
Compressing Encrypted Data Over Small Fields

Nils Fleischhacker1⋆ , Kasper Green Larsen2⋆⋆ , and Mark Simkin3⋆ ⋆ ⋆

1 Ruhr University Bochum
2 Aarhus University

3 Ethereum Foundation

Abstract. A recent work of Fleischhacker, Larsen, and Simkin (Eurocrypt 2023) shows how to effi-
ciently compress encrypted sparse vectors. Subsequently, Fleischhacker, Larsen, Obremski, and Simkin
(Eprint 2023) improve upon their work and provide more efficient constructions solving the same prob-
lem. Being able to efficiently compress such vectors is very useful in a variety of applications, such as
private information retrieval, searchable encryption, and oblivious message retrieval. Concretely, as-
sume one is given a vector (m1, . . . ,mn) with at most t distinct indices i ∈ [n], such that mi ̸= 0 and
assume (Gen,Enc,Dec) is an additively homomorphic encryption scheme. The authors show that one
can compress (Enc(k,m1), . . . ,Enc(k,mn)), without knowing the secret key k, into a digest with size
dependent on the upper bound on the sparsity t, but not on the total vector length n. Unfortunately,
all existing constructions either only work for encryption schemes that have sufficiently large plaintext
spaces or require additional encrypted auxiliary information about the plaintext vector.

In this work, we show how to generalize the results of Fleischhacker, Larsen, and Simkin to encryption
schemes with arbitrarily small plaintext spaces. Our construction follows the same general ideas laid out
in previous works but modifies them in a way that allows compressing the encrypted vectors correctly
with high probability, independently of the size of the plaintext space.

1 Introduction

A recent work by Fleischhacker, Larsen, and Simkin [FLS23] showed how to efficiently compress encrypted
sparse vectors. More concretely, consider a vector (m1, . . . ,mn) with at most t distinct indices i ∈ [n] such
that mi ̸= 0 and let (Gen,Enc,Dec) be an additively homomorphic encryption scheme. The authors showed
that one can compress (Enc(k,m1), . . . ,Enc(k,mn)), without knowing the secret key k, into a digest with
size dependent on the upper bound on the sparsity t, but not on the total vector length n.

Being able to efficiently compress such encrypted sparse vectors is very useful, as this problem appears in a
variety of applications that work on encrypted data. In the oblivious message retrieval setting [LT22], clients
can send each other encrypted messages via an untrusted intermediary server, which acts as communication
channel. To hide which messages are intended for which client, the receiving clients could always just naively
download all messages from the server and check which ones are intended for them, but this would be highly
inefficient in terms of communication complexity. Oblivious message retrieval protocols allow for achieving
the same functionality with much smaller communication complexity, when an upper bound for the number
of messages expected by the the receiving client is known. In the encrypted search setting [YSK+13, LLN15,
CKK16, CKL15, AFS18, CDG+21], a client stores an encrypted database on an untrusted server. Later
on, the client may want to search for a keyword and retrieve all entries form the database that match it,
without revealing the keyword or the entries that were matching. In the batch private information retrieval
setting [IKOS04, ACLS18, MR23], a client retrieves a subset of the entries of a database held by an untrusted
server, without revealing which entries the client wants.

⋆ mail@nilsfleischhacker.de. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

⋆⋆ larsen@cs.au.dk. Supported by Independent Research Fund Denmark (DFF) Sapere Aude Research Leader grant
No 9064-00068B.

⋆ ⋆ ⋆ mark.simkin@ethereum.org

https://orcid.org/0000-0002-2770-5444
https://orcid.org/0000-0001-8841-5929
https://orcid.org/0000-0002-7325-5261

In all of the above applications, many of the state-of-the-art protocols [LT22, CDG+21, MR23] follow the
same two-step approach. First, the client sends an encrypted hint to the server, which allows the server to
obliviously compute an encrypted vector, where all irrelevant database entries are replaced by encryptions
of zero and all relevant entries are just encrypted. Next, this vector is obliviously compressed by the server
under the assumption that it is sparse and sent back to the client, who can then use the secret decryption
key to obtain the desired results. Improving compression algorithms for encrypted sparse vectors directly
benefits all of these application.

The compression algorithm of [FLS23] based on invertible bloom lookup tables (IBLTs) [GM11] as well
as the improvements to that algorithm from a follow-up work by Fleischhacker, Larsen, Obremski, and
Simkin [FLOS23] only allow for compressing encrypted vectors if the message space of the corresponding
encryption scheme is sufficiently large. More concretely, they require the message space to be a finite field
Fq with q ≥ 2Ω(κ log κ+log(n)), where κ is an error parameter that ensures that the compression algorithm is
correct with probability roughly at least 1−2−κ. In particular, their compression algorithm4 is not applicable
to encrypted vectors, where the encryption scheme has a small plaintext space.

1.1 Our Contribution

In this work, we extend the results of Fleischhacker, Larsen, and Simkin [FLS23], along with the improvements
from [FLOS23], to encryption schemes with arbitrarily small message spaces. For a vector encrypted with
an additively homomorphic encryption scheme with message space Fq for an arbitrary prime power q, the

compression algorithm produces a digest that is Õ
(
ξ · κt+κ2

log q

)
bits large5, where ξ is the bit length of a single

ciphertext. For small plaintext spaces, our result presents the currently best known compression algorithm
for encrypted sparse vectors. For sufficiently large plaintext spaces, our result degenerates to the algorithm
from [FLS23] with the improvements from [FLOS23]. We note that [FLOS23] only provided a brief discussion
of how their work can be used to improve the algorithm of [FLS23]. Our work on the other hand, provides
full formal descriptions of the compression algorithm, along with our extension for small plaintext spaces
and full proofs.

Just like the work of Fleischhacker, Larsen, and Simkin, our compression algorithm has highly efficient
compression and decoding procedures that only rely on homomorphic additions and homomorphic multipli-
cations by constants, in particular no homomorphic multiplications of encrypted values are needed. This is
desirable, even if the encryption scheme would support homomorphic multiplications, as these operations
are usually significantly more expensive computationally.

1.2 Technical Overview

To understand why the previous constructions of [FLS23] requires a large plaintext space, let us recall it from
a high level point of view. Overly simplifying and ignoring many important details, their digest is effectively
composed of two matrices M and K, where initially each matrix entry is set to zero. During compression
of a vector of ciphertexts (c1, . . . , cn), each ci is assigned to some number of random cells. If ci is assigned
to some cell (i, j), then ci is added to M [i, j] and ci · τi is added to K[i, j], where τi is some “efficiently
recognizable” pseudorandom value. When compression is done, some of the cells in M will be zero, some will
contain exactly one encrypted message, and some will contain the encrypted sum of messages.

