
Higher-dimensional Orthogonal Range Reporting and
Rectangle Stabbing in the Pointer Machine Model

Peyman Afshani
∗

peyman@cs.au.dk
Lars Arge

large@cs.au.dk
Kasper Green Larsen

†

larsen@cs.au.dk

MADALGO
‡

Department of Computer Science
Aarhus University
Aarhus, Denmark

ABSTRACT
In this paper, we consider two fundamental problems in the
pointer machine model of computation, namely orthogonal
range reporting and rectangle stabbing. Orthogonal range
reporting is the problem of storing a set of n points in d-
dimensional space in a data structure, such that the t points
in an axis-aligned query rectangle can be reported efficiently.
Rectangle stabbing is the “dual” problem where a set of n
axis-aligned rectangles should be stored in a data structure,
such that the t rectangles that contain a query point can be
reported efficiently. Very recently an optimal O(logn + t)
query time pointer machine data structure was developed
for the three-dimensional version of the orthogonal range
reporting problem. However, in four dimensions the best
known query bound of O(log2 n/ log logn+ t) has not been
improved for decades.

We describe an orthogonal range reporting data structure
that is the first structure to achieve significantly less than
O(log2 n+ t) query time in four dimensions. More precisely,
we develop a structure that usesO(n(logn/ log log n)d) space
and can answer d-dimensional orthogonal range reporting
queries (for d ≥ 4) in O(logn(logn/ log log n)d−4+1/(d−2)+t)
time. Ignoring log logn factors, this speeds up the best pre-
vious query time by a log1−1/(d−2) n factor. For the rectan-
gle stabbing problem, we show that any data structure that
uses nh space must use Ω(logn(logn/ log h)d−2 + t) time

∗This research was done while the author was a post-
doctoral researcher at Dalhousie University, and was sup-
ported by Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) through the Postdoctoral Fellow-
ships Program (PDF).
†Is supported in part by MADALGO and in part by a Google
Fellowship in Search and Information Retrieval
‡Center for Massive Data Algorithmics, a center of the Dan-
ish National Research Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’12, June 17–20, 2012, Chapel Hill, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1299-8/12/06 ...$10.00.

to answer a query. This improves the previous results by a
log h factor, and is the first lower bound that is optimal for
a large range of h, namely for h ≥ logd−2+ε n where ε > 0 is
an arbitrarily small constant. By a simple geometric trans-
formation, our result also implies an improved query lower
bound for orthogonal range reporting.

Categories and Subject Descriptors
F.2.2 [Range Searching]: Orthogonal Range Reporting

General Terms
Theory

Keywords
Orthogonal range reporting, dominance reporting, lower bounds,
pointer machine

1. INTRODUCTION
In this paper we study two fundamental range searching

problems, namely rectangle stabbing and orthogonal range
reporting. In the orthogonal range reporting problem the
goal is to store a set of n points in d-dimensional space in a
data structure such that the t points contained in1 an axis-
aligned query rectangle2 can be reported efficiently. Rect-
angle stabbing (also called “point enclosure”) is the “dual”
problem where the goal is to store a set of n rectangles in
d-dimensional space such that the t rectangles containing a
query point can be reported efficiently.

Orthogonal range reporting is a central problem in several
fields, including spatial databases and computational geom-
etry, and it has been studied extensively [5, 6]. Rectangle
stabbing is also a classical problem in computational geom-
etry [15]. We study both problems in the pointer machine
model of computation [20]. In two dimensions, orthogonal
range reporting was completely characterized more than two
decades ago [11, 12]. Very recently, a complete characteri-
zation was also achieved in three dimensions [4]. However,
in higher dimensions the exact complexity of the problem
remain open. Unlike orthogonal range reporting, only the

1A point on the boundary of a rectangle is not assumed to
be contained in the rectangle.
2In this paper, by rectangle we actually mean a hyperrect-
angle, the Cartesian product of d intervals.

two-dimensional case has been characterized for rectangle
stabbing.

In this paper we present two main results. For orthogonal
range reporting, we improve on the best known query time
in dimensions four and above. Curiously, the improvement
grows with dimension. For rectangle stabbing, we obtain the
first tight query time lower bound. By known techniques,
this gives an improved query time lower bound for orthogo-
nal range reporting as well.

1.1 Previous Results
Below we review previous results on orthogonal range re-

porting and rectangle stabbing in the pointer machine. We
only review the results most related to ours, that is, results
for static structures that answer queries in poly-logarithmic
time and with near-linear space usage. We refer the reader
to the surveys [5, 6] for further results. For the best data
structures in the RAM model see [7, 9].

1.2 Orthogonal Range Reporting
The complexity of the two-dimensional version of the or-

thogonal range reporting problem was completely settled
more than two decades ago. In [11], Chazelle provided a
structure that can answer queries in O(logn+ t) time using
O(n logn/ log log n) space. This is optimal, since Chazelle
later proved that any structure for d-dimensional orthogo-
nal range reporting that answers queries in O(logO(1) n+ t)
time must use Ω(n(logn/ log log n)d−1) space [12]. For the
special three-sided query case, where only three of the query
coordinates are finite (e.g., (a, b)× (−∞, c)), McCreight [19]
presented the priority search tree that answers queries in
optimal O(logn+ t) time and linear space.

Until recently the complexity of orthogonal range report-
ing remained unresolved in three dimensions. For three-
dimensional dominance queries, that is, where at most one of
the query coordinates in each dimension is finite, Afshani [2]
was the first to present an optimal structure that uses linear
space and answers queries in O(logn+t) time. Using a stan-
dard reduction, this provides a three-dimensional orthogonal
range reporting structure with optimal O(logn + t) query
time, but with suboptimal O(n log3 n) space. This matched
two previous results by Chazelle and Guibas [14], and Boza-
nis et al. [8]. A structure using optimalO(n(logn/ log log n)2)
space is also known, but it answers queries in O(log2+ε n+t)
time, where ε > 0 is an arbitrarily small constant [12]. Re-
cently, Afshani et al. [3, 4] presented an optimal structure for
the general problem in three dimensions, namely a structure
that uses O(n(logn/ log logn)2) space and answers queries
in O(logn+ t) time. They also provided optimal structures
for queries with four or five finite coordinates (O(logn + t)
query time and O(n logn/ log logn) space), thus completely
closing the problem in three dimensions.

For higher dimensions (d ≥ 4), the best structure an-
swers queries in O(logn(logn/ log log n)d−3 + t) time and
uses optimal O(n(logn/ log logn)d−1) space [4]. For dom-
inance queries, the same query bound can be obtained us-
ing O(n(logn/ log log n)d−3) space; in this case, the space
bound is known to be optimal only in four dimensions, and
the query time is not known to be optimal in any dimension
beyond three.

