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Abstract

Achieving a provable exponential quantum speedup for an important machine learning task has been
a central research goal since the seminal HHL quantum algorithm for solving linear systems and the
subsequent quantum recommender systems algorithm by Kerenidis and Prakash. These algorithms were
initially believed to be strong candidates for exponential speedups, but a lower bound ruling out similar
classical improvements remained absent. In breakthrough work by Tang, it was demonstrated that this
lack of progress in classical lower bounds was for good reasons. Concretely, she gave a classical counterpart
of the quantum recommender systems algorithm, reducing the quantum advantage to a mere polynomial.
Her approach is quite general and was named quantum-inspired classical algorithms. Since then, almost
all the initially exponential quantum machine learning speedups have been reduced to polynomial via
new quantum-inspired classical algorithms. From the current state-of-affairs, it is unclear whether we
can hope for exponential quantum speedups for any natural machine learning task.

In this work, we present the first such provable exponential separation between quantum and quantum-
inspired classical algorithms. We prove the separation for the basic problem of solving a linear system
when the input matrix is well-conditioned and has sparse rows and columns.

1 Introduction

Demonstrating an exponential quantum advantage for a relevant machine learning task has been an important
research goal since the promising quantum algorithm by Harrow, Hassidim and Lloyd [12] for solving linear
systems. Ignoring a few details, the HHL algorithm (and later improvements [4, 9]) generates a quantum
state

∑n
i=1 xi|i⟩ corresponding to the solution x = M−1y to an n × n linear system of equations Mx = y

in just poly(lnn) time. At first sight, this seems exponentially faster than any classic algorithm, which
probably has to read the entire input matrix M to solve the same problem. However, as pointed out e.g.
by Aaronson [1], the analysis of the HHL algorithm assumes the input matrix is given in a carefully chosen
input format. Taking this state preparation into consideration, it was initially unclear how the performance
could be compared to a classical algorithm and whether any quantum advantage remained.

The shortcoming of the HHL algorithm regarding state preparation was later addressed in seminal work
by Kerenedis and Prakash [14], who gave an end-to-end analysis (i.e. including state preparation) that can be
directly compared to a classical algorithm. Concretely, their framework assumes that the input matrices and
vectors to a linear algebraic machine learning problem are given as simple classical data structures, but with
quantum access to the memory representations. At the time, their new quantum algorithm (for recommender
systems) was exponentially faster than the best classical counterpart (which is given the same classical data
structures as input). Their work sparked a fruitful line of research, yielding exponential speedups for a
host of important machine learning tasks, including solving linear systems [6], linear regression [6], PCA [6],
recommender systems [14], supervised clustering [15] and Hamiltonian simulation [10].

Despite the exponential speedups over classical algorithms, a lower bound for classical algorithms ruling
out a similar improvement via new algorithmic ideas remained illusive. It turned out that this was for good
reasons: In breakthrough work by Tang [20], it was demonstrated that on all inputs where the recommender
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systems algorithm by Kerenedis and Prakash yielded an exponential speedup, a similar speedup could be
obtained via a classical algorithmic approach that she dubbed quantum-inspired classical (QIC) algorithms.
Since then, almost all the initially exponential speedups from quantum algorithms have been reduced to
mere polynomial speedups through the development of new efficient QIC algorithms, see e.g. [5, 7, 19]. The
disheartening state-of-affairs is thus that only a few machine learning problems remain where there is still an
exponential gap between quantum and QIC algorithms. Based on Tang’s work, it remains entirely plausible
that new QIC algorithms may close these gaps as well.

Our Contribution. In this work, we present the first provable exponential separation between quantum
and quantum-inspired classical algorithms for a central machine learning problem. Concretely, we prove a
lower bound for any QIC algorithm for solving linear systems with sparse rows and columns. The lower
bound is exponentially higher than known quantum upper bounds [6] when the matrix is well-conditioned,
thus establishing the separation.

1.1 Quantum-Inspired Classical Algorithms

In the following, we formally introduce QIC algorithms, the linear system problem, our lower bound statement
and previous work on proving separations between quantum and QIC algorithms.

As mentioned earlier, the work by Kerenidis and Prakash [14] gave a rigorous framework for directly
comparing a quantum algorithm for a machine learning task with a classical counterpart. Taking state
preparation into account, they define a natural input format for matrices and vectors in linear algebraic
problems. At a high level, they assume the input is presented as a classical binary tree based data structure
over the entries of the rows and columns of a matrix. They then built their quantum recommender system
algorithm assuming quantum access to the memory representation of this classical data structure. Follow-up
works have used essentially the same input representation or equivalent formulations. In many cases, for
sufficiently well-conditioned matrices, the obtained quantum algorithms run in just poly(lnn) time.

Now to prove a separation between quantum and classical algorithms, any fair comparison should use
the same input representation. Given the simplicity of the data structure by Kerenidis and Prakash for
representing the input, it seemed reasonable to conjecture that any classical algorithm for e.g. recommender
systems would need polynomial time even when given this data structure. This intuition was however proven
false by Tang [20]. Her key insight was that the classical data structure allows efficient classical (i.e. poly(lnn)
time) ℓ22 sampling (formally defined below) from the rows and columns of the input, as well as efficient reading
of individual entries. Exploiting this sampling access, she gave a classical algorithm for recommender systems
that runs in just poly(lnn) time on all matrices where the quantum algorithm by Kerenidis and Prakash
does. She referred to such classical algorithms with ℓ22 sampling access to input matrices and vectors as
quantum-inspired classical algorithms. This sampling access has since then proved extremely useful in other
machine learning tasks, see e.g. [5, 7, 19]. Tang [20] summarized the above discussion as follows: “when
quantum machine learning algorithms are compared to classical machine learning algorithms in the context
of finding speedups, any state preparation assumptions in the quantum machine learning model should be
matched with ℓ22-norm sampling assumptions in the classical machine learning model’ ’.

Using the notation of Mande and Shao [17], QIC algorithms formally have the following access to the
input:

Definition 1 (Query Access). For a vector v ∈ Rn, we have Q(v), query access to v, if for all i, we can
query vi. Likewise for a matrix M ∈ Rm×n, we have query access to M if for all (i, j) ∈ [m] × [n], we can
query Mi,j.

Definition 2 (Sampling and Query Access to a Vector). For a vector v ∈ Rn, we have SQ(v), sampling
and query access to v, if we can

• Query for entries of v as in Q(v).

• Obtain independent samples of indices i ∈ [n], each distributed as P[i] = v2i /∥v∥2.
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• Query for ∥v∥.

Definition 3 (Sampling and Query Access to a Matrix). For a matrix M ∈ Rm×n, we have SQ(M) if we
have SQ(Mi,⋆), SQ(M⋆,j), SQ(r) and SQ(c) for all i ∈ m and j ∈ n where r(M) = (∥M1,⋆∥, . . . , ∥Mm,⋆∥)
and c(M) = (∥M⋆,1∥, . . . , ∥M⋆,n∥). Here Mi,⋆ is the i’th row of M , M⋆,j is the j’th column, r(M) is the
vector of row-norms and c(M) is the vector of column-norms of M .