To decode the digest, the encrypted entries in M and K are first decrypted and then a peeling process
begins. At each step of this process, the decoding procedure tries to find a cell (i, j), where K[i, j]/M [i, j]
is one of those efficiently recognizable pseudorandom values. Let us assume there is a function Peelable with
Peelable(K[i, j]/M [i, j]) = 1, when cell (i, j) contains one of those recognizable values and zero otherwise. If
such a cell (i, j) with Peelable(K[i, j]/M [i, j]) = 1 is found, we assume that this cell contained exactly one

4 The work of Fleischhacker, Larsen, and Simkin [FLS23] provides a second algorithm based on sparse polynomial
interpolation, but the decoding complexity of that algorithm is Ω(

√
n) and it also does not work for arbitrarily

small plaintext spaces. In this work, we exclusively focus on the more efficient IBLT based solutions.
5 The soft-O notation Õ(·) ignores log factors in κ and n.

2

entry, we obtain the message M [i, j], we additionally remove that message from all the other cells in M and
K in which it was put during compression and continue with our peeling process until both M and K are
the zero matrices again.

The correctness analysis of their decoding procedure crucially relies on the fact that with overwhelming
probability Peelable(K[i, j]/M [i, j]) = 1 only happens, if the matrix cell (i, j) indeed only contained one
entry. To argue that the bad event of Peelable(K[i, j]/M [i, j]) = 1 and yet cell (i, j) contains more than
one item does not happen, their analysis requires that the efficiently recognizable pseudorandom values are
sampled from a large space. Since this space must necessarily be a subset of the plaintext space, the plaintext
space must therefore be large.

The main idea behind our modified compression algorithm for small plaintext spaces is to basically
perform a parallel repetition of these checks. We note that even when the plaintext space is small, the check
in their construction for whether a matrix cell contains exactly one message will produce the correct result
with some at least constant probability. Now instead of the value τi being a scalar, we define it to be a
vector τi := (τi,1, . . . , τi,η) for some η and we define τi · ci := (ci · τi,1, . . . , ci · τi,η). During decoding we will
apply the function Peelable to each vector component and we will exploit the fact that the function may
accidentally return an incorrect one, but will never return zero incorrectly. If all individual checks for a cell
return one, then we assume the cell contains exactly one entry with overwhelming probability. If even a single
check fails, then we can conclude with certainty that the cell contains more than one entry. By choosing η
sufficiently large, we can then drive down the probability of all checks simultaneously returning an incorrect
one, which would be required for the decoding algorithm to perform an incorrect peeling step. We conclude
our technical overview by remarking that we presented a gross oversimplification of how the compression
algorithm actually works here. Our compression algorithm in the following sections will be heavily based on
the specific algorithm presented Fleischhacker, Larsen, Obremski, and Simkin [FLOS23].

1.3 Related Work

The task of compressing encrypted, but structured data has been studied in several works prior to ours.
Johnson, Wagner, and Ramchandran [JWR04] showed that one-time pad encryptions of messages from a
source with bounded entropy can be compressed without knowledge of the encryption key through the use
of Slepian-Wolf coding [SW73]. This result was then extended to block ciphers using certain chaining modes
by Klinc et al. [KHJ+09]. Neither of those two results is applicable to our setting.

In compressed sensing [Don06, CRT06, GI10], the goal is to construct a matrix A such that one can
recover a sparse vector x from a vector Ax of small dimension. Fleischhacker, Larsen, and Simkin [FLS23]
presented a construction based on sparse polynomial interpolation, which is closely related to techniques
that are used in the context of compressed sensing. These approaches tend to suffer from high computational
complexities during both compression and decoding.

The compression algorithms for encrypted data that were constructed by Choi et al. [CDG+21] are
not applicable to ciphertexts with small plaintext spaces. The work of Liu and Tromer [LT22] proposes
compression algorithms that work for arbitrarily small plaintext spaces. Their computational compression

cost is Ω(n · t) and their decoding cost is Ω(t3), whereas our computational costs are O
(

n·(log t+κ)2

log q

)
during

compression and Õ
(

κt+κ2

log q

)
during decoding. In the case of the plaintext space being {0, 1}, their construction

slightly outperforms ours. As the plaintext space gets bigger, our compression rate improves, whereas theirs
stays the same and eventually our solution becomes preferable over theirs. Most importantly, however, their
compression algorithm requires an auxiliary input in addition to the encrypted sparse vector and without it,
they can not compress. If our compression algorithm were to be given the exact same auxiliary information,
our compression would improve in a straightforward manner and outperform their solution in terms of
compression rate for all plaintext spaces.

3

2 Preliminaries

Notation. Given a possibly randomized function f : X → Y , we will sometimes abuse notation and write
f(x) := (f(x1), . . . , f(xn)) for x ∈ Xn. For a set X, we write x ← X to denote the process of sampling a
uniformly random element x ∈ X. We write [n] to denote the set {0, . . . , n − 1}. For a vector v ∈ Xn and
i ∈ [n], we write vi to denote its i-th component. For a matrix M ∈ Xn×m, we write M [i, j] to denote the
cell in the i-th row and j-th column. For a set Xn, we use the scissor operator ✄(Xn) := {(x1, . . . , xn) ∈
Xn | xi ̸= xj ∀i, j ∈ [n]} to denote the subset of Xn consisting only of those vectors with unique entries.

Definition 1 (Sparse Vector Representation). Let Fq be a field and let a ∈ Fn
q be a vector. The sparse

representation of a is the set sparse(a) := {(i, ai) | ai ̸= 0}.

2.1 Homomorphic Encryption

Informally, a homomorphic encryption scheme allows to compute an encryption of f(m) given only the
description of f and an encryption of m. Throughout the paper, we assume that functions are represented
as circuits composed of addition and multiplication gates. We recall the formal definition of a homomorphic
encryption scheme, closely following the notation of [FLS23].

Definition 2. A homomorphic encryption scheme E is defined by a tuple of PPT algorithms (Gen,Enc,Eval,
Dec) that work as follows:

Gen(1λ): The key generation algorithm takes the security parameter 1λ as input and returns a secret key
sk and public key pk. The public key implicitly defines a message space M and ciphertext space C. We
denote the set of all public keys as P.

Enc(pk,m): The encryption algorithm takes the public key pk and message m ∈ M as input and returns a
ciphertext c ∈ C.

Eval(pk, f, c): The evaluation algorithm takes the public key pk, a function f : Mn → Mm, and a vector
c ∈ Cn of ciphertexts as input and returns a new vector of ciphertexts c̃ ∈ Cm.

Dec(sk, c): The deterministic decryption algorithm takes the secret key sk and ciphertext c ∈ C as input and
returns a message m ∈M∪ {⊥}.