For lower bounds, Afshani et al. [4] proved that any struc-
ture for d-dimensional dominance reporting that uses nh
space must have Ω((logn/ log h)bd/2c−1+t) query time. Thus

setting h = logO(1) n, the result shows that the query time
must be Ω((log n/ log logn)2+t) for d = 6, while for d = 2, 3,
O(logn + t) query time is possible. Determining the exact
dimension where O(logn+t) query time is not possible using
near-linear space remains an intriguing open problem.

1.3 Rectangle Stabbing
One-dimensional rectangle stabbing (the classical inter-

val stabbing problem) can be solved with a variety of tech-
niques [15, 16]. The best results use linear space and an-
swers queries in O(logn + t) time. Note that it is possi-
ble to reduce the problem to two-dimensional dominance
reporting by simply mapping an input interval [a, b] to the
point (a, b) and a query point x to the dominance query
(−∞;x)× (x;−∞).

In two dimensions, an optimal data structure that uses
linear space and answers queries in O(logn + t) time was
developed by Chazelle [11]. Using range trees, the struc-
ture can be generalized to higher dimensions, by paying a
logn factor per dimension in space and query time, which
gives a data structure that uses O(n logd−2 n) space and can
answer queries in O(logd−1 n + t) time; it is also possible
to obtain O(logn(logn/ log log n)d−2 + t) query time using
O(n logd−2+ε n) space, for any constant ε > 0, using range
trees of logε n fan out. Note that d-dimensional dominance
reporting is also a special case of d-dimensional rectangle
stabbing, and that a d-dimensional stabbing query can be
reduced to a 2d-dimensional dominance query using a simi-
lar reduction outlined for the one dimensional case.

For lower bounds, Afshani et al. [4] proved the first non
trivial query lower bound, showing that with nh space, rect-
angle stabbing queries require Ω((logn/ log h)d−1 + t) time.
Combined with the above reduction, this gives the aforemen-
tioned query lower bound for orthogonal range reporting.

1.4 Our Results
Our main upper bound result is a structure that uses

O(n(logn/ log logn)d) space and answers d-dimensional range

reporting queries in O(logn(logn/ log logn)d−4+1/(d−2) + t)

time. Ignoring log logn factors, this is a log1−1/(d−2) n fac-
tor improvement in the query time over the fastest previous
data structure. Additionally, for the special case of four-
dimensional dominance, we provide a data structure that
answers queries in O(logn

√
logn/ log logn + t) time using

optimal O(n logn/ log logn) space.
From a technical point of view, we obtain our improved

data structures using a clever combination of techniques:
shallow cuttings and rectangle stabbing. Our key idea is that
shallow cuttings can be used to reduce dominance reporting
to a rectangle stabbing problem with sublinear input size,
which in turn can be exploited to give us our query speed up.
At a high level, this approach is inspired by recent results
of Chan et al. [10] for offline four-dimensional dominance
reporting in the word-RAM model.

In terms of lower bounds, we prove that with nh space,
answering d-dimensional rectangle stabbing queries requires
Ω(logn(logn/ log h)d−2 + t) time. This lower bound is tight

for any h = logd−2+Ω(1) n. To obtain the lower bound, we
use a novel geometric argument, rather than the combina-
torial framework that was pioneered by Chazelle [12] and
which was used in all the previous lower bounds. In fact,
our new technique has already led to an improved lower
bound for simplex range reporting [1], a long standing open

problem. We thus suspect that our new technique might
have even further implications.

By the reduction from d-dimensional rectangle stabbing
to 2d-dimensional dominance reporting, we also obtain an
improved lower bound of Ω(logn(logn/ log h)bd/2c−2 + t) for
answering d-dimensional dominance reporting queries using
nh space.

We describe our orthogonal range reporting data struc-
tures in Section 2 and our rectangle stabbing lower bound
in Section 3.

2. THE DATA STRUCTURES
In this section, we describe our new orthogonal range re-

porting data structures. We start with a brief preliminaries
section to introduce some of the basic tools we make use of.
We then describe a simplified version of our four-dimensional
dominance reporting data structure, which answers queries
in O(log3/2 n + t) time using O(n logn) space. We believe
it carries most of our important ideas and it is significantly
easier to understand. In Subsection 2.3, we present our best
dominance reporting structure in higher dimensions. Our
final structure appears in Subsection 2.4 and it answers gen-
eral d-dimensional orthogonal range reporting queries.

2.1 Preliminaries
We now introduce some convenient notations for talking

about special cases of orthogonal range reporting.

Restricted Queries.
We adopt the terminology defined in [3]: We use Q(d, k)

to refer to the special case of d-dimensional orthogonal range
reporting, in which the query rectangles have finite ranges in
k of the d dimensions, that is, they are unbounded in d− k
dimensions. The Q(2, 1) and Q(d, 0) problems are the 3-
sided planar range reporting and d-dimensional dominance
reporting problems, respectively.

3-D Dominance.
For two points p and q in d dimensions, we say p dom-

inates q if every coordinate of p is greater than that of q.
Thus, the dominance reporting problem is the problem of
outputting the subset of the input that is dominated by a
query point. In 3-D, dominance reporting can be solved op-
timally using an important combinatorial structure known
as shallow cuttings [2].

Consider a set S of points in three dimensions. A shallow
cutting for the h-level of S, or an h-shallow cutting for short,
is a set C of O(|S|/h) points such that any point q that
dominates at most h points of S is dominated by a point p
in C; furthermore, every point of C dominates O(h) points
of S. The existence of such shallow cuttings was proved by
Afshani [2], and more general shallow cuttings have been
used extensively in the computational geometry literature
(see e.g. [18]). To be useful in data structures, for a given
point q, we also need a method that finds the point p ∈ C
that dominates q. This is done using the following lemma.

Lemma 1 ((Makris and Tsakalidis [17])). Let S be
a set of points in 3-D. It is possible to construct a subdivision
AS of the plane into O(|S|) rectangles such that: for any
query point q in 3-D, if one projects q onto the plane (i.e.,
the first two coordinates of q) and finds the rectangle in AS
that contains the projection, then one can find a point in S

that dominates q or conclude that no such point exists. The
point location query can be answered in O(log |S|) time using
O(|S|) space.

Rectangle Stabbing.
As discussed, a subproblem that we encounter is rectan-

gle stabbing. It turns out that we need a fast solution for
rectangle stabbing when given a budget of nh space. The
previous results only focus on the case when h is polylog-
arithmic but for our purposes, we need to go far beyond
polylogarithmic space. Using range trees with fan out h, we
can prove the following lemma.

Lemma 2. Given n rectangles in d dimensions, rectangle
stabbing queries can be answered in O(logn·(logn/ log h)d−2+
t) time using O(nh logd−2 n) space, in which h ≥ 2 is any
parameter.

Proof. Let Q be the input set of rectangles and let m
be the total number of corners in the input. We divide the
d-dimensional space into h regions, using h− 1 hyperplanes
perpendicular to the d-th dimension, such that each region
contains roughly m/h rectangle corners. This creates h− 2
slabs, the regions sandwiched between two consecutive hy-
perplanes. We say an input rectangle spans a slab b if it
crosses b but it does not have any corners inside b. Let Qs(b)
be the subset of Q that spans b and let Qc(b) be the subset
that crosses but does not span b. Observe that we can use
a (d − 1)-dimensional rectangle stabbing data structure on
Qs(b) and output those rectangles in Qs(b) that contain the
query point; to find the output among Qc(b) we can simply
recurse.

