
1908 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 5, MAY 2019

Immersive Telepresence and Remote Collaboration using Mobile
and Wearable Devices

Jacob Young, Student Member, IEEE, Tobias Langlotz, Member, IEEE,
Matthew Cook, Steven Mills, and Holger Regenbrecht, Member, IEEE

Fig. 1. Our approach for immersive mobile telepresence. (Left): Using their mobile phone, the local user creates a spherical mapping
of their environment using one of several proposed methods. (Right): A remote user views the shared environment through their own
mobile phone (with optional head-mounted display) with their viewpoint independent from the direction of the local user’s camera.
The remote user can point to objects of interest in this environment and have these gestures shown to both users with correct spatial
context. (Center): The panoramic environment shared by the two users. Coloured outlines indicate the field of view of each user so
they know where the other is looking.

Abstract—The mobility and ubiquity of mobile head-mounted displays make them a promising platform for telepresence research as
they allow for spontaneous and remote use cases not possible with stationary hardware. In this work we present a system that provides
immersive telepresence and remote collaboration on mobile and wearable devices by building a live spherical panoramic representation
of a user’s environment that can be viewed in real time by a remote user who can independently choose the viewing direction. The
remote user can then interact with this environment as if they were actually there through intuitive gesture-based interaction. Each
user can obtain independent views within this environment by rotating their device, and their current field of view is shared to allow for
simple coordination of viewpoints. We present several different approaches to create this shared live environment and discuss their
implementation details, individual challenges, and performance on modern mobile hardware; by doing so we provide key insights into
the design and implementation of next generation mobile telepresence systems, guiding future research in this domain. The results of
a preliminary user study confirm the ability of our system to induce the desired sense of presence in its users.

Index Terms—Telepresence, Remote Collaboration, CSCW

1 INTRODUCTION

The increase in computational capability of mobile devices has al-
lowed them to power mobile Head-Mounted Displays (HMDs) such as
Samsung’s GearVR or Google’s Daydream, which provide immersive
Virtual Reality (VR) experiences with a unique portability that tradi-
tional VR systems are unable to replicate. However, most previous
efforts in mobile VR have focused on gaming or 360◦ video, which do

• Jacob Young is with the Department of Information Science at the University
of Otago. Email: jacobyoung.research@gmail.com.

• Tobias Langlotz is with the Department of Information Science at the
University of Otago. Email: tobias.langlotz@otago.ac.nz.

• Matthew Cook is with the Department of Information Science at the
University of Otago. Email: matthew@cook.run.

• Steven Mills is with the Department of Computer Science at the University
of Otago. Email: steven@cs.otago.ac.nz.

• Holger Regenbrecht is with the Department of Information Science at the
University of Otago. Email: holger.regenbrecht@otago.ac.nz.

not fully exploit this mobility and ignore the device’s original use as a
means of communication.

In this work we present a mobile telepresence system that allows
distant users to feel spatially present (the sense of “being there” [31])
within a shared real-world panoramic environment. Each user has an
independent view of this environment based on the orientation of their
device, and their current field of view (FoV) is shown to their commu-
nication partner to aid in the coordination of viewpoints. Either user
may optionally wear a mobile HMD to further immerse themselves
within the space. We also aim to induce co-presence (mutual entrain-
ment [6]—the sense of “being together”) between users by supporting
natural conversational cues; each user’s hands are captured by their
device’s inbuilt camera and shown in the shared space to allow for
intuitive gesture-based conversation. Our use of purely mobile devices
ensures this experience can be enjoyed anywhere by anyone, preserving
the ubiquity users expect from existing mobile solutions. We see this
as a natural extension of these devices’ current use as a communication
platform and one that would be impractical on desktop systems.

We explore five different approaches to constructing this shared
panoramic environment. Each exposes varying levels of view indepen-
dence between users and between them sample the full continuum of
techniques possible in such a panoramic space. The implementation
and individual challenges of each will be described in detail as well

Manuscript received 10 Sept. 2018; accepted 7 Feb. 2019.
Date of publication 17 Feb. 2019; date of current version 27 Mar. 2019.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2019.2898737

as an evaluation of their performance on modern consumer devices,
allowing for our work to be used as a framework for future research.
The results of a preliminary user study are also detailed which confirm
the ability of our system to induce the desired sense of presence in its
users. This is a culmination of prior research [14, 26, 28, 33] as well as
an attempt to overcome these systems’ shortfalls and introduce them
into a purely mobile setting.