Throughout the paper it is assumed that the ciphertext size is fixed and does not increase when applying
the homomorphic evaluation algorithm. We extend the definition of Enc and Dec to vectors and matrices of
messages and ciphertexts respectively, by applying them componentwise, i.e., for any matrix M ∈ Mn×m,
we have Enc(pk,M) = C with C ∈ Cn×m and C[i, j] = Enc(pk,M [i, j]) and equivalently Dec(sk,C) = M ′

with M ′ ∈Mn×m and M ′[i, j] = Dec(sk, C[i, j]). This also applies recursively when, for instance, decrypting
a vector of matrices of ciphertexts. Let E be an additively homomorphic encryption scheme with message
spaceM = Fq for some prime power q. Let f : F2

q → Fq, f(a, b) := a+b and let gα : Fq → Fq, g(a) := α ·a for
any constant α ∈ Fq. For notational convenience we write Eval(pk, f, (c1, c2)

⊺) as c1 ⊞ c2 and Eval(pk, gα, c)
as α ⊡ c with pk being inferrable from context. We naturally extend these notions to vectors, i.e. for two
vectors c, c′ ∈ Cn we denote c ⊞ c′ = (c0 ⊞ c′0, . . . , cn ⊞ c′n)

⊺ and for a vector α ∈ Mn we denote α ⊡ c =
(α0 ⊡ c, . . . , α0 ⊡ c)⊺. For the sake of simplicity we restrict ourselves to homomorphic encryption schemes
with unique secret keys, i.e. for a given pk, there exists at most one sk, such that (sk, pk) ← Gen(1λ). The
unique secret key is denoted as Gen−1(pk) and we stress that the function Gen−1(·) does not need to be
efficiently computable.

We recall the definition of ciphertexts valid relative to a class of circuits and of a ciphertext compression
scheme from [FLS23].

Definition 3 (Z-Validity). Let (Gen,Enc,Eval,Dec) be a homomorphic encryption scheme, let Z be a class
of circuits, and let pk be a public key. A vector c of ciphertexts is Z-valid for pk, iff for all functions f ∈ Z it
holds that ⊥ /∈ Dec(Gen−1(pk), c) and Dec(Gen−1(pk),Eval(pk, f, c) = f(Dec(sk, c)). We denote by vld(Z, pk)
the set of ciphertext vectors Z-valid for pk.

4

Definition 4 (Ciphertext Compression Scheme). Let E = (Gen,Enc,Eval,Dec) be a homomorphic pub-
lic key encryption scheme with ciphertext size ξ = ξ(λ). Let P be the public key space of E. For each pk ∈ P
let Fpk be a set of ciphertext vectors. A δ-compressing, (1 − ϵ)-correct ciphertext compression scheme for
the family F := {Fpk | pk ∈ P} is a pair of PPT algorithms (Compress,Decompress), such that for any
(sk, pk)← Gen(1λ) and any c ∈ Fpk the output length of Compress(pk, c) is at most δξ|c| and it holds that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c))] = 1− ϵ(λ),

where the probability is taken over the random coins of the compression and decompression algorithms.

Just like the construction of [FLS23], the construction described in Section 3 works for ciphertext vectors
of low Hamming weight which allow for the homomorphic evaluation of inner product functions. The relevant
definitions, taken verbatim from [FLS23] are recalled in the following.

Definition 5 (Inner Product Functions). The class of inner product functions is the set of functions
Zip = {fa | a ∈ Fn

q } with
fa : Fn

q → Fq, fa(x) := ⟨a,x⟩.
Definition 6 (Zip-Valid Low Hamming Weight Ciphertext Vectors). Let E = (Gen,Enc,Eval,Dec)
be a homomorphic public key encryption scheme. For any pk ∈ P, let

F ip
t,pk :=

{
c ∈ vld(Zip, pk) | hw(Dec(Gen−1(pk), c)) < t

}
.

We then define the family of Zip-valid ciphertext vectors with low hamming weight as F ip
t := {F ip

t,pk | pk ∈ P}.

2.2 Stacked Invertible Bloom Lookup Tables

An invertible Bloom lookup table (IBLT) is a data structure first introduced by Goodrich and Mitzen-
macher [GM11] that supports three operations called Insert, Peel, and List. The insertion operations adds
elements to the data structure, the deletion operations removes them6 and the list operation recovers all
currently present elements with high probability, if not too many elements are present.

An improved version of IBLTs, called stacked IBLTs, was recently introduced by Fleischhacker, Larsen,
Obremski, and Simkin [FLOS23]. The data structure, when instantiated such that List correctly recovers t
elements with probability 1− 2−κ, consists of a series of log t consecutively smaller triples of count, key, and
value matrices C,K,V . For each row in each triple of matrices it further requires an O(loglog t + κ)-wise
independent hash functions hi,j mapping to [γi,j], where γi,j is the length of the jth row in the ith triple of
matrices. . Initially all values in all matrices are set to zero. To insert a key-value pair (d, x) into the data
structure, we locate the cells Ci[j, hi,j(d)], Ki[j, hi,j(d)] and V i[j, hi,j(d)] and add 1 to each counter, d to
each key sum and x to each value sum for all values of i and j. To remove an element,the inverse operations
are performed. To list all elements we start with the first and largest C,K,V , search for any 1 entries in
C and add the corresponding key-value pairs to the output list. We then continue with the next smallest
C,K,V , remove all pairs found so far from it, and continue looking for 1 entries. This continues until we
have iterated over all triples of matrices. Fleischhacker, Larsen, Obremski, and Simkin [FLOS23] showed
that this list procedure will fail with probability at most 2−κ over the choice of the hash functions.

We simplify the description of stacked IBLTs a bit here, as we will not require multiple insertions or
delete operations. So instead we describe stacked IBLTs with just a single shot encoding operation and a
matching decoding operation in Figure 1.

The following corollary follows immediately from [FLOS23, Theorem 1] by replacing the O(κ+loglog n)-
wise independent hash functions with truly random hash functions.

Corollary 7 ([FLOS23]). Let h be a vector of vectors of truly random hash functions with appropriate
output domains. Then for any S ∈ Fq × Fq with |S| ≤ t and such that for all (i,m), (i′,m′) ∈ S, i ̸= i′, it
holds that

Pr[Decode(Encode(S,h),h) = S] ≥ 1− 2κ

where the probability is taken over the random choice of h.
6 For the present discussion, we assume that only previously inserted elements are deleted.

5

Encode(S,h)

for 0 ≤ i < log t− log τ

Fi := BasicEnc(1, ⌈Ct2−i⌉, S,hi)

for 0 ≤ i < log τ

i′ := ⌊log t− log τ⌋

Fi′ := BasicEnc(2i, ⌈Cτ2−i⌉, S,hi′)

return (F0, . . . , F⌈log t⌉−1)

Decode((F0, . . . , F⌈log t⌉−1),h)

S′ := ∅
for 0 ≤ i < ⌈log t⌉

Fi := BasicDel(Fi, S
′,hi)

S′ := S′ ∪ BasicDec(Fi,hi)

return S′

Fig. 1. The stacked IBLT of [FLOS23], slightly simplified as we only require one-shot encoding and decoding instead
of successive updates. It uses the basic filter specified in Figure 2 as a building block and requires a vector of vectors
of hash functions with the appropriate output domains. We have τ = C0κ for a sufficiently large constant C0 > 0
and C = 8e.