With the input representation defined, we proceed to present the problem of solving a linear system
via a QIC algorithm. Here one again needs to be careful for a fair comparison between quantum and QIC
algorithms. Concretely, the known quantum algorithms for solving a linear systemMx = y do not output the
full solution x (which would take linear time), but instead a quantum state

∑
i x̃i|i⟩ for a x̃ approximating

the solution x. Taking measurements on such a state allows one to sample an index i with probability
x̃2i /∥x̃∥2. With this in mind, the classical analog of solving a linear system is as follows.

Problem 1 (Linear Systems). Given SQ(M) and SQ(y) for a symmetric and real matrix M ∈ Rn×n of full
rank, a vector y ∈ Rn and precision ε > 0, the Linear Systems problem is to support sampling an index i
with probability x̃2i /∥x̃∥2 from a vector x̃ satisfying that ∥x̃− x∥ ≤ ε∥x∥ where x = M−1y is the solution to
the linear system of equations Mx = y.

The query complexity of a QIC algorithm for solving a linear system, is the number of queries to SQ(M)
and SQ(y) necessary to sample one index i from x̃. We remark that the known QIC algorithms furthermore
output the value x̃i upon sampling i. Since we aim to prove a lower bound, our results are only stronger if
we prove it for merely sampling i.

Quantum Benchmark. To prove our exponential separation, we first present the state-of-the-art perfor-
mance of quantum algorithms for linear systems. Here we focus on the case where the input matrix M has
sparse rows and columns, i.e. every row and column has at most s non-zero entries. The running time of the
best known quantum algorithm depends on the condition number of M , defined as

κ = σmax/σmin.

Here σmax is the largest singular value of M and σmin is the smallest singular value. Note that for real
symmetric M of full rank, all eigenvalues λ1 ≥ · · · ≥ λn of M are real and non-zero, and the singular values
σmax = σ1 ≥ · · · ≥ σn = σmin > 0 are the absolute values of the eigenvalues {|λi|}ni=1 in sorted order. Given
a precision ε > 0, matrix M and vector y as input (in the classical data structure format), the quantum
algorithm by Chakraborty, Gilyén and Jeffery [6] runs in time

poly(s, κ, ln(1/ε), lnn) (1)

to produce a quantum state
∑

i x̃i|i⟩ for a x̃ with ∥x̃ − x∥ ≤ ε∥x∥ with x = M−1y. We remark that to
derive (1) from [6], one invokes their Lemma 11 (originating in [11]) to obtain a block-encoding of a sparse
matrix and then invoke their Theorem 30. See also the recent work [16].

QIC Benchmark. The best QIC algorithm [19] for sparse linear systems instead has a query complexity
(and running time) of

poly(s, κF , ln(1/ε), lnn), (2)

where

κF = ∥M∥F /σmin =

√∑
i σ

2
i

σmin
.

Since κF may be larger than κ by as much as a
√
n factor, there are thus matrices with κ, s = poly(lnn)

where there is an exponential gap between (1) and (2). However, proving that a QIC algorithm with a
performance matching (1) cannot be developed has so far remained out of reach.
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Our Result. We show the following strong lower bound for QIC algorithms

Theorem 1. There is a constant c > 0, such that for n ≥ c and any precision ε ≤ (c ln2.5 n)−1, it holds
that for any QIC algorithm A for linear systems, there exists a full rank n × n symmetric real matrix M
with condition number κ ≤ c ln2 n and 4-sparse rows and columns, such that A must make Ω(n1/12) queries
to SQ(M) on the linear system Mx = e1.

Observe that the complexity of the best quantum algorithm (1) for this setting of s, κ and ε is just
poly(lnn), hence the claimed exponential separation. Furthermore, the matrix M is extremely sparse, with
only s = 4 non-zeroes per row and column, and the vector y in the linear system Mx = y is simply the first
standard unit vector e1.

Previous Separations. Finally, let us mention recent work by Mande and Shao [17] that also focuses on
separating quantum and QIC algorithms. Using reductions from number-in-hand multiparty communication
complexity [18], they prove a number of lower bounds for QIC algorithms for linear regression, supervised
clustering, PCA, recommender systems and Hamiltonian simulation. Their lower bounds are of the form
Ω̃(κ2F ), but only for problems where the best known quantum algorithms are no better than Õ(κF ), thus
establishing quadratic separations compared to our exponential separation. Let us also remark that our
lower bound proof takes a completely different approach, instead reducing from a problem of random walks
by Childs et al. [8].

2 Separation

Our lower bound result in Theorem 1 is proved via a reduction from a problem by Childs et al. [8] about
random walks in graphs. They study the following oracle query problem. There is an unknown input graph.
The graph is obtained by constructing two perfect binary trees T1 and T2 of height n each, i.e. they have 2n

leaves. The leaves of the two trees are connected by a uniformly at random chosen alternating cycle. That
is, if we fix an arbitrary leaf ℓ1 in tree T1, then the cycle is obtained by connecting ℓ1 to a uniform random
leaf in T2, that leaf is then again connected to a uniform random remaining leaf in T1 and so forth, always
alternating between the two trees. When no more leaves remain and we are at leaf ℓ2 in T2, the cycle is
completed by adding the edge back to ℓ1.

The N = 2n+2−2 nodes of T1 and T2 are now assigned uniform random and distinct 2n bit labels, except
the root r1 of T1 that is assigned the all-0 label. Call the resulting random graph Gn.

Childs et al. now consider the following game: We are given query access to an oracle O. Upon receiving
a 2n-bit query string x, O either returns that no node of the two trees has the label x, or if such a node
exists, the labels of its neighbors are returned. The game is won if O is queried with the label of the root r2
of T2. Otherwise it is lost. Childs et al. [8] prove the following lower bound for any classical algorithm that
accesses the graph Gn only through the oracle O:

Theorem 2 (Childs et al. [8]). Any classical algorithm that queries O at most 2n/6 times wins with probability
at most 4 · 2−n/6.

The key idea in our lower bound proof is to use an efficient QIC algorithm for linear systems to obtain
an efficient classical algorithm for the above random walk game. As a technical remark, Childs et al. also
included a random color on each edge of Gn and this color was also returned by O. The colors were exploited
in a quantum upper bound making only poly(n) queries to the oracle to win the game with good probability.
Since providing an algorithm with less information only makes the problem harder, the lower bound in
Theorem 2 clearly holds for our variant without colors as well.

