requires Ω(T ) accesses to x and y, regardless of the computational resources it uses.

Proof. This follows by a folklore argument from the fact that the Gap-Hamming problem has linear
randomized communication complexity [8]. We next describe the details.

We reduce from the communication complexity of the Gap-Hamming problem, where Alice
holds a vector x ∈ {−1, 1}T , Bob holds a vector y ∈ {−1, 1}T , and their goal is to distinguish
⟨x, y⟩ >

√
T from ⟨x, y⟩ < −

√
T while communicating as few bits as possible. It is known that

the two-way, public-coin randomized communication complexity of Gap-Hamming is Ω(n) [8]. Now
suppose that a randomized algorithm can solve Query-Gap-Hamming with probability at least 2/3,
while making only o(n) accesses to x and y. We construct a protocol between Alice and Bob: They
simulate the algorithm synchronously, using a shared random tape. Whenever the algorithm tries
to access xj , Alice sends the bit xj to Bob. Whenever it tries to access yj , Bob sends the bit
yj to Alice. Clearly both parties can simulate the algorithm till the end, and output the answer
of the algorithm. The communication cost is o(n) bits, which contradicts the aforementioned
communication complexity.

Next we give a reduction from Query-Gap-Hamming to estimating the cardinality of a union
of objects. In more detail, from the hidden input vectors x, y ∈ {−1, 1}T we (implicitly) define 2n
objects X1, . . . , Xn, Y1, . . . , Yn ⊂ Z2. Write R := {(n+ 1, 0), . . . , (nT + n, 0)}. Given permutations
π1, . . . , πT of [n], we define

Xi = Xi(x, π1, . . . , πT ) := R ∪ {(jn+ πj(i), xj) : j ∈ [T ]}

for every i ∈ [n]. Analogously, given a different set of permutations τ1, . . . , τT , we define

Yi = Yi(y, τ1, . . . , τT ) := R ∪ {(jn+ τj(i), yj) : j ∈ [T ]}

for every i ∈ [n]. Note that R is a subset of all Xi and Yi.
Consider an arbitrary index j ∈ [T ]. If xj = yj then the point sets {(jn + πj(i), xj) : i ∈ [n]}

and {(jn + τj(i), yj) : i ∈ [n]} are equal, so they together contribute n to the cardinality of the
union. On the other hand, if xj ̸= yj then they are disjoint and thus contribute 2n. Furthermore,
the point set R is contained in all objects and contributes nT . Hence, the cardinality of the union
equals

nT +
∑

j : xj=yj

n+
∑

j : xj ̸=yj

2n =
5

2
nT − 1

2
n ·

 ∑
j : xj=yj

1 +
∑

j : xj ̸=yj

(−1)

 =
5

2
nT − 1

2
n⟨x, y⟩.

Let ρ be a (1 + ε)-approximation to the cardinality of the union, i.e., 5
2nT − 1

2n⟨x, y⟩. Since

ρ ∈
[
(1− ε)(52nT − 1

2n⟨x, y⟩), (1 + ε)(52nT − 1
2n⟨x, y⟩)

]
and |⟨x, y⟩| ≤ T , by computing (52nT −ρ) · 2n we obtain a value in [⟨x, y⟩−6εT, ⟨x, y⟩+6εT ], namely

an additive 6εT approximation to ⟨x, y⟩ with probability at least 4/5. For ε ≤ 1/(6
√
T ) this allows

to decide ⟨x, y⟩ >
√
T or ⟨x, y⟩ < −

√
T .
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Let A be a (possibly randomized) algorithm that (1 + ε)-approximates the volume of union of
any 2n objects O1, . . . , O2n ⊂ Z2 with probability at least 4/5, using q queries. We assume that
q ≥ 10n; otherwise we modify A to ask 10n− q dummy queries.

We now simulate A as if the input were the 2n objects X1, . . . , Xn, Y1, . . . , Yn. It remains to
argue that we can answer all queries by A while accessing few bits in x and y. Specifically, the
number of accesses would be only O(q/n). The details of the simulation algorithm are as follows:

Algorithm S:

1. Sample random permutations π1, . . . , πT and τ1, . . . , τT of [n] uniformly and independently.

2. Simulate algorithm A and answer its queries as follows.

• Volume(i): Answer nT + T .

• Sample(i): In the case i ≤ n:

(S1) With probability nT/(nT +T ) = 1−1/(n+1), answer with a uniform random point
p ∈ R.

