
The Many Faces of Optimal Weak-to-Strong Learning

Mikael Møller Høgsgaard ∗ Kasper Green Larsen †

Markus Engelund Mathiasen ‡

Abstract

Boosting is an extremely successful idea, allowing one to combine multiple low accuracy
classifiers into a much more accurate voting classifier. In this work, we present a new and
surprisingly simple Boosting algorithm that obtains a provably optimal sample complexity.
Sample optimal Boosting algorithms have only recently been developed, and our new algorithm
has the fastest runtime among all such algorithms and is the simplest to describe: Partition
your training data into 5 disjoint pieces of equal size, run AdaBoost on each, and combine the
resulting classifiers via a majority vote. In addition to this theoretical contribution, we also
perform the first empirical comparison of the proposed sample optimal Boosting algorithms. Our
pilot empirical study suggests that our new algorithm might outperform previous algorithms on
large data sets.

1 Introduction
Boosting is one the most powerful machine learning ideas, allowing one to improve the accuracy of
a simple base learning algorithm A. The main idea in Boosting, is to iteratively invoke the base
learning algorithm A on modified versions of a training data set. Each invocation of A returns a
classifier, and these classifiers are finally combined via a majority vote or averaging. Variations of
Boosting, including Gradient Boosting [9, 15, 6], are often among the best performing classifiers
in practice, especially when data is tabular. Furthermore, when combined with decision trees or
regressors as the base learning algorithm, these algorithms are independent of scaling of data features
and provides impressive out-of-the-box performance. See the excellent survey [21] for further details.

The textbook Boosting algorithm for binary classification, AdaBoost [8], works by maintaining
a weighing Dt = (Dt(1), . . . , Dt(m)) of a training set S = (x1, y1), . . . , (xm, ym) with (xi, yi) ∈
X × {−1, 1} for an input domain X and labels {−1, 1}. In each Boosting iteration t, a classifier
ht : X → {−1, 1} is trained to minimize the 0/1-loss on S, but with samples weighed according
to Dt. The weights are then updated such that samples (xi, yi) misclassified by ht have a larger
weight under Dt+1 and correctly classified samples have a smaller weight. Finally, after a sufficient
number of iterations T , AdaBoost combines the classifiers h1, . . . , hT into a voting classifier f(x) =
sign(

∑
t αtht(x)) taking a weighted majority vote among the predictions made by the ht’s. Here

the αt’s are real-valued weights depending on the accuracy of ht on Dt.
∗Aarhus University Computer Science Department, mail: hogsgaards@cs.au.dk.
†Aarhus University Computer Science Department, mail: larsen@cs.au.dk.
‡Aarhus University Computer Science Department, mail: markusm@cs.au.dk.

1

Weak-to-Strong Learning. Boosting was originally introduced to address a theoretical question
asked by Kearns and Valiant [16, 17] on weak-to-strong learning. A learning algorithm A is called
a weak learner if, for any distribution D over X × {−1, 1}, when given some m0 i.i.d. training
samples S from D, it produces with probability at least 1− δ0, a classifier/hypothesis hS ∈ H with
erD(hS) ≤ 1/2 − γ, where erD(h) = Pr(x,y)∼D[h(x) ̸= y] and H ⊆ X → {−1, 1} is a predefined
hypothesis set used by A. A weak learner thus produces, for any distribution D, a hypothesis
that performs slightly better than random guessing when given enough samples from D. The
parameter γ is called the advantage of the weak learner and we refer to the weak learner as a γ-weak
learner. We think of δ0 and m0 as constants that may depend on H, but not D. A strong learner in
contrast, is an algorithm that for any distribution D, and any parameters (ε, δ) with 0 < ε, δ < 1,
when given m(ε, δ) i.i.d. samples S from D, produces with probability at least 1− δ a hypothesis
hS : X → {−1, 1} with erD(hS) ≤ ε. Here m(ε, δ) is the sample complexity of the strong learner. A
strong learner thus obtains arbitrarily high accuracy when given enough training samples. With
these definitions in place, Kearns and Valiant asked whether it is always possible to produce a strong
learner from a weak learner. This was indeed shown to be the case [24], and AdaBoost is one among
many examples of algorithms producing a strong learner from a weak learner.

Sample Complexity. Given that weak-to-strong learning is always possible, a natural question is
"what is the best possible sample complexity m(ε, δ) of weak-to-strong learning?". This is known to
depend on the VC-dimension d of the hypothesis set H used by the weak learner, as well as the
advantage γ of the weak learner. In particular, the best known analysis [26] of AdaBoost shows that
it achieves a sample complexity mAda(ε, δ) of

mAda(ε, δ) = O

(
d ln(1/(εγ)) ln(d/(εγ))

γ2ε
+

ln(1/δ)

ε

)
. (1)

Larsen and Ritzert [19] were the first to give an algorithm improving over AdaBoost. Their algorithm
has a sample complexity mLR(ε, δ) of

mLR(ε, δ) = O

(
d

γ2ε
+

ln(1/δ)

ε

)
.