2.1 Reduction

Assume we have a QIC algorithm A for linear systems that makes T (M, ε) queries to SQ(M) to draw one
index i with probability x̃2i /∥x̃∥2 for a x̃ satisfying ∥x̃ − x∥ ≤ ε∥x∥ for a sufficiently small ε > 0. Here
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x =M−1y is the solution to the equation Mx = y. Our idea is to carefully choose a matrix M (and vector
y) depending on the random graph Gn represented by O, such that simulating all calls of A to SQ(M)
and SQ(y) via calls to the oracle O, A will output a sample index i that with sufficiently large probability
equals the index of the root of T2. Said differently, the coordinate x̃i of x̃ corresponding to the root of T2 is
sufficiently large. Making a final query to O with i then wins the game with good probability.

Let us first describe the simulation and the matrix M . We consider the 22n × 22n matrix M whose rows
and columns correspond to the possible 2n-bit labels in the graph Gn. Let B be the N ×N submatrix of M
corresponding to the (random) labels of the N = 2n+2 − 2 actual nodes in Gn. If A denotes the adjacency
matrix of the graph Gn (nodes ordered as in B), then we let B = λI−A for a parameter λ to be determined.
For all rows/columns of M not corresponding to nodes in Gn, we let the diagonal entry be

√
λ2 + 3 and

all off-diagonals be 0. Note that we are not explicitly computing the matrix M to begin with. Instead, we
merely argue that by querying O, we can simulate A as if given access to SQ(M).

Clearly M is symmetric and real and thus has real eigenvalues and eigenvectors. Furthermore, we will
choose λ such that M has full rank (which is if and only if all its eigenvalues are non-zero). Also observe
that every row/column not corresponding to the two roots of T1 and T2, has norm

√
λ2 + 3 (every node of

T1 and T2, except the roots, have degree 3).
Our goal is now to use the QIC algorithm A for linear systems with SQ(M) and SQ(e0···0) as input, to

give an algorithm for the oracle query game with oracle O for Gn. Here e0···0 is the standard unit vector
corresponding to the root node of T1 which always has the all-0 label. For short, we will assume this is the
first row/column of M and write e1 = e0···0.

Simulating SQ(M). We now argue how to simulate each of the queries on SQ(M) and SQ(e1) made by
A via calls to O. SQ(e1) is trivial to implement as e1 is known and requires no calls to O.

For SQ(M), to sample and index from a row Mi,⋆ or column M⋆,j , we query O for all nodes adjacent to
i (or j). If O returns that i is not a valid label, we return the entry i (corresponding to sampling the only
non-zero entry of Mi,⋆, namely the diagonal). Otherwise, O returns the list of neighbors of i. We know that
row i (column j) has λ in the diagonal and −1 in all entries corresponding to neighbors. We can thus sample
from Mi,⋆ with the correct distribution and pass the result to A. To query an entry Mi,j of M , we simply
query O for the node i. If O returns that i is not a valid label, we return

√
λ2 + 3 if j = i and otherwise

return 0. If O returns the neighbors of i, then if j = i, we return λ, if j is among the neighbors, we return
−1 and otherwise we return 0.

We support sampling from r(M) and c(M) by returning a uniform random index among the 22n

rows/columns. This requires no queries to O. Note that this almost samples from the correct distribu-
tion: Every node v of Gn that is not a root of the two trees, is adjacent to three nodes. Hence the norm of
the corresponding row and column is precisely

√
λ2 + 3. This is the same norm as all rows and columns of

M not corresponding to Gn (i.e. rows and columns outside the submatrix B). Hence the distribution of a
sample from r(M) and c(M) is uniform random if we condition on not sampling an index corresponding to a
root. Conditioned on never sampling a root in our simulation, the simulation of all samples from r(M) and
c(M) follow the same distribution as if we used the correct sampling probabilities for r(M) and c(M). The
probability we sample one of the two roots is at most 2T (M, ε)2−2n and we subtract this from the success
probability of the simulation.

Finally, when the simulation of A terminates with an output index i, we query O for i (with the hope
that it equals the root of T2). We thus have

Observation 1. Given a precision ε > 0 and a QIC algorithm A for linear systems making T (M, ε)
queries to SQ(M), there is a classical algorithm for random walks in two binary trees that makes at most
T (M, ε)+ 1 queries to the oracle O, where M is the matrix defined from Gn. Furthermore, it wins the game
with probability at least x̃2i /∥x̃∥2 − 2T (M, ε)2−2n for a x̃ satisfying ∥x̃ − x∥ ≤ ε∥x∥ with x = M−1e1 the
solution to the linear system Mx = e1.

What remains is thus to determine an appropriate λ, to argue that M has a small condition number, to
find a suitable ε > 0 and to show that x̃2i /∥x̃∥2 is large. This is done via the following two auxiliary results

5



Lemma 1. The adjacency matrix A of the graph Gn has no eigenvalues in the range (
√
8, 3− 2−n].

Lemma 2. If λ is chosen as
√
8 + γ for a 0 < γ ≤

(
1

16(n+2)

)2
and n ≥ c for a sufficiently large constant

c > 0, then x2i = Ω(n−5∥x∥2) where x =M−1e1 is the solution to the linear system Mx = e1.

Before proving these results and motivating the bounds they claim, we use them to complete our reduction
and derive our lower bound. In light of Lemma 2, we choose λ =

√
8+γ with γ = 1/(16(n+2))2. Let us now

analyse the condition number ofM . First, note that the sum of absolute values in any row or column ofM is
no more than max{

√
λ2 + 3, λ+3} ≤ 6. Thus the largest singular value of M is at most 6. For the smallest

singular value, observe that M is block-diagonal with B in one block and
√
λ2 + 3 ·I in the other. The latter

has all singular values
√
λ2 + 3 > 3. For B, we first observe that any row and column of the adjacency matrix

A has sum of absolute values at most 3. Hence the eigenvalues of A lie in the range [−3, 3]. From Lemma 1,
we now have that all eigenvalues of B = λI − A lie in the ranges [λ− 3, λ− 3 + 2−n) ⊆ [−0.18,−0.17) (for
n sufficiently large) and (λ −

√
8, λ + 3] ⊆ (γ, 6). We thus have that the smallest singular value (smallest

absolute value of an eigenvalue) of M is at least γ = 1/(16(n+2))2. The condition number κ is thus at most
6 · (16(n+ 2))2 (recall that the size of the matrix is 22n, thus the condition number is only polylogarithmic
in the matrix size).

Let us next analyse x̃. From Lemma 2 we have that |x̃i| ≥ |xi| − ε∥x∥ = |xi| − O(εn2.5|xi|). For
ε ≤ (cn2.5)−1 for sufficiently large constant c, this is at least |xi|/2 = Ω(n−2.5∥x∥) by Lemma 2. Furthermore,
by the triangle inequality, we have ∥x̃∥ ≤ (1+ε)∥x∥, and hence x̃2i /∥x̃∥2 = Ω(n−5). We thus win the random
walk game with probability at least

Ω(n−5)− 2T (M, ε)2−2n.

For n sufficiently large, this implies that either T (M, ε) ≥ 2n/6 or this success probability is greater than
4 · 2−n/6. Thus Theorem 2 by Childs et al. [8] and Observation 1 gives us that the number of queries,
T (M, ε) + 1, must be at least 2n/6. This establishes Theorem 1 as the size of M is 22n × 22n.