Overall, the contributions of this paper are:

• A comprehensive discussion and implementation details of ap-
proaches to building, updating and sharing a live panoramic
representation of a physical environment in real time on purely
mobile devices.

• An approach for incorporating gestures and mutual field of view
awareness into remote conversation to support more natural inter-
action between communication partners.

• A technical evaluation of each presented approach on modern
consumer hardware.

• The results of a preliminary user study that confirms the ability
of our system to induce spatial and co-presence within the shared
environment.

• A summary of our findings and lessons learned, providing direc-
tions for future research on mobile telepresence systems.

These contributions will be of relevance to the fields of mobile telep-
resence and mobile virtual environments, which are so far relatively
under-explored compared to the large body of work on desktop-based
telepresence systems.

2 RELATED WORK

Several attempts have been made to create such an immersive telepres-
ence system, though most tether one or both users to a desktop computer
or require specialised hardware not viable for most consumers. In the
following we identify what requirements a system must meet to induce
a sense of presence between users and evaluate past efforts to determine
whether these requirements have been met.

2.1 Requirements for Effective Collaboration
The degree of presence a user achieves within a virtual environment
determines how they will perceive and interact with it. Once sufficient
presence is achieved, a user’s mental model of the virtual environment
shifts from one on a screen to one within it, and they begin thinking not
in terms of actions performed on an interface but in terms of how these
actions affect the virtual elements contained within [31]. Two users
achieving presence within a shared environment would feel that they
are truly together rather than communicating through some device.

Much work has been done to identify which characteristics con-
tribute to this shared sense of presence. Luff et al. [25] believe that
social interaction is accomplished largely through objects in the en-
vironment, and so users must have an intuitive and effective means
of interacting with them for effective communication to take place;
this places less emphasis on the face-to-face view employed by most
existing systems. This idea is supported by Fussel et al. [10], who
found that views of the task space and each user’s actions and direction
of attention within it are more effective for conversational grounding
than views of the communication partner’s face.

It is important to consider how this task space will be presented to
users. Fixing the remote user’s view to the direction of the local user’s
camera is detrimental to collaborative task performance [9] as reorienta-
tion within the scene must be done through verbal instruction. Providing
the remote user with an independent view of the task space through
manipulation of a physical or virtual camera is preferred [11, 12, 14]
as it allows them to perform this reorientation themselves, increasing
their sense of spatial presence within the environment [14, 26] and
significantly reducing the time taken to complete collaborative tasks
while achieving similar or increased accuracy [14, 28]. Remote users

often utilise this freedom of viewpoint to focus on areas of the task
space not seen by the local user [15, 32], allowing them to direct the
focus of attention or describe the greater context of the environment
without local intervention [33], resulting in greater confidence in the
results of collaborative tasks [15, 21].

Coordination of users’ viewpoints becomes an issue in such a space.
Tang et al. [33] and Kuzuoka et al. [24] found that participants’ inability
to see the other’s FoV led to frustration as important context was
removed from instructions. Reorientation required complex verbal
negotiation, and consequently participants would negate the benefits of
independent view control by keeping their viewpoints close.

Perhaps the most important aspect of telepresence systems is how
they allow users to interact. Gesture-based systems are preferred to
traditional ones [12, 18] as they make users feel more coordinated [9]
and significantly decrease completion time [10–12] of collaborative
tasks with no loss in accuracy [19]. Gestures make identification of
task objects easier by reducing ambiguity of deictic (“that one there”)
references [9] which can lead to verbal communication becoming un-
necessary and inefficient [4]. Gestural interaction is thus commonly
described as a requirement in telepresence applications [9, 23, 24, 33]
and failure to incorporate gestures can lead to frustration as users will
attempt to use them even knowing they are not visible [33].

We thus identify three key requirements a telepresence system must
fulfil to provide rich communication, collaboration and a sufficient
sense of presence between users:

• It must allow users to share a representation of the physical envi-
ronment that preserves the spatial relationship between objects
and users.