Thus, we build a (d − 1)-dimensional rectangle stabbing
data structure on Qs(b) for each slab and then recurse on
Qc(b). We use Chazelle’s data structure as a base case for
d = 2 [11]. Let Sk(m) denote the space complexity of the
algorithm on a k-dimensional input with m corners. We
have,

Sd(m) ≤ hSd(m/h) + hSd−1(m)

which solves to Sd(m) = O(n logd−2
h) using with S2(m) =

O(m) as the base case. If we denote the query time by
Qd(m) +O(t) then the recursion for the query time is

Qd(m) ≤ Qd(m/h) + log h+Qd−1(m)

which solves to Od(m) = O(logn · (logh n)d−2n).

2.2 Simple 4-D Dominance
In this section, we present our simple solution for 4-D

dominance that achieves O(log3/2 n+t) query time and uses
O(n logn) space. We obtain the data structure by refining
on the standard range tree solution which we describe below.

We use a range tree on the fourth dimension, which is
a complete binary tree, T , with the input points p1, . . . , pn
stored in sorted order of their fourth coordinate in the leaves.
Associate every node v in T with the points pi, . . . , pj stored
in the leaves of the subtree rooted at v. We use Sv =
{pi, . . . , pj} to denote the set of points associated to v. We
also associate an interval Iv to v as follows. If j = n, then

Iv = (p
(4)
i−1;∞), otherwise, Iv = (p

(4)
i−1; p

(4)
j], in which p

(4)
i

denotes the fourth coordinate of a point pi and p
(4)
0 = −∞.

Consider a node u ∈ T and its left child v. We define a
Q(3, 0) query on node u as a Q(3, 0) query on the projection
of the points of Sv onto the first three dimensions. It turns
out that this is the subproblem that we need to solve.

Lemma 3. A Q(4, 0) query q = (x1, . . . , x4) can be an-
swered using a Q(3, 0) query on O(logn) nodes of T that lie
on a root to leaf path of T . Furthermore, for every node u
on the path we have x4 ∈ Iu, and x4 /∈ Iv for nodes v not
on the path.

Proof. Let (−∞; a) be the range of q in the last dimen-
sion. Start at the root r of T ; let v1 and v2 be its left and the
right child respectively. Clearly we have x4 ∈ Ir. We have
two cases. (i) a is contained in Iv1 : in this case, (−∞; a)
does not intersect Iv2 so the right subtree does not contain
any output points. We simply recurse on the left child. (ii)
a is contained in Iv2 : in this case, all the points associated
to v1 have their fourth coordinate smaller than a. Thus, we
can consider the projection of Sv1 and q onto the first three
dimensions and find the portion of the output that lies in
Sv1 using a Q(3, 0) query, i.e., a Q(3, 0) query on node r.
Next, we recurse on v2.

One obvious solution to answer the Q(3, 0) queries on nodes
of T is to use the data structure of Afshani [2]. But this
results in O(log2 n+ t) query time for the Q(4, 0) problem.
Until now, this has been the only way to solve 4-D domi-
nance (with a possible increase in fanout of the range tree
to logε n). We now show that using shallow cuttings, we
can do better. We have encapsulated the description of our
data structure in two parts: “outputting” data structures
and “finder” data structures. The outputting data struc-
tures use finder data structures as black boxes and do the
actual reporting of the output points while the finder data
structures find a small number of crucial elements in the
data structure.

The outputting data structures.
Consider a node u ∈ T . Define Pu as the projection of Sv

into the first three dimensions in which v is the left child of
u. With this notation, a Q(3, 0) query on u is equivalent to
a dominance query on Pu. Now for every u ∈ T , we build
an h-shallow cutting Cu for Pu in which h is a parameter
to be determined later; the only restriction that we place
is that h > log2 n. For every point p ∈ Cu, we implement
an optimal dominance reporting structure [2] on the subset,
Pu(p) ⊆ Pu that is dominated by p. Finally, we store the
O(log2 n/ log log n + t) query time and O(n logn/ log log n)
space Q(4, 0) data structure of Afshani et al. [4] on the entire
input set.

Generating the output of the query.
Let q = (x1, . . . , x4) be a Q(4, 0) query and define q′ =

(x1, x2, x3). By Lemma 3, we can answer q by querying q′

on O(logn) nodes, u1, . . . , uO(logn), of T . Assume we have
a finder structure that for each ui can find a point pi ∈ Cui

that dominates q′ or conclude that no such point exists. If
for some i, no point in Cui dominates q′, then it follows that
the output size is at least h > log2 n; in this case, we simply
query the structure of Afshani et al. [4] to report our output.
This takes O(t) time. Otherwise, to find points in Pui that
are dominated by q′, we query the dominance structure that
stores Pui(pi); this takes O(log |Pui(pi)|+ t′) = O(log h+ t′)

time in which t′ is the output size of q′ on ui. Over all the
O(logn) nodes, this takes O(logn · log h+ t) time.

The finder data structures.
Consider a node u ∈ T and the h-shallow cutting Cu for

Pu. Using Lemma 1, we decide if a point in Cu dominates
q′ and if so find it using a point location query on ACu
(remember ACu is the planar subdivision given for Cu by
Lemma 1). Unfortunately, this naive approach only yields
O(log2 n) query time. Our key idea is to perform all these
point location queries simultaneously. We lift each rectangle
[x1;x2]× [y1; y2] in ACu to 3-D by forming the 3-D rectangle
[x1;x2]× [y1; y2]× Iu. This creates O(|Pu|/h) rectangles for
a given node u and thus O(n logn/h) rectangles in total.
We collect all the rectangles (over all the nodes in T) and
store them in a 3-D rectangle stabbing data structure given
by Lemma 2, with the space usage set to O(n logn).

The finder query.
Let q = (x1, . . . , x4) be the query and define q′ = (x1, x2, x3)

and q′′ = (x1, x2, x4). We claim that to obtain the result of
a point location query for (x1, x2) on all the sets ACu , where
we are to perform a Q(3, 0) query on u, it suffices to query
the stabbing data structure with q′′: By Lemma 3, we have
x4 ∈ Iu for nodes u on the path where we are to query
the Q(3, 0) structures and x4 /∈ Iv for nodes v not on the
path. By Lemma 1, we need to find the rectangle r that
contains the point (x1, x2) which is equivalent to finding the
3-D rectangle r× Iu that contains q′′. Thus, the point loca-
tion query for u can be answered by looking at the result of
the stabbing query.