They further complemented their algorithm with a lower bound proof showing that any weak-to-
strong learning algorithm must have a sample complexity m(ε, δ) of

m(ε, δ) = Ω

(
d

γ2ε
+

ln(1/δ)

ε

)
.

The optimal sample complexity for weak-to-strong learning is thus fully understood from a theoretical
point of view.

Other Performance Metrics. Sample complexity is however not the only interesting performance
metric of a weak-to-strong learner. Furthermore, O(·)-notation may hide constants that are too
large for practical purposes. It is thus worthwhile to develop alternative optimal weak-to-strong
learners and compare their empirical performance.

The algorithm of Larsen and Ritzert for instance has a rather slow running time as it invokes the
weak-learner a total of O(mlg4 3γ−2 lnm) = O(m0.8γ−2) times on a training set of m samples. This

2

should be compared to AdaBoost that only invokes the weak learner O(γ−2 lnm) times to achieve
the sample complexity stated in (1).

An alternative sample optimal weak-to-strong learner was given by Larsen [18] as a corollary of a
proof that Bagging [4] is an optimal PAC learner in the realizable setting. Concretely, his work gives
a weak-to-strong learner with an optimal sample complexity while only invoking the weak-learner a
total of O(γ−2 ln(m/δ) lnm) times on a training set of m samples.

A natural question is whether the sample complexity of AdaBoost shown in (1) can be improved
to match the optimal sample complexity by a better analysis. Since AdaBoost only invokes its weak
learner O(γ−2 lnm) times on m samples, this would be an even more efficient optimal weak-to-strong
learner. Unfortunately, work by Høgsgaard et al. [14] shows that AdaBoost’s sample complexity is
sub-optimal by at least a ln(1/ε) factor, i.e.

mAda(ε, δ) = Ω

(
d ln(1/ε)

γ2ε
+

ln(1/δ)

ε

)
. (2)

It thus remains an intriguing task to design weak-to-strong learners that have an optimal sample
complexity and yet match the runtime guarantees of AdaBoost. Furthermore, do the theoretical
improvements translate to practice? Or are there large hidden constant factors in the O(·)-notation?
And how does it vary among the different weak-to-strong learners?

1.1 Our Contributions
In this work, we first present a new weak-to-strong learner with an optimal sample complexity
(at least in expectation). The algorithm, called Majority-of-5 and shown as Algorithm 1, is
extremely simple: Partition the training set into 5 disjoint pieces of size m/5 and run AdaBoost
on each to produce voting classifiers f1, . . . , f5. Finally combine them by taking a majority vote
g(x) = sign(

∑5
t=1 ft(x)). This simple algorithm only invokes the weak learner O(γ−2 lnm) times,

asymptotically matching AdaBoost and improving over previous optimal weak-to-strong learners.
Furthermore, since each invocation of AdaBoost is on a training set of only m/5 samples, it is at
least as fast as AdaBoost, even when considering constant factors. It is even trivial to parallelize
the algorithm among up to 5 machines/threads.

Algorithm 1: Majority-of-5(S,W)
Input: Training set S = (x1, y1), . . . , (xm, ym). Weak learner W.
Result: Hypothesis g : X → {−1, 1}.

1 Partition S into 5 disjoint pieces S1, . . . , S5 of size m/5.
2 for t = 1, . . . , 5 do
3 Run AdaBoost on St with W to obtain ft : X → {−1, 1}.
4 g ← sign(

∑
t ft).

5 return g

The concrete guarantees we give for Majority-of-5 are as follows

Theorem 1. For any distribution D over X ×{−1, 1} and any γ-weak learner W using a hypothesis
set H of VC-dimension d, it holds for a training set S ∼ Dm that running Majority-of-5 on S to
obtain a hypothesis g satisfies

E[erD(g)] = O

(
d

γ2m

)
.

3

In particular, Theorem 1 implies that E[erD(g)] ≤ ε when given m = Θ(d/(γ2ε)) samples. This
is a slightly weaker guarantee than the alternative optimal weak-to-strong learners in the sense that
we do not provide high probability guarantees (i.e. with probability 1− δ). On the other hand, our
algorithm is extremely simple and has a running time comparable to AdaBoost. Furthermore, the
proof that AdaBoost is sub-optimal (see (2)) shows that even the expected error of AdaBoost is
sub-optimal by a logarithmic factor. It is interesting that combining a constant number of voting
classifiers trained by AdaBoost makes it optimal when a single AdaBoost is provably sub-optimal.
Let us also comment that the analysis of Algorithm 1 is based on recent work by Aden-Ali et
al. [1] on optimal PAC learning in the realizable setting, demonstrating new applications of their
techniques. Furthermore, we believe the number 5 is an artifact of our proof and we conjecture that
it can be replaced with 3 by giving a better generalization bound for large margin voting classifiers.
See Section 3 for further details.