• Users must be able to obtain independent viewpoints within the
environment to prevent local parties from dictating the direction
of attention.

• Conversational cues such as voice, unmediated gestures and FoV
awareness must be shared to allow for natural communication.

Fulfilling these requirements will arguably increase the sense of co-
presence between users and provide a social or collaborative experience
similar to that of side-by-side communication. In addition, we argue
that the use of purely ubiquitous and portable hardware is important
in realising such a system as this would allow for spontaneous or
outdoor use, providing a greater range of use cases and conversational
grounding cues than stationary systems [3] while making it available to
the average consumer.

2.2 Spatial Videoconferencing Solutions
Several attempts have been made to incorporate a shared environment,
view independence, and natural conversational cues into one system,
however most are not fully mobile or cannot fulfil some of the above
requirements.

Chili [14] allows partial view independence by projecting the users’
camera streams into a spherical environment based on their devices’
orientation, providing spatial context to images. Jo et al. found that this
provides a greater sense of spatial presence than traditional videoconfer-
encing systems, however nothing is visible outside of the other user’s
FoV and interaction between users is limited to drawn annotations.

PanoVC [26] provides users independent views by incrementally
building and sharing a live panoramic representation of the local en-
vironment. This was shown to increase remote user’s sense of spatial
presence within the shared space, however co-presence was limited by
insufficient representation of the remote user.

Similarly, PanoInserts [28] shares a real environment between users
by overlaying live video onto a pre-captured static panorama through
the use of tracking markers. Requiring these markers and a pre-captured
environment makes the system unsuitable for spontaneous use, and the
complex stitching results in low frame rates, even on desktop systems.

Polly [22] provides full view independence between users by allow-
ing the remote user to physically reorient the local camera through use
of a mechanical gimbal on the local user’s shoulder. This positioning

1077-2626 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

YOUNG ET AL.: IMMERSIVE TELEPRESENCE AND REMOTE COLLABORATION USING MOBILE AND WEARABLE DEVICES 1909

Immersive Telepresence and Remote Collaboration using Mobile
and Wearable Devices

Jacob Young, Student Member, IEEE, Tobias Langlotz, Member, IEEE,
Matthew Cook, Steven Mills, and Holger Regenbrecht, Member, IEEE

Fig. 1. Our approach for immersive mobile telepresence. (Left): Using their mobile phone, the local user creates a spherical mapping
of their environment using one of several proposed methods. (Right): A remote user views the shared environment through their own
mobile phone (with optional head-mounted display) with their viewpoint independent from the direction of the local user’s camera.
The remote user can point to objects of interest in this environment and have these gestures shown to both users with correct spatial
context. (Center): The panoramic environment shared by the two users. Coloured outlines indicate the field of view of each user so
they know where the other is looking.

Abstract—The mobility and ubiquity of mobile head-mounted displays make them a promising platform for telepresence research as
they allow for spontaneous and remote use cases not possible with stationary hardware. In this work we present a system that provides
immersive telepresence and remote collaboration on mobile and wearable devices by building a live spherical panoramic representation
of a user’s environment that can be viewed in real time by a remote user who can independently choose the viewing direction. The
remote user can then interact with this environment as if they were actually there through intuitive gesture-based interaction. Each
user can obtain independent views within this environment by rotating their device, and their current field of view is shared to allow for
simple coordination of viewpoints. We present several different approaches to create this shared live environment and discuss their
implementation details, individual challenges, and performance on modern mobile hardware; by doing so we provide key insights into
the design and implementation of next generation mobile telepresence systems, guiding future research in this domain. The results of
a preliminary user study confirm the ability of our system to induce the desired sense of presence in its users.

Index Terms—Telepresence, Remote Collaboration, CSCW

1 INTRODUCTION

The increase in computational capability of mobile devices has al-
lowed them to power mobile Head-Mounted Displays (HMDs) such as
Samsung’s GearVR or Google’s Daydream, which provide immersive
Virtual Reality (VR) experiences with a unique portability that tradi-
tional VR systems are unable to replicate. However, most previous
efforts in mobile VR have focused on gaming or 360◦ video, which do

• Jacob Young is with the Department of Information Science at the University
of Otago. Email: jacobyoung.research@gmail.com.