Query time analysis.
First, observe that for two nodes u1 and u2 at the same

depth of T , the intervals Iu1 and Iu2 are disjoint. Thus, the
output size of the stabbing query is O(logn). Since the ratio
between the input size and space usage is Ω(h), by Lemma 2,
the stabbing query takes O(logn · logh n+ logn) = O(logn ·
logh n) time. Thus, the total query time, including the time
to generate the output is O(logn logh n+log n log h+t). We

pick h = 2
√

logn and obtain the following.

Theorem 1. The 4-D dominance problem can be solved
with O(n logn) space and O(log3/2 n+ t) query time.

2.3 Higher Dimensions
In this section we show how to extend the simple 4-D dom-

inance result to d-dimensional dominance reporting. Before
we begin, we note that similar to the 4-D case, the most
interesting case of the problem is when the output size is
small. For example, if we realize that the output size is
larger than say logd−1 n, we can switch to the best previous
result and the query time will be optimal.

As with the 4-D case, we start with range trees. However,
to get the best performance, we use range trees with large
fan outs. Let α = logε n in which ε is a sufficiently small
constant to be determined later. We build a range tree Td
on the d-th dimension with fan out α (i.e., all nodes except
leaves have α children). For a node vd ∈ Td, the set Svd
and the interval Ivd is defined as in our simple 4-D dom-
inance solution, using the value of the d-th coordinate of
the points. We also store a pointer from vd to a range tree
Td−1,vd with fan out α, built on Svd and on the (d − 1)-th

dimension. We continue this recursive construction until we
reach dimension three. No range tree is built on the first
three dimensions. At the end, we have a nested hierarchy
of range trees, Ti,vd,vd−1,...,vi+1 , for 4 ≤ i ≤ d− 1, in which
vi+1 is a node in the range tree Ti+1,vd,vd−1,...,vi+2 . A node
vi ∈ Ti,vd,vd−1,...,vi+1 is associated with a point set Svi and
consists of all the points whose j-th coordinate, i ≤ j ≤ d, is
inside the interval Ivj . To every node v4 in a range tree
T4,vd,...,v5 , we associate a subproblem Q3,vd,...,v4 on Sv4 .
Note that Sv4 is the set of input points that lie in the region
R(Q) = (−∞;∞) × (−∞;∞) × (−∞;∞) × I4 × · · · × Ivd .
Before describing this subproblem, we need to examine how
the configuration of the range trees is traversed at query
time.

Query traversal.
Let q = (x1, . . . , xd) be the point representing a Q(d, 0)

query. We define the query traversal to be the set of sub-
problems that are reached using the following procedure.
Start from the root r of the range tree Td. Let v be the
child of r such that xd ∈ Iv. We follow the link to the range
tree Td−1,v, traverse it and then recurse on v; the recursion
stops at the subproblems. To be more precise, assume a node
vi ∈ Ti,vd,vd−1,...,vi+1 is reached in this traversal. We follow
two pointers for vi: (i) If i = 4, then Q3,vd,...,v4 is added to
the query traversal; otherwise, we follow the pointer to the
root of the range tree Ti−1,vd,vd−1,...,vi and traverse it and
(ii) we find a child u of vi such that xi ∈ Iu and then recurse
on u.

The subproblem.
Consider a Q := Q3,vd,...,v4 subproblem that is in the

query traversal for the query q. Observe that the crucial
property of the query traversal is that if Q is in the query
traversal of q, then q ∈ R(Q). The children of vi decom-
pose Ivi into α smaller intervals which in geometric terms
corresponds to cutting the i-th dimension of R(Q) into α
smaller parts. Based on this division, for every point p =
(p1, · · · , pd) ∈ R(Q), we associate a child-coordinate point
fQ(p), fQ(p) ⊂ [α]d−3, to p in which the i-th coordinate is
the index of the child of vi whose interval contains pi. Now,
the subproblem Q is defined as the problem of outputting all
the points p ∈ Sv4 such that the point (x1, x2, x3) dominates
the projection of p into the first three dimensions and every
coordinate of fQ(q) is larger than that of fQ(p) (i.e., fQ(q)
dominates fQ(p)).

Before describing our data structures, we need an equiva-
lent of Lemma 3.

Lemma 4. A Q(d, 0) query q can be solved by solving all
the subproblems that are reached during the query traversal
of q. For each such subproblem Q, we have q ∈ R(Q). Fur-
thermore, the number of subproblems Q such that q ∈ R(Q)
is O(logd−3

α n).

Proof. Consider a point p = (p1, . . . , pd) ∈ S that is
dominated by q. We claim that there exists a subproblem
Q in the query traversal of q that outputs p. To see this,
we begin from the root r of Td and essentially follow the
procedure that builds the query traversal. Assume we have
reached a node vi ∈ Ti,vd,vd−1,...,vi+1 . In contrast to the
procedure that builds the query traversal, we follow a single
pointer at each step: (i) if there is a child u of vi such that pi
and xi ∈ Iu then we follow the pointer to u (ii) otherwise, if

i > 4, we follow the pointer to Ti−1,vd,vd−1,...,vi but if i = 4,
then Q := Q3,vd,...,v4 is the desired subproblem. It is easily
checked that q ∈ R(Q) and that every coordinate of fQ(q)
is greater than that of fQ(p).

It remains to prove that the number of subproblems Q,
s.t. q ∈ R(Q) is O(logd−3

α). In a range tree with fanout
α, there are only O(logα n) nodes v such that Iv contains a
given point. Since we have build d− 3 levels of range trees,
our claim can be proved by a simple inductive argument.

Now we are ready to describe our data structures.

The outputting data structures.
Consider a Q := Q3,vd,...,v4 subproblem. Let P be the

projection of Sv4 onto the first three dimensions. We parti-
tion P into β := αd−3 subsets as follows. For every element
γ ∈ [α]d−3, we place all the points p ∈ P with fQ(p) = γ

in the set Pγ . We also define the set P̂γ to be the union of
all the sets Pγ′ , γ

′ ∈ [α]d−3, in which γ dominates γ′. We
build three categories of shallow cuttings: First, for every
Pγ , we build a logd n-shallow cutting Cd,γ and then store
the points dominated by every point p ∈ Cd,γ in an optimal

3-D dominance reporting structure. Second, for every P̂γ ,

we build an h-shallow cutting Ĉh,γ ; the value of h will be
determined later and the only restriction that we impose is
that h > log2d n. Finally, for every point p ∈ Ĉh,γ , we build a

logd−1 n-shallow cutting Ĉd−1,γ,p, as well as the correspond-
ing point location data structure of Lemma 1, on the subset
of P̂γ dominated by p. Consider a point γ′ ∈ [α]d−3 that is

dominated by γ. We know Pγ′ ⊂ P̂γ and thus every point

p̂ ∈ Ĉd−1,γ,p containsO(logd−1 n) points in Pγ′ which implies
there exists a point p ∈ Cd,γ′ such that p dominates p̂. We
place a pointer from p̂ to p. Since the sets Pγ partition P , the
first category of shallow cuttings take up linear space. The
number of cells in the second category is O(αd−3|Sv4 |/h)
which is sublinear by our assumptions on h and α. Finally,
the number of points in Ĉh,γ is O(|Sv4 |/h) and for each we
store a shallow cutting that has O(h/ logd−1 n) size and for
each point in the second shallow cutting we store O(αd−3)
additional pointers; thus, the total space is O(|Sv4 |) for the
subproblem Q. Over all the subproblems this sums up to
O(n logd−3

α n).