2.3 Pseudorandom Functions with Variable Codomains

The construction presented in Section 3 relies on a pseudorandom function that needs to be able to produce
outputs from variable codomains. We define such a variant of PRFs here.

Definition 8 (Pseudorandom Function with Variable Codomain). An efficiently computable function
PRF : {0, 1}λ×N×{0, 1}∗ → N is a pseudorandom function with variable codomain, if it satisfies the following
properties.

1. For any s ∈ {0, 1}λ, any γ ∈ N with log γ = poly(λ), and any x ∈ {0, 1}∗, it holds that PRF(s, γ, x) ∈ [γ].
2. Let G be the set of all functions g : N× {0, 1}∗ → N such that for all γ ∈ N and all x ∈ {0, 1}∗ it holds

that g(γ, x) ∈ [γ]. For all PPT adversaries A it holds that

|Pr[APRF(s,·,·)(1λ) = 1]− Pr[Ag(·,·)(1λ) = 1]| ≤ negl(λ)

where the probabilities are taken over the uniform choice of s ∈ {0, 1}λ and g ∈ G respectively.

While this funky definition of a PRF is helpful to us as an abstraction, such PRFs are luckily existentially
equivalent to regular PRFs. To see this, consider a regular PRF PRF′ : {0, 1}λ × {0, 1}∗ → {0, 1}λ. We can
construct a PRF with variable codomain PRF as follows. On input (s, γ, x) first compute s′ := PRF′(s, γ). This
step gives us (computationally) independent keys for the PRF evaluations for different output domains. Then
compute y′ := PRF′(s′, x), this already gives us a pseudorandom value however it’s from the wrong domain.
We can now stretch y′ to a sufficient length using a pseudorandom generator and finally reduce it modulo γ
to get a pseudorandom value in [γ]. A simple hybrid argument can be used to establish pseudorandomness.

2.4 Wunderbar Pseudorandom Vectors over K ∈ Fη
q

As in the original construction, the ciphertext compression scheme relies on wunderbar pseudorandom vec-
tors. The construction requires that the the universe K over which the wunderbar pseudorandom vector
operates is “large enough”. In [FLS23] this was achieved by requiring that the field the encryption scheme
operates on is large. Here we show how the same can be achieved by instead defining K ⊆ Fη

q for an arbitrar-
ily small q and large enough η. We first recall the definition of a a wunderbar pseudorandom vector taken
verbatim from [FLS23].

Definition 9. A pseudorandom vector with index recovery for an efficiently sampleable universe K = K(λ)
consists of a triple of ppt algorithms (Sample,Entry, Index) such that

Sample(1λ, 1n): The sampling algorithm takes as input the security parameter λ and the vector length n in
unary and outputs the description of a pseudorandom vector s.

6

BasicEnc(ρ, γ, S,h)

M := 0ρ×γ

K := 0ρ×γ

C := 0ρ×γ

foreach (d,m) ∈ S

foreach i ∈ [ρ]

j := hi(d)

M [i, j] := M [i, j] +m

K[i, j] := K[i, j] + d

C[i, j] := C[i, j] + 1

return (M ,K,C)

BasicDel((K,M ,C), S̃,h)

foreach (d,m) ∈ S̃

foreach i ∈ [ρ]

j := hi(d)

M [i, j] := M [i, j]−m

K[i, j] := K[i, j]− d

C[i, j] := C[i, j]− 1

return (M ,K,M)

BasicDec((K,M ,C),h)

S′ := ∅
for (i, j) ∈ [ρ]× [γ]

if C[i, j] = 1

S′ := S′ ∪ {(K[i, j],M [i, j])}
return S′

Fig. 2. The basic IBLT of [FLOS23], slightly simplified as we only require one-shot encoding and decoding instead
of successive updates. The basic filter requires a number of rows ρ, a number of columns γ as well as a vector of hash
functions h ∈ {h : Fq → [γ]}ρ.

Entry(s, i): The deterministic retrieving algorithm takes as input a description s and an index i ∈ [n] and
outputs a value ki ∈ K.

Index(s, k): The deterministic index recovery algorithm takes as input a description s and a value k and
outputs either an index i ∈ [n] or ⊥.

A pseudorandom vector with index recovery is correct, if for all vector lengths n = poly(λ) and all seeds
s← Sample(1λ, 1n) it holds that:

1. For all indices i ∈ [n] it holds that Index(s,Entry(s, i)) = i.
2. For all all k∗ ̸∈ {Entry(s, i) | i ∈ [n]} it holds that Index(s, k∗) = ⊥.

The pseudorandom vector is wunderbar if the description of a vector has length O(λ) and the runtime
of Entry and Index is O(polylog(n)). A pseudorandom vector is secure, if for all n = poly(λ) and all ppt
algorithms A ∣∣∣∣∣∣∣∣∣∣

Pr


s← Sample(1λ, 1n),

k :=

Entry(s, 1)
...

Entry(s, n)

 : A(k)

− Pr[k←✄(Kn) : A(k)]

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

Fleischhacker, Larsen, and Simkin [FLS23] construct a wunderbar pseudorandom vector for K ⊆ Fq from
a pseudorandom permutation. The construction essentially just takes a PRP over Fλ

2 and uses an efficiently
computable and invertible injective function to map values from Fλ

2 to Fq and back. The construction is
easily generalized for K ⊆ S for any set S as long as there exists an efficiently computable and invertible
injective function from Fλ

2 to S.
The new construction requires K ⊆ Fη

q for some η and such that |K| > α for some given lower bound α.
We specify the required injective function in the following.

Let decompp : N → [p]∗ denote the function that maps an integer to its canonical p-ary representation
and let projp : [p]∗ → N be its inverse. Let q = pm be an arbitrary prime power and let η = ⌈λ/ log q⌉ =

7

⌈λ/(m log p)⌉ We then define an injective function

binToField : Fλ
2 → Fη

q binToField(b) = d

where

di :=

m−1∑
j=0

cim+jx
j

where
c := decompq(proj2(b)).

We further specify the inverse function as

fieldToBin : Fη
q → Fλ

2 ∪ {⊥}

fieldToBin(d) :=

{
⊥ if projp(c) ≥ 2λ

decomp2(projq(c)) otherwise

where

di =

m−1∑
j=0

cim+jx
j .

For a given α, any λ = Ω(logα) leads to the required wunderbar pseudorandom vector.

3 A Ciphertext Compression Scheme for Small Fields

In this section we present a construction of a ciphertext compression scheme, that in contrast to [FLS23]
also works if the encryption scheme is defined over an arbitrarily small field, even for F2.