• Tobias Langlotz is with the Department of Information Science at the
University of Otago. Email: tobias.langlotz@otago.ac.nz.

• Matthew Cook is with the Department of Information Science at the
University of Otago. Email: matthew@cook.run.

• Steven Mills is with the Department of Computer Science at the University
of Otago. Email: steven@cs.otago.ac.nz.

• Holger Regenbrecht is with the Department of Information Science at the
University of Otago. Email: holger.regenbrecht@otago.ac.nz.

not fully exploit this mobility and ignore the device’s original use as a
means of communication.

In this work we present a mobile telepresence system that allows
distant users to feel spatially present (the sense of “being there” [31])
within a shared real-world panoramic environment. Each user has an
independent view of this environment based on the orientation of their
device, and their current field of view (FoV) is shown to their commu-
nication partner to aid in the coordination of viewpoints. Either user
may optionally wear a mobile HMD to further immerse themselves
within the space. We also aim to induce co-presence (mutual entrain-
ment [6]—the sense of “being together”) between users by supporting
natural conversational cues; each user’s hands are captured by their
device’s inbuilt camera and shown in the shared space to allow for
intuitive gesture-based conversation. Our use of purely mobile devices
ensures this experience can be enjoyed anywhere by anyone, preserving
the ubiquity users expect from existing mobile solutions. We see this
as a natural extension of these devices’ current use as a communication
platform and one that would be impractical on desktop systems.

We explore five different approaches to constructing this shared
panoramic environment. Each exposes varying levels of view indepen-
dence between users and between them sample the full continuum of
techniques possible in such a panoramic space. The implementation
and individual challenges of each will be described in detail as well

as an evaluation of their performance on modern consumer devices,
allowing for our work to be used as a framework for future research.
The results of a preliminary user study are also detailed which confirm
the ability of our system to induce the desired sense of presence in its
users. This is a culmination of prior research [14, 26, 28, 33] as well as
an attempt to overcome these systems’ shortfalls and introduce them
into a purely mobile setting.

Overall, the contributions of this paper are:

• A comprehensive discussion and implementation details of ap-
proaches to building, updating and sharing a live panoramic
representation of a physical environment in real time on purely
mobile devices.

• An approach for incorporating gestures and mutual field of view
awareness into remote conversation to support more natural inter-
action between communication partners.

• A technical evaluation of each presented approach on modern
consumer hardware.

• The results of a preliminary user study that confirms the ability
of our system to induce spatial and co-presence within the shared
environment.

• A summary of our findings and lessons learned, providing direc-
tions for future research on mobile telepresence systems.

These contributions will be of relevance to the fields of mobile telep-
resence and mobile virtual environments, which are so far relatively
under-explored compared to the large body of work on desktop-based
telepresence systems.

2 RELATED WORK

Several attempts have been made to create such an immersive telepres-
ence system, though most tether one or both users to a desktop computer
or require specialised hardware not viable for most consumers. In the
following we identify what requirements a system must meet to induce
a sense of presence between users and evaluate past efforts to determine
whether these requirements have been met.

2.1 Requirements for Effective Collaboration
The degree of presence a user achieves within a virtual environment
determines how they will perceive and interact with it. Once sufficient
presence is achieved, a user’s mental model of the virtual environment
shifts from one on a screen to one within it, and they begin thinking not
in terms of actions performed on an interface but in terms of how these
actions affect the virtual elements contained within [31]. Two users
achieving presence within a shared environment would feel that they
are truly together rather than communicating through some device.

Much work has been done to identify which characteristics con-
tribute to this shared sense of presence. Luff et al. [25] believe that
social interaction is accomplished largely through objects in the en-
vironment, and so users must have an intuitive and effective means
of interacting with them for effective communication to take place;
this places less emphasis on the face-to-face view employed by most
existing systems. This idea is supported by Fussel et al. [10], who
found that views of the task space and each user’s actions and direction
of attention within it are more effective for conversational grounding
than views of the communication partner’s face.