Empirical Comparison. Our second contribution is a pilot empirical study, which gives the first
empirical comparison between the alternative optimal weak-to-strong learners, both the algorithm
of Larsen and Ritzert [19], the Bagging+Boosting based algorithm [18], our new Majority-of-5
algorithm, as well as classic AdaBoost. We give the full details of the alternative algorithms in
Section 2. In our experiments, we compare their performance both on real-life data as well as the
data distribution used by Høgsgaard et al. [14] in their proof that AdaBoost is sub-optimal as shown
in (2). Our pilot empirical study give a indication that our new algorithm Majority-of-5 may
outperform previous algorithms on large data sets, whereas Bagging+Boosting performs best on
small data sets. See Section 4 for further details and the results of these experiments.

2 Previous Optimal Weak-to-Strong Learners
In this section, we present the two previous optimal weak-to-strong learners. The first such algorithm,
by Larsen and Ritzert [20], builds on a sub-sampling technique due to Hanneke [13] in his seminal
work on optimal PAC learning in the realizable setting. This sub-sampling technique, named
SubSample, is shown as Algorithm 2.

Algorithm 2: SubSample(S, T)
Input: Training set S, Stash T
Result: List of training sets L.

1 if |S| < 4 then
2 Let L contain the single training set S ∪ T .
3 return L

4 Partition S into 4 disjoint pieces S0, S1, S2, S3 of size |S|/4 each.
5 Let L be an empty list.
6 Append SubSample(S0, T ∪ S2 ∪ S3) to L.
7 Append SubSample(S0, T ∪ S1 ∪ S3) to L.
8 Append SubSample(S0, T ∪ S1 ∪ S2) to L.
9 return L

Given a training set S, SubSample generates a list L of subsets Si ⊂ S. The list L has
size mlg4 3 ≈ m0.79 when invoking SubSample(S, ∅) for a training set S of size m. Larsen and

4

Ritzert now give an optimal weak-to-strong learner using SubSample as a sub-routine as shown in
Algorithm 3.

Algorithm 3: LarsenRitzert(S,W)
Input: Training set S = (x1, y1), . . . , (xm, ym). Weak learner W.
Result: Hypothesis g : X → {−1, 1}.

1 Invoke SubSample(S, ∅) to obtain list L = S1, . . . , Sk.
2 for t = 1, . . . , k do
3 Run AdaBoost on St with W to obtain ft : X → {−1, 1}.
4 g ← sign(

∑
t ft).

5 return g

Finally, the algorithm by Larsen [18] based on Bagging (a.k.a. Bootstrap Aggregation) by
Breiman [4], combines AdaBoost with sampling subsets of the training data with replacement.
Unlike the algorithm above by Larsen and Ritzert, it requires a target failure probability δ as input.
The algorithm is shown as Algorithm 4.

Algorithm 4: BaggedAdaBoost(S,W, δ)
Input: Training set S = (x1, y1), . . . , (xm, ym). Weak learner W. Failure probability

0 < δ < 1.
Result: Hypothesis g : X → {−1, 1}.

1 for t = 1, . . . , O(ln(m/δ)) do
2 Let St be a set of m independent samples with replacement from S.
3 Run AdaBoost on St with W to obtain ft : X → {−1, 1}.
4 g ← sign(

∑
t ft).

5 return g

3 Analysis of Majority-of-5

In this section, we give the proof of Theorem 1, showing that our new algorithm Majority-of-5
has an optimal expected error. Before giving the formal details, we present the main ideas in our
proof. Our analysis is at a high level inspired by recent work of Aden-Ali et al. [1] for realizable
PAC learning. The first ingredient we need is the notion of margins. For a voting classifier
f(x) = sign(

∑
h∈H αhh(x)) with αh ≥ 0 for all h, consider the function f ′(x) =

∑
h∈H α′

hh(x) with
α′
h = αh/

∑
h αh. That is, f ′ is simply the voting classifier f without the sign(·) and normalized to

have coefficients summing to 1. The margin of f on a sample (x, c(x)) is then c(x)f ′(x) ∈ [−1, 1].
The margin is 1 if all hypotheses combined by f agree and are correct. It is 0 if half of the mass is
on hypothesis that are correct and half of the mass is on the hypothesis that are wrong. We can
thus think of the margin as a confidence of the voting classifier. Margins have been extensively
studied in the context of boosting and were originally introduced to give theoretical justification for
the impressive practical performance of AdaBoost [2]. In particular, there are strong generalization
bounds for voting classifiers with large margins [2, 5, 10]. Indeed, the best known sample complexity

5

bound for AdaBoost, as stated in (1), is derived by showing that AdaBoost produces a voting
classifier with margins Ω(γ).

Returning to our outline of the proof of Theorem 1, recall that the optimal error for weak-to-
strong learning as a function of the number of samples m is O(d/(γ2m)). Now assume we can prove
that for a set of m i.i.d. samples from a distribution D, the expected maximum error under D of
any voting classifier that has margins Ω(γ) on all the samples, is no more than O(

√
d/(γ2m)). This

fact follows from previous work on Rademacher complexity. Note that this is sub-optimal compared
to our target error by a polynomial factor since

√
x ≥ x for x between 0 and 1. We want to argue

that combining 5 instantiations of AdaBoost on disjoint training sets reduces this expected error to
optimal O(d/(γ2m)).