Answering output queries.
Let q = (x1, . . . , xd) be a Q(d, 0) query and let q′ =

(x1, x2, x3). By Lemma 4, we need to answer q onO(logd−3
α n)

subproblems. Consider one such subproblemQ := Q3,vd,...,v4 .
If we let γ = fQ(q) the subproblem translates to outputting

the subset of P̂γ that is dominated by q′. If no point in

Ĉh,γ dominates q′, then the output size is larger than h >
logd−1 n, which means we can switch to the previous best re-
sult on dominance reporting. Assume we have a finder data
structures that can find a point p ∈ Ĉh,γ that dominates q′

(or can tell us no such point exists). Using the point loca-

tion data structure implemented for Ĉd−1,γ,p we can check

if there exists a point p′ ∈ Ĉd−1,γ,p that dominates q′. If no
such point exists, then the output size is larger than logd−1 n
and we are done. Thus, assume we locate such a point p′.
Note that finding p′ takes O(log |Ĉd−1,γ,p|) = O(log h) time
by Lemma 1. Next, for every γ′ ∈ [α]d−3, that is dominated
by γ, we follow the pointer from p′ to the corresponding
point p′′ ∈ Cd,γ′ that dominates p′. As p′′ also dominates

q′, the query can answered by querying the 3-D dominance
data structure built for p′′. The query time for Q becomes
O(log h + αd−3 log log n) which results in the overall query
time of O((log h+ αd−3 log logn) logd−3

α n).

The finder data structures.
Consider a subproblem Q := Q3,vd,...,v4 and the shallow

cutting Ĉh,γ for some γ ∈ [α]d−3. We build the correspond-

ing orthogonal planar subdivision Âh,γ and lift a rectan-

gle r ∈ Âh,γ to a d − 1-dimensional rectangle LQ(r) =
r × Iv4 × · · · × Ivd . The total number of rectangles cre-
ated from all the subproblems is O(n logd−3

α n/h) and we
place them all in a (d − 1)-dimensional rectangle stabbing
structure given by Lemma 2 in which the space usage is set
to O(n).

The finder query.
Let q = (x1, . . . , xd) be a query point and define q′ =

(x1, x2, x4, . . . , xd). We claim the finder queries for all the
subproblems can be answered by looking at the result of q′

on the rectangle stabbing data structure. Consider a sub-
problem Q := Q3,vd,...,v4 that is reached during the query
traversal of q. By Lemma 4, q ∈ R(Q). By Lemma 1,
to answer the finder query for Q, it suffices to do a point
location query on Âh,γ using (x1, x2) as the query point.

Observe that if a rectangle r ∈ Âh,γ contains (x1, x2), then
LQ(r) contains q′. To bound the running time, notice that
the number of different values of γ is αd−3, and the output
size of the stabbing query is at most O(αd−3 logd−3

α n) by
Lemma 4. The input size of the stabbing data structure is
O(n logd−3

α n/h) while its space usage is set to n. The ratio
of the space usage to the input size is thus Ω(h/ logd−3

α n) =

Ω(
√
h). Since this is a (d − 1)-dimensional stabbing prob-

lem, by Lemma 2, the query time is O((logh n)d−3 logn +
αd−3 logd−3

α n).

Optimizing the running time.
We get that the total query time is O((logh n)d−3 logn+

αd−3 logd−3
α n+ (log h+αd−3 log logn) logd−3

α n). By setting
α = logε n for a small enough ε, and picking h such that

log h = log1/(d−2) n (log log n)(d−3)/(d−2) we get the follow-
ing:

Theorem 2. The d dimensional dominance reporting prob-
lem can be solved using O(n(logn/ log logn)d−3) space and

with query time of O(logn(logn/ log logn)d−4+1/(d−2) + t).

In the next subsection, we show that with some mod-
ifications, our data structure can in fact answer Q(d, d −
3) queries which in turn is used to obtain our general d-
dimensional orthogonal range reporting data structure.

2.4 General orthogonal range reporting queries
The main result of this subsection is the following theo-

rem.

Theorem 3. The Q(d, d − 3) problem can be solved us-
ing O(n(logn/ log logn)d−3) space and with query time of

O(logn(logn/ log logn)d−4+1/(d−2) + t).

The data structure that we build is very similar to one
used for Theorem 2. We begin by building the exact same set
of range trees. The definition of the subproblem Q3,vd,...,v4

will be different. However, as with the dominance structure,
it is more convenient to define the query traversal first.

Query traversal.
Without loss of generality, we can assume the Q(d, d− 3)

query interested is q = (−∞; y1) × (−∞; y2) × (−∞; y3) ×
(x4; y4)× · · · × (xd; yd). We now define the query traversal.
As before, the traversal starts at the root of Td. Assume
a node vi ∈ Ti+1,vd,vd−1,...,vi+1 , i ≥ 4, is reached in this
traversal. We maintain the invariant that at least one of xi
or yi is contained in Ivi . Let u1, · · · , uα be the children of
vi. We consider four cases:

(i) xi ∈ Ivi , yi ∈ Ivi and xi and yi are in Iuj for some j:
In this case, we follow the pointer to uj .

(ii) xi ∈ Ivi , yi ∈ Ivi but xi ∈ Iuj and yi ∈ u` for j < `: In
this case, we follow three pointers, first to uj , second
to u`, and third to the root of the range tree Ti,vd,...,vi
if i > 4 but if i = 4, we add Q3,vd,...,v4 to the query
traversal.

(iii) xi ∈ Ivi , yi 6∈ Ivi : In this case, xi will be contained
in Iuj for some j. We follow two pointers, one to uj
and another to Ti,vd,...,vi if i > 4 but if i = 4, we add
Q3,vd,...,v4 to the query traversal.

(iv) xi 6∈ Ivi , yi ∈ Ivi : Similar to the previous case, for an
index j, Iuj will contains yi. We follow two pointers,
one to uj and another to Ti,vd,...,vi if i > 4 but if i = 4,
we add Q3,vd,...,v4 to the query traversal.

The subproblem.
Consider a Q := Q3,vd,...,v4 subproblem that is in the

query traversal for the query q. As before, the region R(Q)
is defined as R(Q) = (−∞,∞)×(−∞,∞)×(−∞,∞)×I4×
· · · × Ivd and it contains all the points in Sv4 . The crucial
property here is that R(Q) contains at least one corner of
q. For a point p ∈ R(Q), the child-coordinate point fQ(p) is
defined in the exact same way. The query in the subproblem
Q is defined using a (d− 3)-dimensional rectangle and is de-
noted by τQ(q), in which the coordinates are either integers
from [α], −∞, or ∞. Let τQ(q) = (a4, b4) × · · · × (ad, bd).
For an index i, 4 ≤ i ≤ d, the values ai and bi are defined
below, depending on which condition of the query traversal
was true during the query traversal at node vi. Note that
for vi only cases, (ii), (iii), and (iv) could be valid as case (i)
does not result in a traversal of a lower dimensional range
tree. Consider the notation used in the case analysis of the
query traversal.