It is important to consider how this task space will be presented to
users. Fixing the remote user’s view to the direction of the local user’s
camera is detrimental to collaborative task performance [9] as reorienta-
tion within the scene must be done through verbal instruction. Providing
the remote user with an independent view of the task space through
manipulation of a physical or virtual camera is preferred [11, 12, 14]
as it allows them to perform this reorientation themselves, increasing
their sense of spatial presence within the environment [14, 26] and
significantly reducing the time taken to complete collaborative tasks
while achieving similar or increased accuracy [14, 28]. Remote users

often utilise this freedom of viewpoint to focus on areas of the task
space not seen by the local user [15, 32], allowing them to direct the
focus of attention or describe the greater context of the environment
without local intervention [33], resulting in greater confidence in the
results of collaborative tasks [15, 21].

Coordination of users’ viewpoints becomes an issue in such a space.
Tang et al. [33] and Kuzuoka et al. [24] found that participants’ inability
to see the other’s FoV led to frustration as important context was
removed from instructions. Reorientation required complex verbal
negotiation, and consequently participants would negate the benefits of
independent view control by keeping their viewpoints close.

Perhaps the most important aspect of telepresence systems is how
they allow users to interact. Gesture-based systems are preferred to
traditional ones [12, 18] as they make users feel more coordinated [9]
and significantly decrease completion time [10–12] of collaborative
tasks with no loss in accuracy [19]. Gestures make identification of
task objects easier by reducing ambiguity of deictic (“that one there”)
references [9] which can lead to verbal communication becoming un-
necessary and inefficient [4]. Gestural interaction is thus commonly
described as a requirement in telepresence applications [9, 23, 24, 33]
and failure to incorporate gestures can lead to frustration as users will
attempt to use them even knowing they are not visible [33].

We thus identify three key requirements a telepresence system must
fulfil to provide rich communication, collaboration and a sufficient
sense of presence between users:

• It must allow users to share a representation of the physical envi-
ronment that preserves the spatial relationship between objects
and users.

• Users must be able to obtain independent viewpoints within the
environment to prevent local parties from dictating the direction
of attention.

• Conversational cues such as voice, unmediated gestures and FoV
awareness must be shared to allow for natural communication.

Fulfilling these requirements will arguably increase the sense of co-
presence between users and provide a social or collaborative experience
similar to that of side-by-side communication. In addition, we argue
that the use of purely ubiquitous and portable hardware is important
in realising such a system as this would allow for spontaneous or
outdoor use, providing a greater range of use cases and conversational
grounding cues than stationary systems [3] while making it available to
the average consumer.

2.2 Spatial Videoconferencing Solutions
Several attempts have been made to incorporate a shared environment,
view independence, and natural conversational cues into one system,
however most are not fully mobile or cannot fulfil some of the above
requirements.

Chili [14] allows partial view independence by projecting the users’
camera streams into a spherical environment based on their devices’
orientation, providing spatial context to images. Jo et al. found that this
provides a greater sense of spatial presence than traditional videoconfer-
encing systems, however nothing is visible outside of the other user’s
FoV and interaction between users is limited to drawn annotations.

PanoVC [26] provides users independent views by incrementally
building and sharing a live panoramic representation of the local en-
vironment. This was shown to increase remote user’s sense of spatial
presence within the shared space, however co-presence was limited by
insufficient representation of the remote user.

Similarly, PanoInserts [28] shares a real environment between users
by overlaying live video onto a pre-captured static panorama through
the use of tracking markers. Requiring these markers and a pre-captured
environment makes the system unsuitable for spontaneous use, and the
complex stitching results in low frame rates, even on desktop systems.

Polly [22] provides full view independence between users by allow-
ing the remote user to physically reorient the local camera through use
of a mechanical gimbal on the local user’s shoulder. This positioning

1910 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 5, MAY 2019

Fig. 2. An overview of the presented panoramic immersive mobile telepresence system. A local user sends their camera stream and device
orientation to a remote user where the received data can be used to render different panoramic representations of the shared environment. The
remote user can perform hand-based gestures, which are captured and sent to the local user along with their orientation so they can be spatially
mapped onto the physical environment. Both sides also exchange audio, allowing for natural conversations as if the two parties are spatially present.
Either user may also increase immersion within the environment by viewing it through a mobile HMD.

could make spatially mapping the remote user’s actions within the en-
vironment difficult [20]; Kratz et al. found that this could be mitigated
by displaying the remote user’s current FoV in a see-through HMD.