For this argument, consider running AdaBoost on n = m/5 samples. For any x ∈ X , consider
the probability px = PrS∼Dn [fS(x) ̸= c(x)] where fS is the hypothesis produced by AdaBoost on S
and c(x) is the correct label of x. Inspired by Aden-Ali et al. [1], we now partition the input domain
X into sets Ri, such that Ri contains all x for which px ∈ (2−i, 2−i+1]. The crucial observation is
that if we consider k independently trained AdaBoosts, then the probability they all err on x is
precisely pkx. Since a majority vote among 5 classifiers only fails when at least 3 of the involved
classifiers fail, combining 5 AdaBoosts intuitively reduces the contribution to the expected error
from points x ∈ Ri to PrX∼D[X ∈ Ri]2

−3i. What remains is thus to argue that Pr[X ∈ Ri] is small.
This last step is done by considering the distribution Di, which is D conditioned on receiving a

sample from Ri. The expected number of samples we see from Ri is mi = Pr[X ∈ Ri]m. Furthermore,
since AdaBoost obtains margins Ω(γ) on all its training data, it in particular obtains margins Ω(γ)
on all its samples from Di. This leads to an error probability of pi = O(

√
d/(γ2mi)) under Di. But

the definition of Ri implies pi ≥ 2−i. Hence
√

d/(γ2mi) = Ω(2−i)⇒ mi = O(22id/γ2)⇒ Pr[X ∈
Ri] = O(22id/(γ2m)). By summing over all Ri, the final expected error is hence

∞∑
i=1

22id2−3i

γ2m
= O(d/(γ2m)).

This completes the proof overview. Let us end by making a few remarks. First, it is worth noting
that the generalization bound O(

√
d/(γ2m)) seems much worse than the bound in (1) claimed for

AdaBoost and other voting classifiers with large margins. Unfortunately, if we examine (1) carefully
and state ε as a function of m, we get ε = O(d ln(m/d) lnm/(γ2m)). The problem is that the two
log-factors are not bounded by a polynomial in d/(γ2m). In particular for m = Cd/γ2 with C > 0
a constant, any polynomial in d/(γ2m) must be constant. But lnm = ln(Cd/γ2) is not a constant
independent of d and γ. Thus we have to use the generalization bound with

√
· that fortunately is

within a polynomial factor of optimal for the full range of m. Let us also comment that if the lower
bound for AdaBoost stated in (2) is tight also for γ-margin voting classifiers, i.e. matched by an
upper bound, then it suffices to take a majority of 3 AdaBoosts for optimal sample complexity.

This concludes the description of the high level ideas in our proof.

3.1 Formal Analysis
We now give the formal details of the proof. We start by introducing some notation.

6

Preliminaries. For a hypothesis set H, we let ∆(H) denote the set of linear classifiers using
hypothesis from H that is

∆(H) =

{
f ∈ {−1, 1}X : f =

∑
h∈H

αf
hh,∀h ∈ H, α

f
h ≥ 0,

∑
h∈H

αf
h = 1

}
.

Note that we have termed these linear classifiers rather than voting classifier, to distinguish that we
have not yet applied a sign(·) and insist on normalizing the coefficients so they sum to 1. We define
the sign function as being 1 when the value is non-negative (so also 1 when x = 0) and −1 when
negative.

We let c ∈ {−1, 1}X be a true labeling that we are trying to learn. For a distribution D over
X , we define the expected loss of f ∈ [−1, 1]X as erD(f) := EX∼D [1{sign(f)(X) ̸= c(X)}] and we
will use S ∈ Xm to denote a point set of m i.i.d. samples from D i.e. S ∼ Dm (we see the point
set as a vector so we allow repetition of points). Define for any k ∈ N the majority of k linear
classifiers f1, . . . , fk ∈ [−1, 1]X as Maj(f1, . . . , fk)(x) = sign(

∑
i sign(fi(x))). Let s be a set of

points, i.e. s ∈ ∪∞i=1X i and c(s) ∈ {−1, 1}|s| the labeling of the points that s contains with c, that is
c(s)i = c(si). We define a γ-margin classifier algorithm f : ∪∞i=1(X × {−1, 1})i ⇒ [−1, 1]X to be
a mapping that takes as input a point set with labels (s, c(s)) ∈ ∪∞i=1(X × {−1, 1})i and outputs
a function f(s, c(s))(·) from X to the interval [−1, 1], where f(s, c(s))(·) is such that for x ∈ s,
f(s, c(s))(x)c(x) ≥ γ. In the following we will use fs to denote f(s, c(s)) and write f ∈ ∆(H) if
for any (s, c(s)) ∈ ∪∞i=1(X × {−1, 1})i we have that the output of the γ-margin classifier algorithm
f(s, c(s)) is in ∆(H).

Analysis. We now prove Theorem 1, which is a direct consequence of the following Corollary 2.
Corollary 2 states that running a γ-margin classifier algorithm on 5 disjoint training sets of size m
and forming the majority vote of the produced 5 classifiers, has the optimal O(d/(γ2m)) expected
error. Since AdaBoost, after O(ln(m)/γ2) iterations, has Ω(γ) margins on all points [25] [Section
5.4.1], Corollary 2 gives the claim in Theorem 1. Alternatively one could run AdaBoost∗v [23] instead
of AdaBoost. The proof of Corollary 2 follows the method used in [1] where the authors show a
similar bound for PAC learning in the realizable setting. We now state Corollary 2.