• If case (ii) was true at vi, then ai = j and bi = `.

• If case (iii) was true at vi, then ai = j and bi =∞.

• If case (iv) was true at vi, then ai = −∞ and bi = j.

With this definition, the subproblem Q is defined as out-
putting all the points p ∈ Sv4 such that the point (y1, y2, y3)
dominates the projection of p into the first three dimensions
and fQ(p) is contained in the rectangle τQ(q).

Before describing our data structures, we need an equiva-
lent of Lemma 4.

Lemma 5. A Q(d, d−3) query q can be answered by solv-
ing all the subproblems that are reached during the query
traversal of q. For each such subproblem Q, R(Q) contains
at least one corner of q. Furthermore, the number of sub-
problems Q that contains a corner of q is O(logd−3

α n).

Proof. Let q = (−∞; y1)×(−∞; y2)×(−∞; y3)×(x4; y4)×
· · · × (xd; yd) be the query rectangle. Consider a point p =
(p1, . . . , pd) ∈ S that is contained in q. We claim that there
exists a subproblem Q in the query traversal of q that out-
puts p. To find Q, we begin from the root r of Td and follow
the procedure that builds the query traversal, and trace the
footsteps of the query traversal, except that we follow ex-
actly one pointer at each case. Assume we have reached a
node vi ∈ Ti,vd,vd−1,...,vi+1 . We maintain the invariant that
at least one of xi or yi is contained in Ivi .

We review the four cases that were considered for the
query traversal.

(i) xi ∈ Ivi , yi ∈ Ivi and xi and yi are in Iuj for some j:
In this case, we have pi ∈ Iuj and we follow the pointer
to uj .

(ii) xi ∈ Ivi , yi ∈ Ivi but xi ∈ Iuj and yi ∈ u` for j < `:
we follow one the three pointers followed at the query
traversal. If pi ∈ Iuj we follow the pointer to uj , if
pi ∈ Iu` we follow the pointer to u`, but otherwise,
we follow the pointer to the root of the range tree
Ti,vd,...,vi if i > 4 but if i = 4, then Q3,vd,...,v4 is the
desired subproblem.

(iii) xi ∈ Ivi , yi 6∈ Ivi : In this case, xi will be contained in
Iuj for some j. If pi ∈ Iuj , then we follow the pointer
to uj , otherwise, we follow the pointer to Ti,vd,...,vi
if i > 4 but if i = 4, then Q3,vd,...,v4 is the desired
subproblem.

(iv) xi 6∈ Ivi , yi ∈ Ivi : Similar to the previous case, for an
index j, Iuj will contains yi. If pi ∈ Iuj , then we follow
the pointer to uj , otherwise, we follow the pointer to
Ti,vd,...,vi if i > 4 but if i = 4, then Q3,vd,...,v4 is the
desired subproblem.

It is straightforward to verify that when a subproblem Q
is reached, R(Q) contains a corner of q and the rectangle
τQ(q) contains the point fQ(p). Thus, p will be outputted
by solving Q.

Rectangle q has a constant number of corners and thus
the number of subproblems Q such that R(Q) contains a
corner of q is O(logd−3

α).

We now describe our data structures.

The outputting data structures.
Consider a Q := Q3,vd,...,v4 subproblem. Let P be the

projection of Sv4 onto the first three dimensions. Like the
Q(d, 0) case, we partition P into αd−3 subsets. For every
element γ ∈ [α]d−3, we place all the points p ∈ P with
fQ(p) = γ in the set Pγ . Observe that the number of possi-
ble rectangles τQ(q) that can be queried on this subproblem

is less than α2d. For every such τ = τQ(q), define the set P̂τ
to be the union of all the sets Pγ in which γ is in the inte-
rior of τ . With these definitions, the rest of our outputting
data structures is almost identical to the Q(d, 0) case: we
build three categories of shallow cuttings: First, for every

Pγ , we build a logd n-shallow cutting Cd,γ and then store
the points dominated by every point p ∈ Cd,γ in an opti-
mal 3-D dominance reporting structure. Second, for every
P̂τ , we build an h-shallow cutting Ĉh,τ ; the value of h will
be determined later and the only restriction that we impose
is that h > log2d n. Finally, for every point p ∈ Ĉh,τ , we

build a logd−1 n-shallow cutting Ĉd−1,τ,p, as well as the cor-
responding point location data structure, on the subset of
P̂τ dominated by p. As before, every point p̂ ∈ Ĉd−1,τ,p is
dominated by a point p ∈ Cd,γ′ and we place a pointer from
p̂ to p. It is easy to see that the total space consumption is
linear for Q and thus O(n logd−3

α n) over all the subproblems.

Answering output queries.
Let q = (−∞; y1)× (−∞; y2)× (−∞; y3)× (x4; y4)×· · ·×

(xd; yd) be the Q(d, d−3) query and let q′ = (y1, y2, y3). By
Lemma 5, we need to answer q on O(logd−3

α n) subproblems.
Consider one such subproblem Q = Q3,vd,...,v4 . If we let
τ = τQ(q), then the subproblem translates to outputting the

subset of P̂τ that is dominated by q′. If no point in Ĉh,τ dom-
inates q′, then the output size is larger than h > logd−1 n,
and we are done by switching to the best previous orthogo-
nal reporting data structure. Assume we have a finder data
structures that can find a point p ∈ Ĉh,τ that dominates q′

(or tell us no such point exists). Using the point location

data structure implemented for Ĉd−1,τ,p, in O(log h) time we

can check if there exists a point p′ ∈ Ĉd−1,τ,p that dominates
q′. If no such point exists, then the output size is larger than
logd−1 n and we are done. Thus, assume we locate such a
point p′. Next, for every γ′ ∈ [α]d−3, s.t., γ′ is contained
in τ , we follow the pointer from p′ to the corresponding
point p′′ ∈ Cd,γ′ that dominates p′. As p′′ also dominates
q′, the query can answered by querying the 3-D dominance
data structure built for p′′. The query time for Q becomes
O(log h + αd−3 log log n) which results in the overall query
time of O((log h+ αd−3 log log n) logd−3

α n).

The finder data structures.
Consider a subproblem Q := Q3,vd,...,v4 and the shal-

low cutting Ĉh,τ for all the O(α2d) choices of τ . We build

the corresponding orthogonal planar subdivision Âh,τ and

lift a rectangle r ∈ Âh,γ to a d − 1-dimensional rectangle
LQ(r) = r× Iv4 × · · · × Ivd . The total number of rectangles
created from all the subproblems is O(n logd−3

α n/h) and we
place them all in a (d − 1)-dimensional rectangle stabbing
structure given by Lemma 2 in which the space usage is set
to O(n logd−3 n).