Motivating the Construction. Before we proceed to give the proofs of the two auxiliary results, let
us make a number of comments on the intuition behind our concrete choice of matrix M and the bounds
claimed in Lemma 1 and Lemma 2. In light of the reduction from the random walk problem, it is clear that
we should choose a matrix M such that we can 1.) simulate SQ(M) via O, 2.) guarantee a small condition
number of M , and 3.) guarantee that x̃2i /∥x̃∥2 is as large as possible.

Condition 1. naturally hints at using the adjacency matrix A of Gn as part of the construction ofM since
querying O precisely retrieves the neighbors and thus non-zero entries of a row or column of A. It further
guarantees sparse rows and columns in M . For condition 2., we have to introduce something in addition
to A as the eigenvalues of A lie in the range [−3, 3], but we have no guarantee that they are sufficiently
bounded away from 0. A natural choice is B = λI − A as this shifts the eigenvalues to lie in the range
[λ − 3, λ + 3]. Setting the entries of M outside the submatrix corresponding to the actual nodes in Gn to√
λ2 + 3 is again a natural choice as this makes sampling from c(M) and r(M) trivial. From this alone, it

would seem that λ ≫ 3 would be a good choice. Unfortunately, such a choice of λ would not guarantee
condition 3. To get an intuition for why this is the case, recall that x̃ is ε-close to x = M−1e1. Since M is
block-diagonal, with B the block containing the first row and

√
λ2 + 3 · I the other block, x is non-zero only

on coordinates corresponding to the block B. Abusing notation, we thus write x = B−1e1. Thus what we
are really interested in showing, is that x2i /∥x∥2 is large for this x. Examining the linear system Bx = e1,
we see that all rows corresponding to internal nodes v of T1 and T2 define an equality. The equality states
that the entry xv corresponding to v must satisfy λxv − xp(v) − xℓ(v) − xr(v) = 0 where p(v) is the parent of
v, ℓ(v) the left child and r(v) the right child (for leaves of T1 and T2, the children are the neighboring leaves
in the opposite tree). Since this pattern is symmetric across the nodes of T1 and T2, it is not surprising
that x is such that all nodes v on the j’th level of Ti have the same value xv = ϕij . Let us focus on the

tree T2 and simplify the notation by letting ϕj = ϕ2j . From the above, the ϕj ’s satisfy the constraints
λϕj+1−ϕj − 2ϕj+2 = 0. A recurrence aϕj+2+ bϕj+1+ cϕj = 0 is known as a second degree linear recurrence
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and when b2 > 4ac its solutions are of the form

ϕj = α ·

(
−b+

√
b2 − 4ac

2a

)j

+ β ·

(
−b−

√
b2 − 4ac

2a

)j

,

where α, β ∈ R are such that ϕ1 and ϕ2 satisfy any initial conditions one might require. For our construction,
we have a = −2, b = λ and c = −1, resulting in

ϕj = α ·

(
λ−
√
λ2 − 8

4

)j

+ β ·

(
λ+
√
λ2 − 8

4

)j

.

Since the root of T2 does not have a parent, the corresponding equality from Mx = e1 gives the initial
condition λϕ1 − 2ϕ2 = 0, implying ϕ1 = (2/λ)ϕ2. If we work out the details, this can be shown to imply
α = −β in any solution to the recurrence and thus

ϕj = α ·

(λ−√λ2 − 8

4

)j

−

(
λ+
√
λ2 − 8

4

)j
 .

For λ sufficiently larger than
√
8, the term ((λ+

√
λ2 − 8)/4)j is at least a constant factor larger in absolute

value than ((λ−
√
λ2 − 8)/4)j and we have

ϕj ≈ −α ·

(
λ+
√
λ2 − 8

4

)j

. (3)

For λ ≥ 3, we therefore roughly have that |ϕj | ≥ |ϕj−1| · (3 +
√
9− 8)/4 = |ϕj−1|. But there are 2j nodes

of depth j in T2, thus implying that the magnitude of x2i , with i the root of T2, is no more than ∥x∥22−n.
This is far too small for both the sampling probability x2i /∥x∥2 and the required precision ε such that simply
setting x̃i ← 0 in x̃ does not violate ∥x̃− x∥ ≤ ε∥x∥.

To remedy this, consider again (3) and let us understand for which values of λ that x2i is not significantly
smaller than ∥x∥2. If we could choose λ =

√
8 (technically we require b2 > 4ac and thus λ >

√
8), then (3)

instead gives |ϕj | ≈ |ϕj−1| ·
√
8/4 and thus ∥x∥2 ≈

∑n−1
j=0 2j(

√
8/4)2jx2i = nx2i . This is much better as the

size of the matrix M is 22n and thus an ε that is only inverse polylogarithmic in the matrix size suffices to
sample i with large enough probability to violate the lower bound for the random walk game. Notice also
that choosing λ =

√
8 + c for any constant c > 0 is insufficient to cancel the exponential growth in number

of nodes of depth j (as for λ ≥ 3). Thus we are forced to choose λ very close to
√
8.

Unfortunately choosing λ ≈
√
8 poses other problems. Concretely the eigenvalues of B then lie in the

range [
√
8 − 3,

√
8 + 3], which contains 0 and thus we are back at having no guarantee on the condition

number. However even if A has eigenvalues in the range [−3, 3], it is not given that there are eigenvalues
spread over the entire range. In particular, since all nodes of Gn, except the roots, have the same degree 3,
we can almost think of Gn as a 3-regular graph. For d-regular graphs, the best we can hope for [2] is that the
graph is Ramanujan, i.e. all the eigenvalues of the adjacency matrix A, except the largest, are bounded by
2
√
d− 1 in absolute value. For d = 3, this is precisely

√
8. In our case, the graph Gn is sadly not Ramanujan,

as in addition to the largest eigenvalue of roughly 3 (only roughly since our graph is not exactly 3-regular),
it also has an eigenvalue of roughly −3. However, in Lemma 1 we basically show that this is the only other
eigenvalue that does not lie in the range [−

√
8,
√
8].

In light of the above, we wish to choose λ as close to
√
8 as possible, but not quite λ =

√
8 as we may

then again risk having an eigenvalue arbitrarily close to 0. If we instead choose λ =
√
8+γ for a small γ > 0,

then (3) gives us something along the lines of

|ϕj | ≈ |ϕj−1| ·

(√
8 +

√
8 + 2

√
8γ + γ2 − 8

4

)
= |ϕj−1| ·

√
8

4
· (1 +O(

√
γ)),
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and thus ∥x∥2 ≈
∑n−1

j=0 2j(
√
8/4)2j(1+O(

√
γ))2jx2i = nx2i exp(O(n

√
γ)). Choosing γ = O(1/n2) as suggested

in Lemma 2 thus recovers the desirable guarantee ∥x∥2 = O(x2in) while yielding a condition number of no
more than O(n2). Since the size of the matrix is 22n × 22n, this is only polylogarithmic in the matrix size.
This completes the intuition behind our choice of parameters and results.