3.1 The Generalized Helpful Lemma

Fleischhacker, Larsen, and Simkin [FLS23] state the following helpful lemma.

Lemma 10 (Helpful Lemma [FLS23, Lemma 13]). Let K ⊆ Fq, (m1, . . . ,mn) ∈ Fn
q and I ⊆ [n] be

arbitrary such that
∑

i∈I mi ̸= 0 and there exist i, i′ ∈ I with 0 ̸∈ {mi,mi′}. It holds that

Pr

[
k← Kn : ∃j ∈ [n]. kj =

∑
i∈I kimi∑
i∈I mi

]
≤ n

|K|
We generalize this lemma to vectors of Fq elements.

Lemma 11 (Generalized Helpful Lemma). Let η ∈ N+, K ⊆ Fη
q , (m1, . . . ,mn) ∈ Fn

q , and I ⊆ [n] be
arbitrary such that

∑
i∈I mi ̸= 0 and there exist i, i′ ∈ I with 0 ̸∈ {mi,mi′}. It holds that

Pr

[
k← Kn : ∃j ∈ [n].kj =

(∑
i∈I

mi

)−1 ·
∑
i∈I

mi · ki

]
≤ n

|K|

Proof. Observe that kj ∈ K ⊆ Fη
q can be interpreted as polynomials of degree at most η−1 with coefficients

in Fq. Similarly, mi ∈ Fq is simply a constant polynomial over Fq and the vector-scalar multiplications are
in fact correct polynomial multiplications resulting in polynomials of degree at most η − 1 with coefficients
in Fq. Therefore, the lemma can be reinterpreted as working over the extension field Fqη . It then follows
directly as a special case of Lemma 10 for Fqη . ⊓⊔
As in [FLS23], the following corollary follows from the observation that due to the birthday bound the
statistical distance between sampling from Kn and ✄(Kn)) is at most n2/|K|.
Corollary 12. Let η ∈ N+, K ⊆ Fη

q , (m1, . . . ,mn) ∈ Fn
q , and I ⊆ [n] be arbitrary such that

∑
i∈I mi ̸= 0

and there exist i, i′ ∈ I with 0 ̸∈ {mi,mi′}. It holds that

Pr

[
k← Kn : ∃j ∈ [n].kj =

∑
i∈I kimi∑
i∈I mi

]
≤ n2 + n

|K|

8

Encode1(S, s1)

for 0 ≤ i < log t− log τ

Fi := BasicEnc1(1, ⌈Ct2−i⌉, S, (i, s1))
for 0 ≤ i < log τ

i′ := ⌊log t− log τ⌋

Fi′ := BasicEnc1(2
i, ⌈Cτ2−i⌉, S, (i′, s1))

return (F0, . . . , F⌈log t⌉−1)

Decode1((F0, . . . , F⌈log t⌉−1), s1)

S′ := ∅
for 0 ≤ i < ⌈log t⌉

Fi := BasicDel1(Fi, S
′, (i, s1))

S′ := S′ ∪ BasicDec1(Fi, (i, s1))

return S′

Encode2(S, s1, s2)

for 0 ≤ i < log t− log τ

Fi := BasicEnc2(1, ⌈Ct2−i⌉, S, (i, s1), s2)
for 0 ≤ i < log τ

i′ := ⌊log t− log τ⌋

Fi′ := BasicEnc2(2
i, ⌈Cτ2−i⌉, S, (i′, s1), s2)

return (F0, . . . , F⌈log t⌉−1)

Decode2((F0, . . . , F⌈log t⌉−1), s1, s2)

S′ := ∅
for 0 ≤ i < ⌈logn⌉

Fi := BasicDel2(Fi, S
′, (i, s1), s2)

S′ := S′ ∪ BasicDec2(Fi, (i, s1), s2)

return S′

Fig. 3. Variants of the simplified stacked IBLT of [FLOS23]. These use modified basic IBLTs specified in Figure 4
respectively as a building blocks. As with the original stacked IBLT we have τ = C0κ for a sufficiently large constant
C0 > 0 and C = 8e. Changes between successive modifications are marked in gray.

3.2 Construction

The construction presented here essentially takes the construction of Fleischhacker, Larsen, and Simkin [FLS23],
applies the improved IBLT construction of [FLOS23] and instantiates the wunderbar pseudorandom vector
using the construction for K ⊆ Fη

q described in Section 2.4. For completeness, since [FLOS23] does not
include a formal proof that their improved IBLT can be used as a drop-in replacement in [FLS23], we give
a full formal proof of the construction here.

Before we give the actual construction we first specify two variants of the stacked IBLT construction of
[FLOS23] as specified in Figure 1 and Figure 2 and prove several lemmas about them. These two variants
are specified in Figure 3 and Figure 4. We now state and prove several lemmas about these two variants.
The first lemma states that the first variant of the construction of [FLOS23] as described in Figure 3 still
works as expected. Essentially this means that the construction of [FLOS23] still works as expected even if
the truly random functions it uses are replaced by pseudorandom ones.

Lemma 13. Let PRF be a variable output domain pseudorandom function as defined in Definition 8. Then
for any set S ⊆ Fq × Fq with |S| ≤ n and such that for all (i,m), (i′,m′) ∈ S, i ̸= i′ it holds that

Pr[Decode1(Encode1(ρ, γ, S, s1), s1) = S] ≥ 1− 2−κ − negl(λ)

where the probability is taken over the uniform choice of s1.

Proof. The lemma follows from Corollary 7 and by a simple reduction to the pseudorandom of PRF. Let S
be an arbitrary set. We established the claimed bound by constructing an adversary A against the pseudo-
randomness of PRF as follows. We then related the success probability of A, to the probability of Encode1
and Decode1 working as intended. On input 1λ and given access to an oracle o that contains either a truly
random function of PRF(s1, ·, ·), A computes

S′ = Decode(Encode(ρ, γ, S,h),h)

9

BasicEnc1(ρ, γ, S, (r, s1)) BasicEnc2(ρ, γ, S, (r, s1), s2)

M := 0ρ×γ M := 0ρ×γ

K := 0ρ×γ K := (0η)ρ×γ

C := 0ρ×γ

foreach (d,m) ∈ S foreach (d,m) ∈ S

foreach i ∈ [ρ] foreach i ∈ [ρ]

j := PRF(s1, γ, (r, i, d)) j := PRF(s1, γ, (r, i, d))

M [i, j] := M [i, j] +m M [i, j] := M [i, j] +m

k := Entry(s2, d)

K[i, j] := K[i, j] + d K[i, j] := K[i, j] + (m · k)
C[i, j] := C[i, j] + 1

return (M ,K,C) return (M ,K)