(S2) With the remaining probability, pick a uniform random j ∈ [T ]. If we have not
accessed xj yet, access it and keep it in memory. Then answer with the point
(jn+ πj(i), xj).

In the case i > n, do the same with xj replaced by yj and πj(i) replaced by τj(i− n).

• Contains((a, b), i): Let j = ⌊(a− 1)/n⌋. In the case i ≤ n:

(C1) If (a, b) ∈ R then answer true.

(C2) Else, if j ̸∈ [n] or jn+ πj(i) ̸= a then answer false.

(C3) Else, we have jn + πj(i) = a. If we have not accessed xj yet, access it and keep it
in memory. If b = xj then answer true, otherwise answer false.

In the case i > n, do the same with xj replaced by yj and πj(i) replaced by τj(i− n).

3. Let ρ be output of A and return (52nT − ρ) · 2
n .

This finishes the description of algorithm S. It is immediate from the algorithm that the execu-
tion of A is the same as if actually running it on the objects Xi(x, π1, . . . , πT ) and Yi(y, τ1, . . . , τT )
for i ∈ [n]. What remains is to bound the number of accesses to x and y by S during the simulation.

To this end, observe that an access to x (respectively y) occurs only when the query enters (S2)
or (C3). In both (S2) and (C3), a permutation entry πj(i) (respectively τj(i− n)) is involved, and
we say that the entry is hit by the query.

By definition, the number of accesses to x and y is exactly the number of entries πj(i) and
τj(i− n) hit by some query. In light of this, we can move on to upper bound the latter.

We consider two bad events. Let E1 be the event that more than 20q/n entries are hit by (S2).
Let E2 be the event that at most 20q/n entries are hit by (S2), but more than k := 40q/n entries
are freshly hit by (C3). Here “freshly” means that the entry was not hit by any query before it is
hit by (C3).

Entries hit by (S2). We first consider the number of entries hit by (S2). For t ∈ [q], define
an indicator random variable Zt taking the value 1 iff the t-th query of S enters case (S2). Since
every query may hit at most one entry, the total number of entries hit by (S2) is at most

∑q
t=1 Zt.

Note that Pr[Zt = 1] ≤ 1/(n+1) for all t and hence E[
∑q

t=1 Zt] < q/n. So by Markov’s inequality,
Pr[E1] ≤ Pr[

∑q
t=1 Zt > 20q/n] < 1/20.
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Entries freshly hit by (C3). The tricky query to analyze is the Contains((a, b), i) query. We
will show that Pr[E2] < 1/20. Roughly, we need to argue that if πj(i) was not hit previously
then A is unlikely to ask a query with a = jn + πj(i). The intuition is that A is unaware of the
permutations π1, . . . , πT and τ1, . . . , τT , and thus to get a fresh hit it has to “guess” an entry of a
permutation.

For the proof, assume for the sake of contradiction that Pr[E2] ≥ 1/20. Under this assump-
tion, we give an algorithm for encoding the random permutations π1, . . . , πT , τ1, . . . , τT in less
than 2T lg(n!) bits in expectation. This is an information theoretic contradiction. More for-
mally, our proof considers a game between an encoder and a decoder. The encoder receives
π1, . . . , πT , τ1, . . . , τT , x, y as well as the random tape r used by S and A in simulation step 2.
The decoder receives x, y, r. The encoder must send a message to the decoder which allows the de-
coder to reconstruct π1, . . . , πT , τ1, . . . , τT . Since the Shannon entropy is H(π1, . . . , πT , τ1, . . . , τT |
x, y, r) = 2T lg(n!), it follows by Shannon’s source coding theorem that the expected length of the
message must be at least 2T lg(n!) bits.

The way we use the assumption Pr[E2] ≥ 1/20, is that the encoder will send the indices of the
queries among 1, . . . , q which freshly hit an entry in (C3). The encoder will further send information
that allows the decoder to simulate S for the remaining queries. Whenever the decoder reaches
one of the specified queries, she knows that the point (a, b) given by the Contains((a, b), i) query
satisfies jn+ πj(i) = a. This allows her to recover πj(i), i.e., roughly lg n bits of information. But
sending k such indices costs lg

(
q
k

)
≈ k lg(q/k) bits, or lg(q/k) bits per index. Since q/k ≪ n, we

use less bits than the information theoretic lower bound, which is a contradiction. We now proceed
to give the formal details.