The finder query.
Let q = (−∞; y1)× (−∞; y2)× (−∞; y3)× (x4; y4)×· · ·×

(xd; yd) be the Q(d, d − 3) query, and let q′ = (y1, y2, y3).
We query the stabbing data structure using every corner of
q, after removing the third coordinate. We claim the results
of these queries is sufficient to answer all the finder queries.

Consider a subproblem Q that is in the query traversal
of q. By Lemma 5, R(Q) contains at least one corner δ =
(y1, y2, y3, δ4, · · · , δd) of q in which δi, for 4 ≤ i ≤ d, is either
xi or yi. As discussed, the stabbing data structure will be
queried with point δ′ = (y1, y2, δ4, · · · , δd). Let τ = τQ(q)

and consider the shallow cutting Ĉh,τ and the corresponding

planar subdivision Âh,τ . By Lemma 1, it suffices to find a

rectangle r ∈ Ah,τ that contains the point (y1, y2). Observe
that since δ ∈ R(Q), we have δi ∈ Ivi , 4 ≤ i ≤ d. Thus, if
r contains (y1, y2), then it follows that LQ(r) contains the
point δ′.

As before, the output size of the stabbing query is at most
O(logd−3 n) by Lemma 5 and by Lemma 2, the query time
is O(logn(logh n)d−3 + logd−3 n). Using the same value of h
as before, we get the following theorem.

Theorem 4. Q(d, d − 3) queries can be answered in of

O(logn(logn/ log log n)d−4+1/(d−2) + t) time using a data
structure that consumes O(n(logn/ log log n)d−3) space.

Using an standard application of range trees with fan out
α = logε n we get the following theorem.

Theorem 5. There exists an orthogonal range reporting
data structure that uses O(n(logn/ log logn)d) space and

can answer queries in O(logn(logn/ log logn)d−4+1/(d−2) +
t) time.

3. A TIGHT LOWER BOUND FOR RECT-
ANGLE STABBING

In this section we prove our lower bound for the rectangle
stabbing problem. Our model of computation is identical to
one used by Chazelle [12] but for sake of completeness, we
include a brief description.

Consider an input set S of n elements. A data structure is
a collection of (memory) cells and its space complexity is the
number of cells used. Each cell can store an input element
or an auxiliary data type. Furthermore, each cell can have
two pointers to two other cells. Such a data structure can
be represented by a graph G with V (G) being the set of
cells used in the data structure. A pointer from a cell u
to a cell v is represented with a directed edge from u to v.
The crucial restriction is that a cell can only be accessed
through pointers and thus random accesses are disallowed.
(It is assumed that we always begin by a pointer to a root
cell.) A query q is answered by exploring (a subgraph of)
G. In this model, to output an element p ∈ S, the query
algorithm must visit a cell that stores p. We do not impose
any restriction on how the algorithm navigates G to reach
such a node. We measure the query time by the number of
vertices of G visited by the query algorithm.

Consider a data structure D that answers rectangle stab-
bing queries in d dimensions in the above model. Let nh
be the number of cells used by D. Furthermore, assume D
answers every query in f(n) +Ct time in which t is the out-
put size, C is a constant, and f(n) is the search time of the
query. Our goal is to prove that f(n) = Ω(logn · logd−2

h n).
We build an input set, Q, of rectangles that is in fact

a simplification of the ones used before [4, 12, 13]. Con-
sider a d-dimensional cube R with side length m, m >

√
n,

in which m is a parameter to be determined later. Let
r = crh

3, in which cr is a large enough constant, and let
Logrm = blogrmc − 1. For every choice of d − 1 indices,
1 ≤ i1, · · · , id−1 ≤ Logrm, we divide the j-th dimension of
R into rij equal length pieces for 1 ≤ j ≤ d − 1, and the
d-th dimension of R into bmd−1/ri1+···+id−1c equal length
pieces. The number of such choices is k = Logd−1

r m. With
each such choice, we create between m/2 and m rectangles
and thus Θ(mk) rectangles are created in total. We pick
m such that this number equals n, thus n = Θ(mk). Also,

note that the volume of each rectangle is between md−1 and
2md−1. The crucial property of this input set is the follow-
ing.

Observation 1. The volume of the intersection of any
two rectangles in R is at most 2md−1/r.

Unlike the previous attempts, our query set is very simple:
a single query q chosen uniformly at random inside R. Note
that the output size of q is k. The rest of this section is
devoted to prove that with positive probability answering
q needs Ω(k log r) = Ω(logd−1

r m log r) = Ω(logn · logd−2
h n)

time which proves our claim.
For a vertex u ∈ G, let In(u) denote the set of vertices

in G that have a directed path of size at most log h to u.
Similarly, define Out(u) to be the set vertices in G that can
be reached from u using a path of size at most log h. For a
rectangle b, let Vb be the set of vertices of G that store b.
We define In(b) =

∑
v∈Vb

In(v) and Out(b) =
∑
v∈Vb

Out(v).

We say b is popular if In(b) > ch2.

Lemma 6. There are at most n/c popular rectangles.

Proof. As each vertex in G has two out edges, for every
u ∈ G, the size of Out(u) is at most 2log h = h. Also, if
v ∈ Out(u), then u ∈ In(v) and vice versa. Thus,∑
b∈Q

|In(b)| =
∑
b∈Q

|Out(b)| =
∑
v∈G

|In(v)| =
∑
u∈G

|Out(u)| ≤ nh2.

This implies the number of rectangles b with In(b) > ch2 is
at most n/c.

Lemma 7. With probability at least 3/5, q is enclosed by
at most k/4 rectangles that are popular, if c is to be a chosen
sufficiently large constant.

Proof. By Lemma 6, the number of popular rectangles is
at most n/c. As each rectangle has volume at most 2md−1,
the total volume of popular rectangles is at most 4md−1n/c.
Let A be the region of R that contains all the points covered
by more than k/4 popular rectangles. We have,

Vol(A)k/4 ≤ 4md−1n/c = Θ(mdk/c)

which implies Vol(A) = O(md/c) < 2md/5 if c is large
enough. Thus, with probability at least 3/5, q will not be
picked in A.

Let S′ be the subset of rectangles that not popular and
let n′ = |S′|. We say two rectangles b1, b2 ∈ S′ are close, if
there exists a vertex u ∈ G such that from u we can reach
a cell that stores b1 and a cell that stores b2 with directed
paths of size at most log h each.

Lemma 8. A rectangle b ∈ S′ can be close to at most ch3

other rectangles in S′.

Proof. If a rectangle b is close to a rectangle b′, then
there exists a vertex u ∈ In(b) such that b′ is stored in a
vertex in Out(u). For every u ∈ G we have Out(u) ≤ h,
and |In(b)| ≤ ch2. Thus, b can be close to ch3 different
rectangles.