What remains is thus to formalize the above intuition and prove Lemma 1 and Lemma 2. This is the
focus of the following sections.

2.2 Bounding the Eigenvalues of the Adjacency Matrix

In this section we prove Lemma 1, i.e. that the adjacency matrix A of the graph Gn has no eigenvalues in
the range (

√
8, 3− 2−n].

Let us first introduce some terminology. We say that the root of T1 is at level 1, the leaves of T1 at level
n + 1, the leaves of T2 at level n + 2 and the root of T2 is at level 2n + 2. The two roots have degree two
and all other nodes have degree three.

To bound the eigenvalues of A, we begin with an observation that allows us to restrict our attention to
so-called layered eigenvectors (inspired by previous works bounding eigenvalues of trees [13, 3]). We say that
an eigenvector w is a layered eigenvector, if all entries of w corresponding to nodes at level i have the same
value ϕi. We argue that

Observation 2. If A has an eigenvector of eigenvalue λ, then it has a real-valued layered eigenvector of
eigenvalue λ.

Proof. Let u be an arbitrary eigenvector with eigenvalue λ. Since A is real and symmetric, its eigenvalues
are real. If u is complex, we may write it as u = v + ia with v and a real vectors. Since Av + iAa = Au =
λu = λv+ iλa, it must be the case that Av = λv as these are the only real vectors in Av+ iAa and λv+ iλa.
By the same argument, we also have Aa = λa. Thus v and a are real eigenvectors with eigenvalue λ. Assume
wlog. that v is non-zero.

We now show how to construct a real layered eigenvector w from v having the same eigenvalue λ. First
recall that a vector v is an eigenvector of A with eigenvalue λ, if and only if (λI − A)v = 0. Now given
the eigenvector v, let Si be the set of coordinates corresponding to nodes in level i and let ϕi = wj =
|Si|−1

∑
k∈Si

vk for all j ∈ Si. We will verify that (λI−A)w = 0, which implies that w is also an eigenvector
of eigenvalue λ.

For this, consider a level i and define pi ∈ {0, 1, 2} as the number of neighbors a node in level i has in
level i − 1. Similarly, define ci ∈ {0, 1, 2} as the number of neighbors a node in level i has in level i + 1.
To verify that (λI − A)w = 0, we verify that for all levels i, we have λϕi − piϕi−1 − ciϕi+1 = 0. To see
this, observe that since (λI − A)v = 0, it holds for every index j ∈ Si that λvj −

∑
k∈Si−1:j∈N (k) vk −∑

k∈Si+1:j∈N (k) vk = 0, where N (k) denotes the neighbors of k. Summing this across all nodes j ∈ Si, we

see that λ
∑

k∈Si
vk − ci−1

∑
k∈Si−1

vk − pi+1

∑
k∈Si+1

vk = 0. This follows since every node k in level i− 1

has vk included precisely ci−1 times in the sum (pi+1 times for nodes in level i+ 1).
The left hand side also equals λϕi|Si| − ci−1ϕi−1|Si−1| − pi+1ϕi+1|Si+1| by definition of ϕi. Now observe

that ci−1|Si−1| = pi|Si| since both sides of the equality equals the number of edges between levels i− 1 and
i. Using this, we rewrite 0 = λϕi|Si| − ci−1ϕi−1|Si−1| − pi+1ϕi+1|Si+1| = λϕi|Si| − piϕi−1|Si| − ciϕi+1|Si| =
|Si|(λϕi − piϕi−1 − ciϕi+1)|Si|. Since |Si| ≠ 0, we conclude λϕi − piϕi−1 − ciϕi+1 = 0.

Using Observation 2 it thus suffices for us to argue that A has no real-valued layered eigenvectors with
eigenvalues in the range (

√
8, 3 − 2−n]. The first step in this argument, is to lower bound the largest

eigenvalue λ1. For this, recall that λ1 = maxv:∥v∥=1 v
TAv. Noting that A is N ×N with N = 2n+2 − 2, we

now consider the unit vector v with all entries 1/
√
N . Then (Av)i = 3/

√
N for i not one of the two roots,

and (Av)i = 2/
√
N for i one of the two roots. Hence

λ1 ≥ 3− 2/N > 3− 2−n. (4)
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Next, we aim to understand the structure of all real-valued layered eigenvectors of eigenvalues larger
than

√
8. So let w be an arbitrary such eigenvector of eigenvalue λ >

√
8 and let ϕi denote the value of the

coordinates of w corresponding to level i. Our goal is to show that λ >
√
8 implies λ > 3− 2−n.

Since (λI − A)w = 0, we conclude from the row of A corresponding to the root of T1 that λϕ1 − 2ϕ2 =
0 ⇒ ϕ2 = (λ/2)ϕ1. For levels 1 ≤ i ≤ n, we must have λϕi+1 − ϕi − 2ϕi+2 = 0. As discussed earlier, a
recurrence aϕi+2 + bϕi+1 + cϕi = 0 is known as a second degree linear recurrence and when b2 > 4ac its
(real) solutions are of the form

ϕi = α ·

(
−b+

√
b2 − 4ac

2a

)i

+ β ·

(
−b−

√
b2 − 4ac

2a

)i

,

with α, β ∈ R such that the initial condition ϕ2 = (λ/2)ϕ1 is satisfied. Note that in our case, a = −2, b = λ
and c = −1. Since we assume λ >

√
8, we indeed have b2 > 4ac. It follows that

ϕi = α ·

(
λ−
√
λ2 − 8

4

)i

+ β ·

(
λ+
√
λ2 − 8

4

)i

,

for α, β satisfying ϕ2 = (λ/2)ϕ1. For short, let us define ∆ =
√
λ2 − 8. Note that ∆ is real since we assume

λ >
√
8. Furthermore, we have λ−∆ > 0 and thus in later equations, it is safe to divide by λ−∆.

The initial condition now implies that we must have

α ·
(
λ−∆

4

)2

+ β ·
(
λ+∆

4

)2

= (λ/2)

(
α · λ−∆

4
+ β · λ+∆

4

)
⇒

α · (λ−∆)
2
+ β · (λ+∆)

2
= 2λ (α · (λ−∆) + β · (λ+∆))⇒

β ·
(
λ2 +∆2 + 2λ∆− 2λ(λ+∆)

)
= α ·

(
−λ2 −∆2 + 2λ∆+ 2λ(λ−∆)

)
⇒

β ·
(
−λ2 +∆2

)
= α ·

(
λ2 −∆2

)
⇒

β = −α.