Encoding procedure. The encoder receives random permutations π1, . . . , πT , τ1, . . . , τT and also
x, y, r, and proceeds as follows:

1. Initialize algorithm S with the given permutations. Run it from step 2 onward, using the
given tape r to make random choices for S and A.

2. If the event E2 does not happen, send a 0-bit followed by a naive encoding of all permutations.

3. Otherwise E2 happens. Signal this by sending a 1-bit. Then send the indices I ⊆ [q] of the
first k queries that freshly hit some entry in (C3). Next, denote ℓ := max I. For t = 1, . . . , ℓ
in that order, if the t-th query hits an entry in (S2) then send the value of that entry. Finally,
for each permutation πj and τj , send the induced permutation on its entries not hit by queries
1, . . . , ℓ.

Decoding procedure. We next argue that we can recover the permutations π1, . . . , πT and
τ1, . . . , τT after receiving x, y, r and the above encoding.

1. If the leading bit of the encoding is a 0, then we immediately recover all permutations from
the rest of the encoding.

2. If the leading bit is a 1, we start by recovering I and ℓ := max I. Then we simulate algorithm
S up to the ℓ-th query, as if we knew the permutations. In the meantime we gradually recover
all entries πj(i) and τj(i− n) that are hit. More precisely, for t = 1, . . . , ℓ we answer the t-th
query by A as follows.

• Volume(i): Answer nT + T .
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• Sample(i): In the case i ≤ n:

– If the tape r decides to give a point p ∈ R, then answer with this point p.

– Else, the tape decides to give a j ∈ [T ]. Since πj(i) is hit by this query in (S2), its
value is readily available in the encoding. We answer (jn+ πj(i), xj).

In the case i > n, do the same with xj replaced by yj and πj(i) replaced by τj(i− n).

• Contains((a, b), i): Let j = ⌊(a− 1)/n⌋. In the case i ≤ n:

– If (a, b) ∈ R then answer true.

– Else, if j ̸∈ [n] then answer false.

– Else, if t ∈ I then the current query freshly hits πj(i), so it must be the case that
a = jn + πj(i). We have thus recovered πj(i) = a − jn. Then we answer true if
b = xj ; otherwise we answer false.

– Finally, if t /∈ I then πj(i) was hit before, or it is not hit by the current query. In
the former case we know its value, so we answer true if (a, b) = (jn + πj(i), xj),
and false otherwise. In the latter case we know that a ̸= jn+ πj(n), so we simply
answer false.

In the case i > n, do the same with xj replaced by yj and πj(i) replaced by τj(i− n).

3. Having recovered all entries of π1, . . . , πT and τ1, . . . , τT that are hit by queries 1, . . . , ℓ, we
finally recover the remaining entries from the rest of the encoding.

Encoding length. We finally analyze the expected encoding length to derive a contradiction to
the assumption that Pr[E2] ≥ 1/20.

If E2 does not happen then the encoding length is 1 + ⌈2T lg(n!)⌉ ≤ 2 + 2T lg(n!) bits. If E2

happens then we can save a significant number of bits. To this end, let us focus on the queries
1, . . . , ℓ. Let m be the number of entries hit by (S2); note that m ≤ 20q/n under the event
E2. For j = 1, . . . , T let nj be the number of entries in πj not hit by any query. Similarly, for
j = T + 1, . . . , 2T let nj be the number of entries in τj not hit by any query. Then the encoding
length is

1 +

⌈
lg

(
q

k

)⌉
+m⌈lg n⌉+


2T∑
j=1

lg(nj !)


≤ 3 +m+ lg

(
q

k

)
+m lg n+

2T∑
j=1

lg(nj !)

≤ 3 +m+ k lg(eq/k) +m lg n+
2T∑
j=1

lg(n!)−
2T∑
j=1

lg(n!/nj !)

= 3 +m+ k lg(eq/k) +m lg n+ 2T lg(n!)−
2T∑
j=1

lg(n!/nj !).