Corollary 2. For any distribution D over X , hypothesis set H with VC-dimension d, i.i.d. point
sets S1, . . . , S5 from Dm, margin 0 < γ ≤ 1 and f ∈ ∆(H) being a γ-margin classifier algorithm, we
have that

ES1,...,S5∼Dm [erD (Maj(fS1 , . . . , fS5))] = O

(
d

γ2m

)
.

The result in Corollary 2 is primarily a consequence of the following Lemma 3, which says that,
in expectation, the probability that fS1 , fS2 , fS3 all misclassifying a sample from D is O(d/(γ2m)).
We now state Lemma 3 and give the proof of Corollary 2. We postpone the proof of Lemma 3 to
later in this section.

Lemma 3. For any distribution D over X , hypothesis set H with VC-dimension d, i.i.d. point sets
S1, S2, S3 from Dm, margin 0 < γ ≤ 1 and f ∈ ∆(H) being a γ-margin classifier algorithm we have
that

ES1,S2,S3∼Dm

[
PX∼D

[
∩3i=1{sign(fSi

(X)) ̸= c(X)}
]]

= O

(
d

γ2m

)
.

7

Proof of Corollary 2. For the majority of fS1 , . . . , fS5 to fail on an x ∈ X , it must be the case that
at least 3 of the trained γ-margin classifiers fSi have sign(fSi(x)) ̸= c(x). Using this combined with
the Si’s being i.i.d. we get that

ES1,...,S5∼Dm [erD (Maj(fS1 , . . . , fS5))]

≤
∑

1≤j1<j2<j3≤5

ESj1 ,Sj2 ,Sj3∼Dm

[
PX∼D

[
∩3i=1{sign(fSji

(X)) ̸= c(X)}
]]

≤ES1,S2,S3∼Dm

[
PX∼D

[
∩3i=1{sign(fSi(X)) ̸= c(X)}

]] ∑
1≤j1<j2<j3≤5

1.

Now using Lemma 3 and
(
5
3

)
= O(1), we get that the above is O

(
d

γ2m

)
as claimed.

We now move on to prove Lemma 3. For this we need Lemma 4 the following

Lemma 4. Let a > 1 denote a universal constant. For D a distribution, R a subset of X such that
P [R] := PX∼D [X ∈ R] ̸= 0, hypothesis set H with VC-dimension d, S a point set of m i.i.d. points
from D, margin 0 < γ ≤ 1 and f ∈ ∆(H) being a γ-margin classifier algorithm we have that

ES [EX∼DR
[1{fS(X) ̸= c(X)}]] = ES [erDR(fS)] ≤

√
ad

P [R] γ2m
.

where we use DR to denote the conditional distribution on the subset R. That is, for any measurable
function g, EX∼DR

[g(X)] := EX∼D [g(X)1{X ∈ R}] /PX∼D [X ∈ R].

Proof of Lemma 3. For x ∈ X let px = ES∼Dm [1{fS(x) ̸= c(x)}] and define for i = 1, . . . the sets
Ri = {x ∈ X : px ∈

(
2−i, 2−i+1

]
}. Now using Tonelli, and that S1, S2, S3 are i.i.d. with distribution

Dm, and that px ≤ 2−i+1 for x ∈ Ri we get that

ES1,...,S3∼Dm

[
PX∼D

[
∩3i=1{fSi(X) ̸= c(X)}

]]
=EX∼D

[
ES1,...,S3∼Dm

[
1{∩3i=1{fSi

(X) ̸= c(X)}}
]]

=EX∼D
[
p3X
]
=

∞∑
i=1

EX∼D
[
p3X | X ∈ Ri

]
P [X ∈ Ri] ≤ 23

∞∑
i=1

2−3iP [X ∈ Ri] ,

thus if we can show that there exists a universal constant c′ > 0 such that PX∼D [X ∈ Ri] ≤ c′d22i

γ2m
we get that

ES1,...,S3

[
PX∼D

[
∩3i=1{fSi(X) ̸= c(X)}

]]
≤ 23

c′d

γ2m

∞∑
i=1

2−i = O

(
d

γ2m

)
,

and we are done. Thus assume for contradiction that PX∼D [X ∈ Ri] >
c′d22i

γ2m , for c′ > 1 to be
chosen large enough. Using Lemma 4 we have that there exist a universal constant a > 1 such that

ES∼Dm

[
erDRi

(fS)
]
≤

√
ad

P [Ri] γ2m
.

8

By Tonelli, the definition of px and that for x ∈ Ri we have px ∈
(
2−i, 2−i+1

]
we get that

ES∼Dm

[
erDRi

(fS)
]
= EX∼DRi

[ES∼Dm [1{fS(X) ̸= c(X)}]] = EX∼DRi
[pX] ≥ 2−i.