Thus the solutions have the following form for any α ∈ R:

ϕi = α ·

((
λ−∆

4

)i

−
(
λ+∆

4

)i
)

= α

(
λ−∆

4

)i

·

(
1−

(
λ+∆

λ−∆

)i
)

(5)

for 1 ≤ i ≤ n+ 2.
Now observe that the same equations apply starting from the root of T2 and down towards the leaves of

T2, thus for 1 ≤ i ≤ n+ 2

ϕ2n+3−i = α′
(
λ−∆

4

)i

·

(
1−

(
λ+∆

λ−∆

)i
)
. (6)

Examining (5) and (6), we first notice that(
λ−∆

4

)i

·

(
1−

(
λ+∆

λ−∆

)i
)
< 0. (7)

Furthermore, both (5) and (6) give bounds on the leaf levels ϕn+1 and ϕn+2 and these must be equal. Any
non-zero solution thus must have α · α′ > 0, i.e. the two have the same sign. From (5), (6) and (7) it now
follows that all pairs ϕi and ϕj satisfy ϕi · ϕj > 0.
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Now let v1 be a layered and real-valued eigenvector corresponding to the largest eigenvalue λ1 (such a
layered eigenvector is guaranteed to exist by Observation 2). Let ψi denote the values of the entries in v1
corresponding to nodes of level i. Since λ1 >

√
8, the values ψi satisfy ψi · ψj > 0 for all pairs ψi and ψj by

the above arguments. Since eigenvectors corresponding to distinct eigenvalues of real symmetric matrices
are orthogonal, we must have that either λ = λ1 or vT1 w = 0. But

(vT1 w)
2 =

(
2n+2∑
i=1

2min{i−1,2n+2−i}ϕiψi

)2

=

2n+2∑
i=1

2n+2∑
j=1

2min{i−1,2n+2−i}2min{j−1,2n+2−j}ϕiϕjψiψj

> 0.

We thus conclude λ = λ1 > 3− 2−n.

2.3 Understanding the Solution

In this section, we prove Lemma 2. That is, we show that for λ =
√
8+ γ with 0 < γ ≤

(
1

16(n+2)

)2
, it holds

that x2i = Ω(n−5∥x∥2) where x =M−1e1 is the solution to the linear system Mx = e1.
As remarked earlier, we have that the matrix M is block diagonal, where one block corresponds to the

matrix B = λI − A, where A is the adjacency matrix of Gn. Furthermore, e1 is non-zero only in the block
corresponding to B. It follows that it suffices to understand the solution x = B−1e1 as padding it with
zeroes gives M−1e1.

Similarly to the previous section, we will focus on layered vectors x. More formally, we claim there is a
layered vector x such that x = B−1e1. That is, all entries of x corresponding to nodes in level i have the
same value ϕi. Since B is full rank, the solution x to Bx = e1 is unique and thus must equal this layered
vector. We thus set out to determine appropriate values ϕi.

Similarly to the previous section, we have that ϕi’s of the following form

ϕi = α

(
λ−∆

4

)i

+ β

(
λ+∆

4

)i

,

for any α, β ∈ R and i = 1, . . . , n + 2 satisfy the recurrence −ϕi+2 + λϕi+1 − ϕi = 0. However, the initial
condition we get from Bx = e1 (the first row/equality of the linear system) is different than the previous
section. Concretely, the initial condition becomes λϕ1 − 2ϕ2 = 1⇒ ϕ2 = (λ/2)ϕ1 − 1/2. This forces β to be
chosen as

α ·
(
λ−∆

4

)2

+ β ·
(
λ+∆

4

)2

= (λ/2)

(
α · λ−∆

4
+ β · λ+∆

4

)
− 1/2⇒

α · (λ−∆)
2
+ β · (λ+∆)

2
= (2λ) (α(λ−∆) + β(λ+∆))− 8⇒

β ·
(
λ2 +∆2 + 2λ∆− 2λ(λ+∆)

)
= α ·

(
−λ2 −∆2 + 2λ∆+ 2λ(λ−∆)

)
− 8⇒

β ·
(
−λ2 +∆2

)
= α ·

(
λ2 −∆2

)
− 8⇒

−8β = 8α− 8⇒
β = −α+ 1.

Thus ϕi’s of the following form, for 1 ≤ i ≤ n+ 2 and α ∈ R, satisfy the constraints corresponding to T1

ϕi = α ·

((
λ−∆

4

)i

−
(
λ+∆

4

)i
)

+

(
λ+∆

4

)i

= α ·
(
λ−∆

4

)i
(
1−

(
λ+∆

λ−∆

)i
)

+

(
λ+∆

4

)i

. (8)
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The tree T2 puts similar constraints on ϕ2n+3−i for i = 1, . . . , n + 2, except the root of T2 gives the initial
condition λϕ2n+2 − 2ϕ2n+1 = 0. This is precisely the same recurrence as in the previous section. Thus for
1 ≤ i ≤ n+ 2 we have from (6) that for any α′ ∈ R, the following satisfy the constraints of T2

ϕ2n+3−i = α′ ·
(
λ−∆

4

)i
(
1−

(
λ+∆

λ−∆

)i
)
. (9)

Noting that both (8) and (9) gives a formula for ϕn+1 and ϕn+2, we get two linear equations in two unknowns,
i.e.

α ·
(
λ−∆

4

)n+j
(
1−

(
λ+∆

λ−∆

)n+j
)

+

(
λ+∆

4

)n+j

= α′ ·
(
λ−∆

4

)n+3−j
(
1−

(
λ+∆

λ−∆

)n+3−j
)
.

for j = 1, 2. The equations have a unique solution α, α′ provided that the two vectors vj

vj =

((
λ−∆

4

)n+j
(
1−

(
λ+∆

λ−∆

)n+j
)
,

(
λ−∆

4

)n+3−j
(
1−

(
λ+∆

λ−∆

)n+3−j
))

with j = 1, 2 are linearly independent. To see that they are linearly independent, we compare the ratio
r1 = v1(1)/v2(1) of the first coordinate v1 and v2 to the ratio r2 = v1(2)/v2(2) of the second coordinate. We
have that v1 and v2 are linearly independent if these ratios are distinct. The ratios of the coordinates are

r1 =

(
λ−∆

4

)−1

(
1−

(
λ+∆
λ−∆

)n+1
)

(
1−

(
λ+∆
λ−∆

)n+2
) , r2 =

(
λ−∆

4

) (1− (λ+∆
λ−∆

)n+2
)

(
1−

(
λ+∆
λ−∆

)n+1
) .

We thus have r1 = r−1
2 , implying linear independence whenever |r2| ≠ 1. To argue that this is the case, we

prove the following auxiliary results using simple approximations of (1 + x)a

Claim 1. For i ≤ n+ 2 ≤ γ−1/2/16 and 0 < γ ≤ 1/64, we have ∆ ≤ 4
√
γ,

1.

0 <
2∆

λ+∆
<

2∆

λ−∆
<

1

2(n+ 2)
,

2.

1 +
i∆

λ−∆
≤
(
λ+∆

λ−∆

)i

≤ 1 +
4i∆

λ−∆
.

3.

1− 4i∆

λ+∆
≤
(
λ−∆

λ+∆

)i

≤ 1− i∆

λ+∆
.