2.3 Interaction within Shared Environments
Some telepresence systems place more emphasis on user interaction
than how the environment is displayed. BeThere [32] provides gesture-
based interaction between users by scanning the remote user’s hand
with a tablet-mounted depth sensor and displaying it within the shared
environment; unfortunately the sensor’s technical limitations make the
system impractical for mobile or outdoor use.

JackIn [15] provides full view independence within a SLAM-tracked
real-world panoramic environment. The remote user can point to ob-
jects of interest through use of a Leap Motion Controller1 with the
target shown to the local user in an optical see-through HMD. Again,
this depth sensor restricts the system to stationary indoor use.

Several systems provide interaction through unmediated video of the
user’s hands, though these also have their limitations. HandsinAir [13]
displays these gestures to the local user in a video see-through HMD,
though the users’ views are coupled so movement of the camera during
a gesture could result in a misunderstanding of its intent.

Gauglitz et al. improve upon this by allowing for full view indepen-
dence using homographies [11] or SLAM [12] and overlaying gestures
on the remote user’s view. However, these techniques are computation-
ally expensive and so rely on more powerful stationary hardware.

These systems aim to provide an immersive telepresence experience
by providing independent views, FoV awareness, or gesture-based
interaction between users, however most focus on only one of these
aspects and nearly all require stationary hardware on one or both ends
of the connection. We argue that an increasingly mobile world requires
telepresence solutions that allow for point to point communication
independent of non-ubiquitous hardware. To the best of our knowledge,
our approach is the first that successfully demonstrates how all of
these features can be combined into one system and be experienced
in real time on mobile devices. As such, our system can achieve
levels of presence previously restricted to stationary systems while
providing superior portability and ubiquity, potentially enabling many
new application scenarios.

3 A FRAMEWORK FOR IMMERSIVE MOBILE TELEPRESENCE

We present a framework for an immersive telepresence system that ful-
fils the previously identified requirements by allowing users to interact
within a shared panoramic representation of a real-world environment
as if they were spatially present within it. Our solution uses off-the-
shelf mobile hardware for both clients and supports communication
from anywhere as long as there is sufficient network connectivity.

1https://www.leapmotion.com/

The local user captures their surroundings, using either their device’s
integrated camera or an optional external panoramic one, and shares
it with a remote user, who can obtain independent viewpoints within
it by reorienting their device. The two users can then communicate
through voice, gestures and shared FoV awareness to allow for natural
conversation between them, as illustrated in Fig. 2. The system supports
several ways to create this environment, called our modes of interaction,
which between them sample the full continuum of techniques possible
in such a panoramic space. We present these in order of increasing
view independence:

• Live Video Calling: The local user’s camera feed is shown di-
rectly to the remote user. This mode functions almost identically
to conventional video-calling solutions such as Skype2 and is
included as a point of comparison.

• Live Spatial Video Calling: Both users are situated at the center of
a virtual sphere, and the local user’s camera feed is projected onto
its inside surface based on the orientation of their device. Each
user can then independently control their viewpoint by reorienting
their device, but the remote user still requires that any areas they
wish to see are within the local user’s FoV.

• Incremental Panoramic Calling: Similar to Live Spatial Video
Calling, however each frame projected to the inside of the sphere
from the local camera is recorded there, which over time creates
a panoramic representation of the space. This allows the remote
user to view previously seen areas at their leisure, providing static
context to the live focus in the local user’s FoV.

• Panoramic Calling with Live Inserts: A full panorama of the local
user’s environment is captured and shared ahead of time, allowing
the remote user to see content in areas the remote user has not
yet visited. We make use of a focus and context technique [7]
by projecting the live view from the local user’s camera onto this
pre-recorded panorama.