BasicDel1((K,M ,C), S̃, (r, s1)) BasicDel2((K,M), S̃, (r, s1, s2))

foreach (d,m) ∈ S̃ foreach (d,m) ∈ S̃

foreach i ∈ [ρ] foreach i ∈ [ρ]

j := PRF(s1, γ, (r, i, d)) j := PRF(s1, γ, (r, i, d))

k := Entry(s2, d)

M [i, j] := M [i, j]−m M [i, j] := M [i, j]−m

K[i, j] := K[i, j]− d K[i, j] := K[i, j]− (m · k)
C[i, j] := C[i, j]− 1

return (M ,K,M) return (M ,K)

BasicDec1((K,M ,C), (r, s1)) BasicDec2((K,M), (r, s1, s2))

S′ := ∅ S′ := ∅
for (i, j) ∈ [ρ]× [γ] for (i, j) ∈ [ρ]× [γ]

if M [i, j] ̸= 0

d := Index
(
s2, (M [i, j])−1 ·K[i, j]

)
if C[i, j] = 1 if d ∈ [n]

S′ := S′ ∪ {(K[i, j],M [i, j])} S′ := S′ ∪ {(d,M [i, j])}
return S′ return S′

Fig. 4. The left hand side shows the basic IBLT as specified in Figure 2 but using a PRF with variable codomain as
replacement for the truly random functions. The difference between the original basic IBLT and this one are marked
in gray. The right hand side shows a modified basic IBLT that works without a count matrix and allows insertions
using only addition and multiplication by constants. The differences are again marked in gray. As long as all inserted
messages are non-zero, the decoding of all three filters will be the same with overwhelming probability.

10

but replaces invocations of hi,j(·) with queries of the form o(γi, (i, j, ·)). If S′ = S, A outputs 0, otherwise it
outputs 1. Note that if o contains a truly random function, this perfectly simulates

Decode(Encode(ρ, γ, S,h),h).

If on the other hand o contains PRF(s1, ·, ·), this perfectly simulates

Decode1(Encode1(ρ, γ, S, s2), s2).

From the pseudorandomness of PRF it follows that∣∣∣∣ Pr[Decode(Encode(ρ, γ, S,h),h) = S]

−Pr[Decode1(Encode1(ρ, γ, S, s2), s2) = S]

∣∣∣∣ ≤ negl(λ).

Combined with Corollary 7 the lemma immediately follows. ⊓⊔

The second variant of the stacked IBLT construction described in Figure 3 essentially applies the same
modification to stacked IBLTs that [FLS23] applied to regular IBLTs. That is, detecting “peelable” entries
no longer uses a count matrix, but instead uses a wunderbar pseudorandom vector. The following lemma
essentially states that, as long as the encoded set does not contain any zero entries, the two variants of stacked
IBLTs will decode the same set with high probability if the wunderbar pseudorandom vector operates over
a large enough universe.

Lemma 14. Let (Entry, Index) be a wunderbar pseudorandom vector. Then, for any r, ρ, γ ∈ Z, any PRF
key s2, and any set S ⊆ [n] × (Fq \ {0}) such that |S| ≤ t and for all distinct (i,m), (i′,m′) ∈ S, i ̸= i′ it
holds that

Pr

[
BasicDec1(BasicEnc1(ρ, γ, S, (r, s1)), (r, s1))

= BasicDec2(BasicEnc2(ρ, γ, S, (r, s1), s2), (r, s1), s2)

]

≥ 1− ργ(n2 + n)

|K|

where the probability is taken over the uniform choice of s1.

Proof. Let S1, S2 be the sets decoded by BasicDec1 and BasicDec2. We consider two types of errors: There
could be an (d,m) ∈ S1 \ S2 or an (d,m) ∈ S2 \ S1.

In the first case, since BasicDec1 is decoding the element, it must the case that (d,m) is mapped into a
cell on its own. However, this implies that the corresponding cell in the output of BasicEnc2 will contain m
in the value matrix and m · Entry(s2, d) in the key matrix. Therefore, since m ̸= 0 and by the correctness of
the wunderbar pseudorandom vector, BasicDec2 will also decode the same element.

In the second case, it must hold that several entries m1, . . . ,ma got mapped to the same position, but it
so happens that

Index
(
s2,

(a∑
i=1

mi

)−1 ·
a∑

i=1

mi · Entry(s2, d)
)
∈ [n]

by using the pseudorandomness of the wunderbar pseudorandom vector and applying Corollary 12 we can
conclude that this will happen for any particular cell with probability at most (n2 + n)/|K|. Since there are
ργ cells, the lemma follows by a union bound over the number of cells. ⊓⊔

The following lemma states that deletion works as expected in both variants of the basic IBLTs described
in Figure 4 and used as building blocks in the variants of the stacked IBLT described in Figure 3. That is,
if a set S is encoded and a subset S̃ is deleted from the encoding, the result is identical to a fresh encoding
of S \ S̃ in both constructions.

11

Lemma 15. For any r, γ, ρ ∈ Z, any PRF key s1, any wunderbar pseudorandom vector s2, any set S ⊆
[n]× Fq such that for all distinct (i,m), (i′,m′) ∈ S, i ̸= i′, and any subset S̃ ⊆ S it holds that

BasicDel1(BasicEnc1(ρ, γ, S, (r, s1)), S̃, (r, s1))

= BasicEnc1(ρ, γ, S \ S̃, (r, s1))

and
BasicDel2(BasicEnc2(ρ, γ, S, (r, s1), s2), S̃, r, s1, s2)

= BasicEnc2(ρ, γ, S \ S̃, (r, s1), s2)

where the probability is taken over the choice of h, s1, and s2.

Proof. The lemma follows easily by observing that deletion exactly subtracts the values that were added
during encoding in both cases. ⊓⊔

The following lemma now states that also the second variant of the stacked IBLT described in Figure 3 works
as intended, as long as the wunderbar pseudorandom vector operates over a large enough universe K and
the set S does not contain any zero entries.

Lemma 16. Let PRF be a variable output domain pseudorandom function as defined in Definition 8. Let
(Entry, Index) be a wunderbar pseudorandom vector. Then there exists a large enough constant C ′ > 0 such
that for any set S ⊆ Fq × {Fq} with |S| ≤ t and such that for all distinct (i,m), (i′,m′) ∈ S, i ̸= i′ it holds
that

Pr[Decode2(Encode2(ρ, γ, S, s1, s2), s1, s2) = S]

≥ 1− 2−κ − C ′(n2 + n)(t+ κ log κ)

|K|
− negl(λ)

where the probability is taken over the uniform choice of s1 and s2.

Proof. Let S ⊆ Fq×{Fq} with |S| ≤ t be arbitrary. Consider the two decoding procedures running in parallel.
Clearly, for the end result to differ, one of the executions of BasicDec1/2 has to result in different outputs.