4.

1 +
1

2(n+ 1)
≤

1−
(

λ+∆
λ−∆

)n+2

1−
(

λ+∆
λ−∆

)n+1 ≤ 1 +
4

n+ 1
.

From Claim 1 point 4., λ−∆ ≤ λ =
√
8 + γ, n+ 2 ≤ γ−1/2/16, γ ≤ 1/64 and n large enough, we get

0 < r2 ≤
√
8 + 1/64

4
·
(
1 +

4

n+ 1

)
< 1,

implying linear independence and thus existence of a unique solution α, α′. We defer the proof of Claim 1
to Section 2.4 as it consists of careful, but simple, calculations.

We now derive a number of properties of this unique choice of α and α′. For this, we need one last
auxiliary result
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Claim 2. For n+ 2 ≤ γ−1/2/16 and 0 < γ ≤ 1/64, we have

−1− 2

n+ 1
≤ α

((
λ−∆

λ+∆

)n+1

− 1

)
≤ −1− 1

4(n+ 1)
.

We again defer the proof of Claim 2 to Section 2.4.
Our goal is now to bound all terms ϕi in terms of ϕ2n+2 as ϕ2n+2 is the value of the entry of x corresponding

to the root of T2. We do this in two steps. First, we relate all ϕi to ϕn+1 as both (8) and (9) gives a formula
for ϕn+1. Using the relationship between ϕ2n+2 and ϕn+1 then indirectly relates all ϕi to ϕ2n+2.

For i ≤ n+ 1, we relate ϕ2n+3−i to ϕn+1 directly from (9), giving

ϕ2n+3−i

ϕn+1
=

(
λ−∆

4

)i−n−2

·

(
λ+∆
λ−∆

)i
− 1(

λ+∆
λ−∆

)n+2

− 1
.

From Claim 1, this implies(
λ−∆

4

)i−n−2
i

4(n+ 2)
≤ |ϕ2n+3−i|
|ϕn+1|

≤
(
λ−∆

4

)i−n−2
4i

n+ 2
. (10)

To bound the terms ϕi with i ≤ n+ 1, we get from (8) that

ϕi
ϕn+1

=

(
λ+∆

4

)i−n−1

·
α

((
λ−∆
λ+∆

)i
− 1

)
+ 1

α

((
λ−∆
λ+∆

)n+1

− 1

)
+ 1

. (11)

Using Claim 2, we conclude

|ϕi|
|ϕn+1|

≤
(
λ+∆

4

)i−n−1

·

∣∣∣∣α((λ−∆
λ+∆

)i
− 1

)∣∣∣∣+ 1

(4(n+ 1))−1

≤ 4(n+ 1) ·
(
λ+∆

4

)i−n−1

·

(∣∣∣∣∣α
((

λ−∆

λ+∆

)n+1

− 1

)∣∣∣∣∣+ 1

)

≤ 12(n+ 1) ·
(
λ+∆

4

)i−n−1

. (12)

Note here that it was crucial that our bound in Claim 2 was very tight since the denominator in (11) is very
close to zero.

From (10) with i = 1, we conclude

|ϕn+1| ≤ |ϕ2n+2|4(n+ 2)

(
λ−∆

4

)n+1

. (13)

Inserting (13) into (10), we now get for i ≤ n+ 2 that:

|ϕ2n+3−i| ≤ 4(n+ 2)|ϕ2n+2|
(
λ−∆

4

)i−1
4i

n+ 2
= 16i|ϕ2n+2|

(
λ−∆

4

)i−1

.

Similarly, inserting (13) into (12), we get

|ϕi| ≤ 4(n+ 2)|ϕ2n+2|12(n+ 1)

(
λ+∆

4

)i

≤ 48(n+ 2)2|ϕ2n+2|
(
λ+∆

4

)i

.
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Using that there are 2i−1 nodes at level i and 2n+ 3− i, we finally get that

∥x∥2 =

n+1∑
i=1

2i−1
(
ϕ2i + ϕ22n+3−i

)
≤

n+1∑
i=1

2i−1

(
(16i)2

(
λ−∆

4

)2i−2

+ 482(n+ 2)4
(
λ+∆

4

)2i
)
ϕ22n+2

= O

(
n4ϕ22n+2

n+1∑
i=1

2i
(
λ+∆

4

)2i
)

= O

(
n4ϕ22n+2

n+1∑
i=1

2i
(
λ2 +∆2 + 2λ∆

16

)i
)

= O

n4ϕ22n+2

n+1∑
i=1

2i

(
2(8 + 2

√
8γ + γ2)− 8 + 2(

√
8 + γ)4

√
γ

16

)i


= O

(
n4ϕ22n+2

n+1∑
i=1

2i
(
8 + 48

√
γ

16

)i
)

= O

(
n4ϕ22n+2

n+1∑
i=1

2i
(
1

2
(1 + 6

√
γ)

)i
)

= O
(
n5ϕ22n+2 (1 + 6

√
γ)

n)
= O

(
n5ϕ22n+2e

6
√
γn
)
.

For n + 2 ≤ γ−1/2/16, this is O(n5ϕ22n+2), implying ϕ22n+2 = Ω(n−5∥x∥2). Since ϕ2n+2 is the value of the
root of T2, this completes the proof.

2.4 Auxiliary Results

In this section, we prove the two auxiliary claims in Claim 1 and Claim 2. The first claim uses simple
approximations of (1 + x)a without any particularly novel ideas.

Proof of Claim 1. Using a Taylor series, we have for 0 ≤ x < 1 that

1 + x = exp

( ∞∑
n=1

(−1)n+1xn/n

)
≥ exp(x− x2/2)
≥ exp(x/2).

At the same time, it holds for all x that 1+x ≤ ex. Now observe that ∆ =
√

(
√
8 + γ)2 − 8 =

√
2
√
8γ + γ2.

Thus
√
γ ≤ ∆ ≤ 4

√
γ when γ ≤ 1. This implies for γ ≤ 1/64 that

2∆

λ−∆
≤

8
√
γ

√
8− 4

√
γ
≤

8
√
γ

√
8− 1/2

≤ 8
√
γ. (14)

For integer i ≤ γ−1/2/8, we therefore have that
(

λ+∆
λ−∆

)i
=
(
1 + 2∆

λ−∆

)i
satisfies

1 +
i∆

λ−∆
≤ exp

(
i · ∆

λ−∆

)
≤
(
1 +

2∆

λ−∆

)i

≤ exp

(
i · 2∆

λ−∆

)
≤ 1 +

4i∆

λ−∆
. (15)
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For 0 ≤ x < 1/2, we also have 1 − x ≤ e−x and 1 − x = exp(−
∑∞

n=1 x
n/n) ≥ exp(−

∑∞
n=1 x(1/2)

n−1) ≥

exp(−2x). Since 0 < 2∆/(λ+∆) ≤ 2∆/(λ−∆) ≤ 8
√
γ, we thus conclude for i ≤ γ−1/2/16 that

(
λ−∆
λ+∆

)i
=(

1− 2∆
λ+∆

)i
satisfies

1− 4i∆

λ+∆
≤ exp

(
−4i · ∆

λ+∆

)
≤
(
1− 2∆

λ+∆

)i

≤ exp

(
−i · 2∆

λ+∆

)
≤ 1− i∆

λ+∆
.