Combining the above lower and upper bound on ES∼Dm

[
erDRi

]
and PX∼D [X ∈ Ri] >

c′d22i

γ2m we get
that

1 ≤ 2i

√
ad

P [Ri] γ2m
≤ 2i

√
ad

c′d22i

γ2m γ2m
≤
√

a

c′
,

which for c′ sufficiently large is strictly less than 1, thus we reached a contradiction. Hence it must
be the case that PX∼D [X ∈ Ri] ≤ c′d22i

γ2m , which concludes the proof of Lemma 3.

We now give the proof of Lemma 4. For this we need the following Corollary 5 that gives a high
probability bound on the error for all classifiers in ∆(H) that have γ margins on a training set S.

Corollary 5. Let C > 1 denote a universal constant. For hypothesis set H with VC-dimension
d, distribution D, margin 0 < γ ≤ 1, failure probability 0 < δ < 1, and a point set S ∼ Dm, we
have with probability at least 1− δ over S, that any f ∈ ∆(H) such that f(x)c(x) ≥ γ for all x ∈ S
satisfies

erD(f) ≤

√
2Cd

γ2m
+

√
2 ln (2/δ)

m
.

Corollary 5 follows by a modification of [25] [page 107-111] using the stronger bound on the
Rademacher Complexity of O(

√
d/m) due to [7] [See e.g. theorem 7.2 [12]]. With Corollary 5 in

place we now give the proof of Lemma 4.

Proof of Lemma 4. If P [R]m ≤ d/γ2 we have that√
d

γ2P [R]m
≥ 1,

and the claim holds since erDR(fS) is always less than 1. Thus we assume from now on that
P [R]m > d/γ2. We now define the events Ei := {|{S ∩ R}| = i} for m ≥ i ≥ P [R]m/2 and
E = ∪i≥P[R]m/2Ei = {|S∩R| ≥ P [R]m/2}. We further define Xj = 1{Sj ∈ R} for j = 1, . . . ,m and
notice that these are i.i.d. {0, 1}-random variables where X =

∑
j Xj has expectation P [R]m and

the event
∑

j Xj ≥ P [R]m/2 is contained in E. Thus by a Chernoff bound and that exp(−x) ≤ 1/x
for x > 0, we get that

PS [E] ≥ 1− exp (−P [R]m/8) ≥ 1− 8

P [R]m
.

We thus have PS

[
Ē
]
≤ 8/ (P [R]m). Since we assumed that P [R]m ≥ d/γ2 ≥ 1 and using

0 ≤ x ≤
√
x for x ≤ 1, this further implies that

PS

[
Ē
]
≤ 8 ·

√
d

γ2P [R]m
.

9

We will soon show that ES [erDR(fS)|Ei] ≤ 16 ·
√

16Cd
γ2P[R]m for m ≥ i ≥ P [R]m/2 for a universal

constant C ≥ 1. Now using these two relations combined with the law of total expectation on the
partition Ē, EP[R]m/2, . . . , Em and that erDR ≤ 1, we get that

ES [erDR(fS)] =
∑

i≥P[R]m/2

ES [erDR(fS)|Ei]PS [Ei] + ES

[
erDR(fS)|Ē

]
PS

[
Ē
]

≤ 16 ·

√
16Cd

γ2P [R]m
P [E] + 8 ·

√
d

γ2P [R]m

≤ 24 ·

√
16Cd

γ2P [R]m
,

as claimed in Lemma 4 with the universal constant a = 242 · 16C. Thus we have to show that
ES [erDR(fS)|Ei] ≤ 16 ·

√
16Cd

γ2P[R]m for m ≥ i ≥ P [R]m/2. So consider such an i. Since erDR(fS) is a
non-negative random variable, we have that

ES [erDR(fS) | Ei] =

∫ ∞

0

PS [erDR(fS) ≥ x | Ei] dx

We will thus upper bound this integral. Now conditioned on Ei, we know that S contains i points
that are samples according to DR and that fS on these examples has all margins at least γ. Thus
we have by Corollary 5 that with probability at least 1− δ over S, it holds that

erDR(fS) ≤

√
max

{
8Cd

γ2i
,
8 ln (2/δ)

i

}
(3)

where C ≥ 1 is a universal constant. For ease of notation let ri =
√

8Cd
γ2i . We notice that

ri ≤
√

16Cd
γ2P[R]m since i is assumed to be greater than P [R]m/2. Using this, we get that∫ ∞

0

PS [erDR(fS) ≥ x | Ei] dx ≤ ri ≤
√

16Cd
γ2P[R]m +

∫ ∞

ri

PS [erDR(fS) ≥ x] dx. (4)

Thus if we can show that ∫ ∞

ri

PS [erDR(fS) ≥ x] dx ≤ 15 ·
√

d
γ2P[R]m ,

we get by combining this with Eq. (4) that

ES [erDR(fS) | Ei] ≤ 16 ·
√

16Cd
γ2P[R]m

which would conclude the proof. Thus we now show
∫∞
ri

PS [erDR(fS) ≥ x] dx ≤ 15 ·
√

d
γ2P[R]m . For

this, we do the following non-trivial rewriting of x to make it resemble the second term in the max
appearing in (3)

x =

√√√√8 ln

(
2

2 exp
(−x2i

8

)) i−1.