Let 0 ≤ ı̃ < ⌈log t⌉ be an index, such that for all executions of BasicDec1/2 with i ≤ ı̃ the outputs were

identical. Let S̃ be the set S′ before the ith execution of BasicDec1/2. Clearly S̃′ is the same in both cases.
Since BasicDec1 decodes elements if and only if they happen to be alone in their cell, BasicDec1 never causes
any false positives and it must always hold that S̃ ⊆ S. It thus follows from Lemma 15, that the outputs of
the ı̃th executions of BasicDec1/2 are

BasicDec1(BasicEnc1(ρı̃, γı̃, S \ S̃, (̃ı, s1)), (̃ı, s1))

and

BasicDec2(BasicEnc2(ρı̃, γı̃, S \ S̃, (̃ı, s1), s2), (̃ı, s1), s2)

for some choice of ρı̃ and γı̃.
By Lemma 14 the probability that the output differs is then at most ρı̃γı̃(n

2+n)/|K|. With a simple union
bound over all indices 0 ≤ ı̃ < log t and by observing that the entire datastructure overall has O(t+ κ log κ)
cells it then follows that there exists some large enough constant C ′ such that the output of Decode2 differs
from the output of Decode1 with probability at most

n2 + n

|K|
·
∑

0≤i<log t

ρiγi ≤
C ′(n2 + n)(t+ κ log κ)

|K|
.

Since by Lemma 13 the output of Decode1 is correct with probability 1− 2−κ − negl(λ), the lemma follows
by another union bound. ⊓⊔

12

̂BasicEnc(ρ, γ, c, (r, s1), s2))

M := Enc0ρ×γ

K := Enc(0δ)ρ×γ

foreach d ∈ [|c|]
foreach i ∈ [ρ]

j := PRF(s1, γ, (r, i, d))

M [i, j] := M [i, j]⊞cd

k := Entry(s2, d)

K[i, j] := K[i, j]⊞(cd ⊡ k)

Fig. 5. The ̂BasicEnc procedure is a modified version of BasicEnc2 to allow filling the filter under additively homo-
morphic encryption. Changes are marked in gray.

Compress(pk, c)

s1 ← {0, 1}λ

s2 ← Sample(1λ, 1n)

for 0 ≤ i < log t− log τ

Fi := ̂BasicEnc(1, ⌈Cn2−i⌉, c, (i, s1), s2)
for 0 ≤ i < log τ

i′ := ⌊log t− log τ⌋

Fi′ := ̂BasicEnc(2i, ⌈Cτ2−i⌉, c, (i′, s1), s2)
return ((F0, . . . , F⌈log t⌉−1), s1, s2)

Decompress(sk, (F , s1, s2))

F ′ := Dec(sk,F)

return Decode2(F
′, s1, s2))

Fig. 6. A ciphertext compression scheme for arbitrary additively homomorphic encryption schemes for F ip
t,pk.

We now specify a final variant of the basic encoding procedure in Figure 5. Essentially the only important

difference between ̂BasicEnc and BasicEnc2 is that the former acts on an encrypted version of the encoded set
(represented by a vector of ciphertexts). This now finally allows us to state the actual ciphertext compression
scheme in Figure 6 and we state the correctness of the compression scheme in Theorem 17.

Theorem 17. Let E = (Gen,Enc,Dec) be an additively homomorphic encryption scheme with plaintext space
Fq and ciphertext length ξ = ξ(λ). Let (Sample,Entry, Index) be a wunderbar pseudorandom vector with index
recovery for a universe K ⊆ Fη with |K| ≥ C ′(n2 + n)(t + κ log κ) · 2κ for a large enough constant C ′ > 0
and let PRF be a pseudorandom function with variable codomain. Then (Compress,Decompress) as specified
in Figure 6 is a (1−2−(κ−1)−negl(λ))-correct (λ+(t+κ log κ)ηξ)/(nξ)) compressing ciphertext compression

scheme for F ip
t .

Before we prove this theorem we will state the following simple corollary that follows simply by instantiating
the construction with the wunderbar pseudorandom vector from Section 2.4 and holds for all reasonable
encryption schemes with ciphertext size ξ = Ω(λ).

Corollary 18. Let E = (Gen,Enc,Dec) be an additively homomorphic encryption scheme with plaintext space
Fq and ciphertext length ξ = Ω(λ). Let PRP be a pseudorandom permutation over {0, 1}κ+C′′+2 logn+log(t+κ log κ)

for some large enough constant C ′′ and let PRF be a pseudorandom function with variable codomain. Then
(Compress,Decompress) as specified in Figure 6 can be instantiated to be a (1 − 2−(κ−1) − negl(λ))-correct

and Õ(κt+κ2

n log q) compressing7 ciphertext compression scheme for F ip
t .

7 The soft-O notation Õ(·) ignores log factors in κ and n.

13

Proof (Theorem 17). First observe that Compress executes exactly Encode2 on the set S = {(d,m) ∈ [n]×Fq |
Dec(Gen−1(pk), cd)} but under homomorphic encryption. Each cell in the encoding is computed as the
inner product of the ciphertext vector and some plaintext vector. It thus follows from the Zip validity of
c, that after decryption step in Decompress we have F ′ = Encode2(S, s1, s2). However, since by design
any (d, 0) ∈ S does not influence the value of F ′ we have in fact that F ′ = Encode2(S

′, s1, s2) where

S′ := {(d,m) ∈ S | m ̸= 0} = sparse(). Since c ∈ F ip
t,pk and thus |S′| ≤ t, we can apply Lemma 16 that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c)]

= Pr[Decode2(Encode2(S
′, s1, s2), s1, s2) = S′]

≥ 1− 2−κ − O(n2(t+ κ log κ))

|K|
− negl(λ)

= 1− 2−κ − O(n2(t+ κ log κ))

Ω(n2(t+ κ log κ) · 2κ
− negl(λ)

≥ 1− 2−(κ−1) − negl(λ)

as claimed.