Consider a rectangle b ∈ S′. Let B be the subset of rect-
angles that are close to b. We call ∪b′∈B(b ∩ b′) the close
region of b and denote it with Cb.

ri1 pieces

m
ri1

rid−1 pieces

m

rid−1

≈ ri1+...+id−1

⌊
md−1

ri1+...+id−1

⌋

pieces

Figure 1: An illustration of the d-dimensional cube R and its division into smaller rectangles for d = 3.

Lemma 9. With probability at least 1/5, answering q needs
Ω(logn · logd−2

h n) time.

Proof. Consider a rectangle b ∈ S′ and set B defined
above. By Lemma 8, |B| ≤ ch3. By Observation 1, for
every b′ ∈ B, Vol(b ∩ b′) ≤ 2md−1/r and thus

Vol(Cb) ≤
∑
b′∈B

Vol(b ∩ b′) ≤ 2ch3md−1/r = 2cmd−1/cr.

As there are at most n rectangles in S′, the sum of the
volumes of the close regions of all the rectangles in S′ is at
most n · 2cmd−1/cr = Θ(ckmd/cr). Consider the region R
of all the points p such that p is inside the close region of at
least k/4 rectangles of S′. We have,

Vol(R)k/4 ≤
∑
b∈S′

Vol(Cb) ≤ Θ(ckmd/cr)

which means Vol(R) = O(cmd/cr). If we choose cr large
enough, this volume is less than 2md/5, which means with
probability at least 3/5, the selected query will not be in-
side R. Combined with Lemma 7, this gives the following:
with probability at least 1/5, q will be inside at least 3k/4
rectangles that are in S′ (by Lemma 7) and it will also be
inside the close region of at most k/4 rectangles. Let q be
the query when this happens.

Consider the subgraph Hq of G that is explored by the
query procedure while answering q. Assume q needs to out-
put rectangles b1, · · · , bk′ from S′. We have k′ ≥ 3k/4. Let
vi be a node in Hq that stores bi, 1 ≤ i ≤ k′. Also, let Wi be
the set of nodes in Hq that are reachable by traversing up to
log h edges from vi, where the direction of edged have been
reversed. If two sets Wi and Wj , 1 ≤ i < j ≤ k′, share a
common vertex, it means that q is inside the close region of
both bi and bj . However, we know that q is inside the close
region of at most k/4 rectangles. This means that there are
at least k/2 sets Wi that do not share any vertices. Thus,
the size of Hq is at least k/2 · log h = Ω(logn · logd−2

h n).

Remarks.
Our technique is quite different from the previous lower

bounds results in the points machine model [4, 12]. The pre-
vious results rely on a combinatorial framework that deals
with the subsets of the input returned by the queries. This

framework is non-geometric and could even be applied to
abstract reporting problems. Our argument on the other
hand is inherently geometric and simpler but it cannot be
applied to non-geometric problems.

4. CONCLUSIONS
We believe our most surprising result is theO(n logn/ log logn)

space structure for 4-D dominance reporting that answers
queries in O(logn

√
logn/ log logn+ t) time. The existence

of such a structure raises the obvious open question of whether
this query time can be reduced to O(logn + t). Unfortu-
nately, our rectangle stabbing lower bound shows that im-
proving our query time might be difficult.

Our idea of using geometry and volume based arguments
to prove lower bounds is quite novel, and as mentioned, it
has already led to improved simplex range reporting lower
bounds [1]. Finding further applications of our technique is
still open.

5. REFERENCES
[1] P. Afshani. Improved pointer machine and I/O lower

bounds for simplex range reporting and related
problems. submitted to SoCG’12.

[2] P. Afshani. On dominance reporting in 3D. In
ESA’08: Proc. of the 16th conference on Annual
European Symposium, pages 41–51, 2008.

[3] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal
range reporting in three and higher dimensions. In
FOCS’09: Proc. of the 50th Annual Symposium on
Foundations of Computer Science, pages 149–158,
2009.

[4] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal
range reporting: query lower bounds, optimal
structures in 3-d, and higher-dimensional
improvements. In SCG’10: Proc. of the 26th Annual
Symposium on Computational Geometry, pages
240–246, 2010.

[5] P. K. Agarwal. Range searching. In J. E. Goodman
and J. O’Rourke, editors, CRC Handbook of Discrete
and Computational Geometry. CRC Press, Inc., 2004.

[6] P. K. Agarwal and J. Erickson. Geometric range
searching and its relatives. In B. Chazelle, J. E.
Goodman, and R. Pollack, editors, Advances in

Discrete and Computational Geometry. AMS Press,
1999.

[7] S. Alstrup, G. S. Brodal, and T. Rauhe. New data
structures for orthogonal range searching. In FOCS
’00: Proc. of the 41st Annual Symposium on
Foundations of Computer Science, pages 198–207.
IEEE Computer Society, 2000.

[8] P. Bozanis, N. Kitsios, C. Makris, and A. Tsakalidis.
New results on intersection query problems. The
Computer Journal, 40:22–29, 1997.

[9] T. M. Chan, K. G. Larsen, and M. Pătraşcu.
Orthogonal range searching on the RAM, revisited. In
SCG ’11: Proc. of the 27th Annual Symposium on
Computational Geometry, SoCG ’11, pages 1–10.
ACM, 2011.

[10] T. M. Chan, K. G. Larsen, and M. Pătraşcu.
Orthogonal range searching on the RAM, revisited. In
SCG’11: Proc. of the 27th Annual Symposium on
Computational Geometry, pages 1–10, 2011.

[11] B. Chazelle. Filtering search: a new approach to query
answering. SIAM Journal on Computing,
15(3):703–724, 1986.

[12] B. Chazelle. Lower bounds for orthogonal range
searching: I. the reporting case. Journal of the ACM,
37(2):200–212, 1990.

[13] B. Chazelle. Lower bounds for off-line range searching.
In STOC ’95: Proc. of the 27th annual ACM
symposium on Theory of computing, pages 733–740,
1995.

[14] B. Chazelle and L. J. Guibas. Fractional cascading: II.
Applications. Algorithmica, 1:163–191, 1986.

[15] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 2008.

[16] E. Hanson. The interval skip list: A data structure for
finding all intervals that overlap a point. In Algorithms
and Data Structures, volume 519 of Lecture Notes in
Computer Science, pages 153–164. Springer Berlin /
Heidelberg, 1991.

[17] C. Makris and A. Tsakalidis. Algorithms for
three-dimensional dominance searching in linear space.
Inf. Process. Lett., 66(6):277–283, 1998.

[18] J. Matoušek. Reporting points in halfspaces.
Computational Geometry Theory and Applications,
2(3):169–186, 1992.

[19] E. M. McCreight. Priority search trees. SIAM Journal
on Computing, 14(2):257–276, 1985.

[20] R. E. Tarjan. A class of algorithms that require
nonlinear time to maintain disjoint sets. Journal of
Computer and System Sciences, 18:110–127, 1979.