By Stirling’s approximation, we have n! ≥ (n/e)n. Hence, the product of the n − nj largest
terms in the factorial (namely n!/nj !) is at least (n/e)

n−nj . Thus

2T∑
j=1

lg(n!/nj !) ≥
2T∑
j=1

(n− nj) lg(n/e) ≥ (lg(n)− 2) ·
2T∑
j=1

(n− nj).
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Since
∑2T

j=1(n− nj) = m+ k is exactly the number of entries hit by queries 1, . . . , ℓ, the encoding
length is at most

3 +m+ k lg(eq/k) +m lg n+ 2T lg(n!)− (lg(n)− 2) · (k +m)

= 3 + 3m+ k lg(4eq/(kn)) + 2T lg(n!)

≤ 3 + 60q/n+ k lg(4eq/(kn)) + 2T lg(n!)

where we used m ≤ 20q/n by event E2.
Recalling our choice of k = 40q/n and the assumption that q ≥ 10n, the above is at most

3 + 60q/n+ (40q/n) lg(e/10) + 2T lg(n!)

< 3 + 60q/n− 75q/n+ 2T lg(n!)

≤ 2T lg(n!)− 147.

Therefore, the expected encoding length is no more than

(1− Pr[E2]) · (2 + 2T lg(n!)) + Pr[E2] · (2T lg(n!)− 147)

≤ 2T lg(n!) + 2− 147Pr[E2]

< 2T lg(n!)− 5.

where the last line follows from the assumption that Pr[E2] ≥ 1/20. This contradicts with the
information theoretic lower bound.

Conclusion. We have now shown that Pr[E1] ≤ 1/20 and Pr[E2] ≤ 1/20. By a union bound,
we have that none of the events happen, so S computes a 6εT additive approximation to ⟨x, y⟩,
with probability at least 4/5 − 1/10 ≥ 2/3. In this case, the number of hit entries is at most
20q/n + 40q/n = 60q/n, so is the number of accesses to x, y. If S performs more than 60q/n
queries, we may simply abort and return an arbitrary answer; this does not affect the probability
bound.

Recall that we made the simplifying assumption q ≥ 10n. If the algorithm A that we began with
asks less than 10n queries, then we added dummy queries to ensure q = 10n, and the number of
accesses to x, y becomes 60q/n = 600. In any case, the number of accesses is O(q/n). We thus have
an algorithm S that makes only O(q/n) accesses and returns a 6εT additive approximation with
probability at least 2/3. We may set T = ε−2/144 to obtain an additive 6εT = ε−1/24 =

√
T/2

approximation. This is enough to solve the Query-Gap-Hamming problem and hence the number
of accesses must be Ω(T ) = Ω(ε−2) by Lemma 8. We thus have q/n = Ω(ε−2), or q = Ω(ε−2n).
This proves Theorem 1, in the discrete setting with objects in Z2.

3.2 Continuous to Discrete

To prove a lower bound for estimating the volume of the union of n objects in R2, we give a simple
reduction from estimating the cardinality of the union of n objects in Z2. Let A be an algorithm for
estimating the volume of the union of n objects in R2 using Volume,Sample and Contains queries.

We use A to estimate the cardinality of the union of n sets in Z2 as follows. Let O1, . . . , On ⊂ Z2

be the objects. We think of them as objects in R2 by replacing each point (x, y) in an object Oi

by the unit square that has (x, y) in its lower left corner, i.e. [x, x + 1) × [y, y + 1). Denote the
resulting objects in R2 by O′

i. (Note that applying this transformation to our objects from the
previous reduction gives connected axis-aligned polygons.)
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The volume of the union O′
1 ∪ . . .∪O′

n is the same as the cardinality of the union O1 ∪ . . .∪On.
We thus merely need to simulate A as if the input was O′

1, . . . , O
′
n. For this, on every Volume(i)

query made by A to the object O′
i, we ask the same query to Oi. For a Sample(i) query made

by A, we run Sample(i) on Oi, receive an integer point (a, b) ∈ Z2. We then draw rx ∈ [0, 1) and
ry ∈ [0, 1) independently and uniformly at random and feed A the point (x + rx, y + ry) as the
result of the Sample(i) query. Finally, when A asks a Contains((a, b), i) query, we simply round the
coordinates down to the nearest integers to obtain a point (a′, b′) = (⌊a⌋, ⌊b⌋) ∈ Z2. When then
query Contains((a′, b′), i) on Oi. Correctness follows immediately and we conclude:

Theorem 3. Any algorithm for computing a (1 + ε)-approximation to the volume of the union of
n objects in R2 with probability at least 4/5 via Volume, Sample and Contains queries, must use
Ω(ε−2n) queries.
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