To see the compression factor, consider that the output of Compress consists of s1 and s2, both of which
have length O(λ) as well as the encrypted stacked IBLT without counters. The IBLT consists of pairs of
value and key matrices. The value matrices combined have O(t+κ log κ) entries of 1 ciphertext each and the
key matrices combined have O(t+κ log κ) entries of η ciphertexts each. Thus overall the output of Compress
has a length of O(λ+ (t+ κ log κ)ηξ) bits leading to the claimed compression factor. ⊓⊔

References

ACLS18. Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed queries and
amortized query processing. In 2018 IEEE Symposium on Security and Privacy, pages 962–979, San
Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society Press. doi:10.1109/SP.2018.00062. 1

AFS18. Adi Akavia, Dan Feldman, and Hayim Shaul. Secure search on encrypted data via multi-ring sketch. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th
Conference on Computer and Communications Security, pages 985–1001, Toronto, ON, Canada, Octo-
ber 15–19, 2018. ACM Press. doi:10.1145/3243734.3243810. 1

CDG+21. Seung Geol Choi, Dana Dachman-Soled, S. Dov Gordon, Linsheng Liu, and Arkady Yerukhimovich. Com-
pressed oblivious encoding for homomorphically encrypted search. In Giovanni Vigna and Elaine Shi,
editors, ACM CCS 2021: 28th Conference on Computer and Communications Security, pages 2277–2291,
Virtual Event, Republic of Korea, November 15–19, 2021. ACM Press. doi:10.1145/3460120.3484792.
1, 1.3

CKK16. Jung Hee Cheon, Miran Kim, and Myungsun Kim. Optimized search-and-compute circuits and their
application to query evaluation on encrypted data. IEEE Transactions on Information Forensics and
Security, 11(1):188–199, January 2016. doi:10.1109/TIFS.2015.2483486. 1

CKL15. Jung Hee Cheon, Miran Kim, and Kristin E. Lauter. Homomorphic computation of edit distance. In
Michael Brenner, Nicolas Christin, Benjamin Johnson, and Kurt Rohloff, editors, FC 2015 Workshops,
volume 8976 of Lecture Notes in Computer Science, pages 194–212, San Juan, Puerto Rico, January 30,
2015. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-48051-9_15. 1

CRT06. Emmanuel J. Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory,
52(2):489–509, February 2006. doi:10.1109/TIT.2005.862083. 1.3

Don06. David L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306, April
2006. doi:10.1109/TIT.2006.871582. 1.3

FLOS23. Nils Fleischhacker, Kasper Green Larsen, Maciej Obremski, and Mark Simkin. Invertible bloom lookup
tables with less memory and randomness. Cryptology ePrint Archive, Report 2023/918, 2023. https:

//eprint.iacr.org/2023/918. 1, 1.1, 1.2, 2.2, 2.2, 7, 1, 2, 3, 3.2, 3.2

14

https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1145/3243734.3243810
https://doi.org/10.1145/3460120.3484792
https://doi.org/10.1109/TIFS.2015.2483486
https://doi.org/10.1007/978-3-662-48051-9_15
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1109/TIT.2006.871582
https://eprint.iacr.org/2023/918
https://eprint.iacr.org/2023/918

FLS23. Nils Fleischhacker, Kasper Green Larsen, and Mark Simkin. How to compress encrypted data. In Carmit
Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, Part I, volume 14004 of
Lecture Notes in Computer Science, pages 551–577, Lyon, France, April 23–27, 2023. Springer, Heidelberg,
Germany. doi:10.1007/978-3-031-30545-0_19. 1, 1.1, 1.2, 4, 1.3, 2.1, 2.1, 2.1, 2.4, 2.4, 3, 3.1, 10, 3.1,
3.2, 3.2

GI10. Anna Gilbert and Piotr Indyk. Sparse recovery using sparse matrices. Proceedings of the IEEE, 98(6):937–
947, June 2010. doi:10.1109/JPROC.2010.2045092. 1.3

GM11. Michael T Goodrich and Michael Mitzenmacher. Invertible bloom lookup tables. In 49th Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton), pages 792–799. IEEE Computer
Society Press, September 28–30, 2011. doi:10.1109/Allerton.2011.6120248. 1, 2.2

IKOS04. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and their applications. In
László Babai, editor, 36th Annual ACM Symposium on Theory of Computing, pages 262–271, Chicago, IL,
USA, June 13–16, 2004. ACM Press. doi:10.1145/1007352.1007396. 1

JWR04. Mark Johnson, David Wagner, and Kannan Ramchandran. On compressing encrypted data without the
encryption key. In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of
Lecture Notes in Computer Science, pages 491–504, Cambridge, MA, USA, February 19–21, 2004. Springer,
Heidelberg, Germany. doi:10.1007/978-3-540-24638-1_27. 1.3

KHJ+09. Demijan Klinc, Carmit Hazay, Ashish Jagmohan, Hugo Krawczyk, and Tal Rabin. On compression of data
encrypted with block ciphers. In James A. Storer and Michael W. Marcellin, editors, DCC 2009: 19th
Data Compression Conference, pages 213–222, Snowbird, UT, USA, March 16–18 2009. IEEE Computer
Society Press. doi:10.1109/DCC.2009.71. 1.3

LLN15. Kristin E. Lauter, Adriana López-Alt, and Michael Naehrig. Private computation on encrypted genomic
data. In Diego F. Aranha and Alfred Menezes, editors, Progress in Cryptology - LATINCRYPT 2014:
3rd International Conference on Cryptology and Information Security in Latin America, volume 8895 of
Lecture Notes in Computer Science, pages 3–27, Florianópolis, Brazil, September 17–19, 2015. Springer,
Heidelberg, Germany. doi:10.1007/978-3-319-16295-9_1. 1

LT22. Zeyu Liu and Eran Tromer. Oblivious message retrieval. In Yevgeniy Dodis and Thomas Shrimpton,
editors, Advances in Cryptology – CRYPTO 2022, Part I, volume 13507 of Lecture Notes in Computer
Science, pages 753–783, Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany.
doi:10.1007/978-3-031-15802-5_26. 1, 1.3

MR23. Muhammad Haris Mughees and Ling Ren. Vectorized batch private information retrieval. In Thomas
Ristenpart and Patrick Traynor, editors, 2023 IEEE Symposium on Security and Privacy, pages 1812–
1827, San Francisco, CA, USA, May 22–25 2023. IEEE Computer Society Press. doi:10.1109/SP46215.
2023.00104. 1

SW73. Davoid Slepian and Jack Wolf. Noiseless coding of correlated information sources. IEEE Transactions on
Information Theory, 19(4):471–480, July 1973. doi:10.1109/TIT.1973.1055037. 1.3

YSK+13. Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and Takeshi Koshiba. Secure
pattern matching using somewhat homomorphic encryption. In Ari Juel and Bryan Parno, editors, CCSW
2013: The ACM Cloud Computing Security Workshop, pages 65–76, Berlin, Germany, November 8, 2013.
Association for Computing Machinery. doi:10.1145/2517488.2517497. 1

15

https://doi.org/10.1007/978-3-031-30545-0_19
https://doi.org/10.1109/JPROC.2010.2045092
https://doi.org/10.1109/Allerton.2011.6120248
https://doi.org/10.1145/1007352.1007396
https://doi.org/10.1007/978-3-540-24638-1_27
https://doi.org/10.1109/DCC.2009.71
https://doi.org/10.1007/978-3-319-16295-9_1
https://doi.org/10.1007/978-3-031-15802-5_26
https://doi.org/10.1109/SP46215.2023.00104
https://doi.org/10.1109/SP46215.2023.00104
https://doi.org/10.1109/TIT.1973.1055037
https://doi.org/10.1145/2517488.2517497

	Compressing Encrypted Data Over Small Fields