We finally bound the ratio

1−
(

λ+∆
λ−∆

)n+2

1−
(

λ+∆
λ−∆

)n+1 =
1−

(
λ+∆
λ−∆

)n+1

− 2∆
λ−∆

(
λ+∆
λ−∆

)n+1

1−
(

λ+∆
λ−∆

)n+1 = 1 +

2∆
λ−∆

(
λ+∆
λ−∆

)n+1

(
λ+∆
λ−∆

)n+1

− 1
.

From (15) and n+ 2 ≤ γ−1/2/16, we have

2∆
λ−∆

(
λ+∆
λ−∆

)n+1

(
λ+∆
λ−∆

)n+1

− 1
≥

2∆
λ−∆(

λ+∆
λ−∆

)n+1

− 1
≥

2∆
λ−∆

4(n+1)∆
λ−∆

=
1

2(n+ 1)
.

From (15), (14) and n+ 2 ≤ γ−1/2/16 we similarly get

2∆
λ−∆

(
λ+∆
λ−∆

)n+1

(
λ+∆
λ−∆

)n+1

− 1
≤

2∆
λ−∆

(
1 + 4(n+1)

λ−∆

)
(n+1)∆
λ−∆

≤ 2

n+ 1
+

8∆

λ−∆
≤ 2

n+ 1
+ 32
√
γ ≤ 4

n+ 1
.

Thus

1 +
1

2(n+ 1)
≤

1−
(

λ+∆
λ−∆

)n+2

1−
(

λ+∆
λ−∆

)n+1 ≤ 1 +
4

n+ 1
.

We next proceed to give the proof of Claim 2. They key idea here is to consider the ratio ϕn+1/ϕn+2

using both (8) and (9).

Proof of Claim 2. Consider the ratio ϕn+1/ϕn+2. Using (8), this ratio equals

ϕn+1

ϕn+2
=

(
λ−∆
4

)n+1
(
α

(
1−

(
λ+∆
λ−∆

)n+1
)
+
(

λ+∆
λ−∆

)n+1
)

(
λ−∆
4

)n+2
(
α

(
1−

(
λ+∆
λ−∆

)n+2
)
+
(

λ+∆
λ−∆

)n+2
) .

This implies

ϕn+1

ϕn+2
·
(
λ−∆

4

)(
α

(
1−

(
λ+∆

λ−∆

)n+2
)

+

(
λ+∆

λ−∆

)n+2
)

=

(
α

(
1−

(
λ+∆

λ−∆

)n+1
)

+

(
λ+∆

λ−∆

)n+1
)
.

Using (9), we also have

ϕn+1

ϕn+2
=
λ−∆

4
·
1−

(
λ+∆
λ−∆

)n+2

1−
(

λ+∆
λ−∆

)n+1

14



Inserting this above and rearranging terms gives

α

(
1−

(
λ+∆

λ−∆

)n+1
)(λ−∆

4

)2

1−
(

λ+∆
λ−∆

)n+2

1−
(

λ+∆
λ−∆

)n+1


2

− 1

 =

(
λ+∆

λ−∆

)n+1

1−
(
λ+∆

4

)(
λ−∆

4

) 1−
(

λ+∆
λ−∆

)n+2

1−
(

λ+∆
λ−∆

)n+1

 . (16)

Rearranging terms and using λ2 −∆2 = 8 gives

α

((
λ−∆

λ+∆

)n+1

− 1

)
=

1− 1
2 ·

1−( λ+∆
λ−∆ )

n+2

1−( λ+∆
λ−∆ )

n+1

(
λ−∆
4

)2( 1−( λ+∆
λ−∆ )

n+2

1−( λ+∆
λ−∆ )

n+1

)2

− 1

=
1

2
· 1(

λ−∆
4

)2( 1−( λ+∆
λ−∆ )

n+2

1−( λ+∆
λ−∆ )

n+1

)
−
(

1−( λ+∆
λ−∆ )

n+1

1−( λ+∆
λ−∆ )

n+2

) (17)

Using Claim 1 point 4. to bound the ratio

1−
(

λ+∆
λ−∆

)n+2

1−
(

λ+∆
λ−∆

)n+1 ≥ 1 +
1

2(n+ 1)
,

the denominator of (17) is at least

(
λ−∆

4

)2

1−
(

λ+∆
λ−∆

)n+2

1−
(

λ+∆
λ−∆

)n+1

−
1−

(
λ+∆
λ−∆

)n+1

1−
(

λ+∆
λ−∆

)n+2

 ≥ (λ−∆

4

)2(
1 +

1

2(n+ 1)

)
− 1. (18)

We now observe that (
λ−∆

4

)2

=
λ2 +∆2 − 2λ∆

16

=
2(8 + 2

√
8γ + γ2)− 8− 2λ∆

16

≥ 1

2
+

4
√
8γ + 2γ2 − 24

√
γ

16

>
1

2
−√γ

≥ 1

2
− 1

16(n+ 2)
.

Continuing from (18), we have that the denominator of (17) is at least(
1

2
− 1

16(n+ 2)

)(
1 +

1

2(n+ 1)

)
− 1 ≥ −1

2
+

1

4(n+ 1)
− 1

16(n+ 1)
− 1

32(n+ 1)2
≥ −1

2
+

1

8(n+ 1)
.
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We may also upper bound the denominator as

(
λ−∆

4

)2

1−
(

λ+∆
λ−∆

)n+2

1−
(

λ+∆
λ−∆

)n+1

−
1−

(
λ+∆
λ−∆

)n+1

1−
(

λ+∆
λ−∆

)n+2

 ≤
(
λ−∆

4

)2

−

1−
(

λ+∆
λ−∆

)n+1

1−
(

λ+∆
λ−∆

)n+2

 ≤
1

2
−
(
1 +

1

2(n+ 1)

)−1

=

1

2
− 2(n+ 1)

2(n+ 1) + 1
=

1

2
− 1 +

1

2(n+ 1) + 1
≤

−1

2
+

1

2(n+ 1)
.

Using these bounds in (17) we conclude

α

((
λ−∆

λ+∆

)n+1

− 1

)
≤ 1

−1 + 1
4(n+1)

= −

(
1

1− 1
4(n+1)

)

= −

(
1 +

1
4(n+1)

1− 1
4(n+1)

)

≤ −1− 1

4(n+ 1)
.

and

α

((
λ−∆

λ+∆

)n+1

− 1

)
≥ 1

−1 + 1
n+1

= −

(
1

1− 1
n+1

)

= −

(
1 +

1
n+1

1− 1
n+1

)

≥ −1− 2

n+ 1
.
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