10

Now for any x ≥ ri we have that

PS [erDR(fS) ≥ x | Ei] = PS [erDR(fS) ≥ max(ri, x) | Ei] ,

which combined with the rewriting of x and Eq. (3) with δ = 2 exp
(

−x2i
8

)
and noticing ri is the

first argument of the max in Eq. (3), we get that

PS [erDR(fS) ≥ x | Ei] = PS [erDR(fS) ≥ max(ri, x) | Ei] ≤ 2 exp

(
−x2i

8

)
,

for any x ≥ ri. Now using the density function of a normal distribution with mean 0 and standard
deviation σ is equal to exp(− 1

2 (x/σ)
2)/(σ

√
2π), and letting N(0, σ) denote a normal random variable

with mean 0 and standard deviation σ, we get that∫ ∞

ri

PS [erDR(fS) ≥ x | Ei] dx ≤
∫ ∞

ri

2 exp

(
−x2i

8

)
dx

≤ 2
√
8/(2i)

√
2π

∫ ∞

ri

1√
8/(2i)

√
2π

exp

−1

2

(
x2√
8/(2i)

)2
 dx

≤ 2
√

8π/i · P

[
N

(
0,

√
8

2i

)
≥ ri

]
≤ 8
√
π/(P [R]m) ≤ 15 ·

√
d

γ2P [R]m
,

where the second to last inequality follows from i ≥ P [R]m/2 and the last inequality by P [R]m ≥
d/γ2 ≥ 1.

4 Experiments
In this section, we present the results of our pilot empirical study between the different sample
optimal weak-to-strong learners. We compare the algorithms on five different data sets. The first
four are standard binary classification data sets and are the same data sets used in [11], whereas
the last is a synthetic binary classification data set developed from the lower bound [14] showing
that AdaBoost is sub-optimal. For all real world data sets, we have shuffled the samples and
randomly set aside 20% to use as test set. The weak learner we use for these is the scikit-learn
DecisionTreeClassifier with max_depth=1. This is default for the implementation of AdaBoost
in scikit-learn, which is the implementation used in our experiments. We describe the data sets in
greater detail below.

• Higgs [28]: This data set represents measurements from particle detectors, and the labels
tells whether they come from a process producing Higgs bosons or if they were a background
process. The data set consists of 11 million labeled samples. However, we focus on the first
300,000 samples. Each sample consists of 28 features, where 7 of these are derived from the
other 21.

• Boone [22]: In this data set, we try to distinguish electron neutrinos from muon neutrinos.
The data set consists of 130,065 labeled samples. Each sample consists of 50 features.

11

• Forest Cover [3]: In this data set, we try to determine the forest cover type of 30 x 30 meter
cells. The data set actually has 7 different forest cover types, so we have removed all samples
of the 5 most uncommon to make it into a binary classification problem. This leaves us with
495,141 samples. Each sample consists of 54 features such as elevation, soil-type and more.

• Diabetes [27]: In this data set, we try to determine whether a patient has diabetes or not
from features such as BMI, insulin level, age and so on. This is the smallest real-world data
set, consisting of only 768 samples. Each sample consists of 8 features.

• Adversarial [14]: This data set, as well as the weak learner, have been developed using the
lower bound instance in [14]. Concretely, the data set consists of 1024 uniform random samples
from the universe X = {1, . . . , 350}. Every element of the input domain has the label 1, but
all weak-to-strong learners are run simply by giving them access to a weak learner. The weak
learner is adversarially designed. When it is queried with a weighing of the training data set, it
computes the set T containing the first 20 points from the input domain that receive zero mass
under the query weighing. It then searches through a set of hypotheses (chosen randomly) and
returns the hypothesis with the worst performance on T , while respecting that it must have
error no more than 1/2− γ under the query weighing and having at least 1/2 + γ error on T .
Finally, the hypothesis set contains an additional special hypothesis h0 that is correct (returns
1) on all but the last 20 points of the input domain. This hypothesis is used to handle queries
where none of the randomly chosen hypotheses have advantage γ. We refer the reader to [14]
for further details and intuition on why this construction is hard for AdaBoost.

The data sets represent both large and small training sets. For each data set, we run simple Ad-
aBoost (accuracy shown as a blue horizontal line in the plots), BaggedAdaBoost (Algorithm 4),
LarsenRitzert (Algorithm 3), and our new Majority-of-X (for X varying from 3 to 29). In
our experiments, we vary the number of AdaBoosts trained by each weak-to-strong learner from
3 to 29, instead of merely following the theoretical suggestions. Each of these voting classifiers is
then trained for 300 rounds on its respective input. This has been repeated 5 times with different
random seeds, so the plots indicate the average accuracy across these 5 runs. For Algorithm 3 that
creates mlg4 3 sub-samples, we use the full set of sub-samples on the two small data sets Diabetes
and Adversarial. For the three large data sets Higgs, Boone and Forest Cover, this creates a huge
overhead in running time and we instead randomly sample without replacement from among the
sub-samples resulting from the SubSample procedure (Algorithm 2). This is the reason for the
non-constant behavior of this algorithm in the corresponding experiments. For BaggedAdaBoost,
we have chosen to sample 95% of the samples (with replacement) in our experiments. The results of
the experiments on the three large data sets are shown in Fig. 1.

The results in Fig. 1 gives an initial suggestion that our new algorithm with disjoint training sets
might have an advantage on large data sets. Quite surprisingly, we see that the two other optimal
weak-to-strong learners perform no better, or even worse, than standard AdaBoost. Experiments on
the small Diabetes data set, as well as the Adversarially designed data set, are shown in Fig. 2.

The results in Fig. 2 suggest that our new algorithm may perform poorly on small training sets.
This makes sense, as the training data for each weak learner is extremely small on these data sets.
Instead we find that the Bagging based variant outperforms classic AdaBoost. Since Bagging has a
relative small overhead compared to simple AdaBoost, this suggests running both our new algorithm
Majority-of-X and BaggedAdaBoost and using a validation set to pick the best classifier. We
hope these first experiments may inspire future and more extensive empirical comparisons between
the various weak to strong learners.

12

Figure 1: Top is Higgs, Left plot is Boone. Right plot is Forest Cover

Figure 2: Left plot is Diabetes. Right plot is Adversarial

13

Acknowledgment
This research is co-funded by the European Union (ERC, TUCLA, 101125203) and Independent
Research Fund Denmark (DFF) Sapere Aude Research Leader Grant No. 9064-00068B. Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them.

References
[1] I. Aden-Ali, M. M. Høgsgaard, K. G. Larsen, and N. Zhivotovskiy. Majority-of-three: The

simplest optimal learner? CoRR, abs/2403.08831, 2024.

[2] P. Bartlett, Y. Freund, W. S. Lee, and R. E. Schapire. Boosting the margin: a new explanation
for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651 – 1686, 1998.

[3] J. Blackard. Covertype. UCI Machine Learning Repository, 1998. DOI:
https://doi.org/10.24432/C50K5N.

[4] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[5] L. Breiman. Prediction games and arcing algorithms. Neural computation, 11(7):1493–1517,
1999.

[6] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In KDD, pages 785–794.
ACM, 2016.

[7] R. M. Dudley. Central Limit Theorems for Empirical Measures. The Annals of Probability,
6(6):899 – 929, 1978.

[8] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

[9] J. H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189 – 1232, 2001.

[10] W. Gao and Z. Zhou. On the doubt about margin explanation of boosting. Artif. Intell.,
203:1–18, 2013.

[11] A. Grønlund, L. Kamma, and K. G. Larsen. Margins are insufficient for explaining gradient
boosting. In Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020.

[12] B. Hajek and M. Raginsky. ECE 543: Statistical Learning Theory. Department of Electrical
and Computer Engineering and the Coordinated Science Laboratory, University of Illinois at
Urbana-Champaign, 2021. Last updated March 18, 2021.

[13] S. Hanneke. The optimal sample complexity of pac learning. The Journal of Machine Learning
Research, 17(1):1319–1333, 2016.

14

[14] M. M. Høgsgaard, K. G. Larsen, and M. Ritzert. Adaboost is not an optimal weak to strong
learner. In ICML, volume 202 of Proceedings of Machine Learning Research, pages 13118–13140.
PMLR, 2023.

[15] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm: A
highly efficient gradient boosting decision tree. In NIPS, 2017.

[16] M. Kearns. Learning boolean formulae or finite automata is as hard as factoring. Technical
Report TR-14-88 Harvard University Aikem Computation Laboratory, 1988.

[17] M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and finite
automata. Journal of the ACM (JACM), 41(1):67–95, 1994.

[18] K. G. Larsen. Bagging is an optimal PAC learner. Conference on Learning Theory (COLT
2023), 195:450–468, 2023.

[19] K. G. Larsen and M. Ritzert. Optimal weak to strong learning. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

[20] K. G. Larsen and M. Ritzert. Optimal weak to strong learning. Advances in Neural Information
Processing Systems (NeurIPS 2022), 2022.

[21] A. Natekin and A. Knoll. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7,
2013.

[22] B. Roe. MiniBooNE particle identification. UCI Machine Learning Repository, 2010. DOI:
https://doi.org/10.24432/C5QC87.

[23] G. Rätsch and M. Warmuth. Efficient margin maximizing with boosting. Journal of Machine
Learning Research, 6:2131–2152, 12 2005.

[24] R. E. Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

[25] R. E. Schapire and Y. Freund. Boosting: Foundations and Algorithms. The MIT Press, 05
2012.

[26] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

[27] J. W. Smith, J. E. Everhart, W. Dickson, W. C. Knowler, and R. S. Johannes. Using the
adap learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the annual
symposium on computer application in medical care, page 261. American Medical Informatics
Association, 1988.

[28] D. Whiteson. HIGGS. UCI Machine Learning Repository, 2014. DOI:
https://doi.org/10.24432/C5V312.

15

	Introduction
	Our Contributions

	Previous Optimal Weak-to-Strong Learners
	Analysis of Majority-of-5
	Formal Analysis

	Experiments