• Live Panoramic Video Calling: An external 360◦ camera is used
to capture the full environment in real-time. This allows for full
view independence, however requiring the panoramic camera
reduces this mode’s potential for spontaneous use. The local
user may wear the camera around their neck, which will give the
remote user a more accurate representation of their viewpoint at
the cost of obscuring half of the environment, or use a mount such
as the one used by Tang et al. [33] to capture the full environment.

2https://www.skype.com/en/new/

Fig. 3. Each of our modes of interaction in use, from the leftmost column to the rightmost: Live Video Calling, Live Spatial Video Calling, Incremental
Panoramic Calling, Panoramic Calling with Live Inserts, Live Panoramic Video Calling. The top row shows an equirectangular projection of the
panoramic environment constructed by that mode, with the bottom row showing how it would be seen by the remote user. Both views are the same in
Live Video Calling as the two users’ views are coupled. The FoV of the local and remote user are shown as a blue and orange outline, respectively.

For ease of reference each mode other than Live Video Calling shall
be referred to as our spatial modes throughout the rest of this work.
An environment constructed using each is shown in Fig. 3. All modes
allow the user to view the environment through their mobile phone’s
display or an optional mobile HMD. An equirectangular projection
of the whole environment may also be seen if desired. Each of these
representations is shown in Fig. 4.

Since each user can obtain an independent view of the environment,
we spatially map their current FoV as a coloured outline to allow
for these viewpoints to be coordinated. If either user is outside the
other’s FoV, the edge of their screen is coloured to show the direction
they have turned, allowing each to easily respond to spatially sensitive
observations or instructions.

Previous work has shown that gestures are an integral part of every-
day conversation [10, 11]. Consequently, we have allowed both users
to incorporate their hands into conversation in a way that does not
interfere with the representation of the shared environment. The remote
user’s hands are captured by their device’s integrated camera, isolated
from the background and projected into the environment within their
current FoV. This projection is shared with the local user, allowing
the remote user to point to objects of interest or perform other natural
conversational cues. Verbal communication is also possible through
inbuilt VoIP capabilities.

4 TECHNICAL FOUNDATION

Our application is designed to operate on any Android device. To
allow for run-time configuration all modes of interaction share the same
low-level subsystems which we describe in the following sections. The
interactions between these are illustrated in Fig. 5.

4.1 Camera Access

Camera access is performed via Google’s Camera2 API which grants
direct access to the raw camera stream. Parameters such as focus,
exposure and white balance can be controlled at run-time, which is
crucial for building panoramas in Incremental Panoramic Calling with
consistent illumination and ensuring lighting-independent segmentation
of the user’s hands.

Images are captured at a resolution of 1280 × 720 in all modes
to reduce bandwidth requirements. As each frame is captured it is
stored in two buffers; one is CPU-controlled and passes images to the
networking module to be sent to the remote peer, while the other is
backed by an OpenGL texture and is used to display the camera stream
locally. Frames are captured in NV12 format so require conversion to
I420 for the network module and RGBA for rendering. All operations
on these images are performed using either OpenCV3 or OpenGL4.

3https://opencv.org
4https://www.opengl.org

4.2 Orientation Estimation

To allow for independent views within the environment we must imple-
ment some way to track the orientation of each user’s device. Existing
solutions such as ARCore5 and ARKit6 were considered, though these
would limit the application’s use to compatible devices and thus com-
promise its ubiquity.

Two orientation estimation methods are supported that can be used
interchangeably at run-time. Both produce a three-dimensional rotation
matrix which is encoded in each frame so that the users’ FoV and
camera images may be positioned correctly within the environment.
We restrict movement to 3D rotation as the panoramic representation
of the environment is position invariant, which is reasonable for the
envisioned use case.

The simplest but fastest method is a fusion of the device’s inbuilt
sensors and Kalman filtering, as described by Pacha [27]. For most
modes of interaction this is acceptable as the calculated orientation
does not have to accurately represent reality as long as it is internally
consistent. However, sensor drift can cause visible seams in the con-
structed panorama in Incremental Panoramic Calling; for this reason a
vision-based approach is supported which uses feature detection and
matching to estimate the device’s orientation with higher precision.

For the first frame we assume its rotation to be a combination of the
pitch and yaw estimated by the sensor fusion approach and use this as
our absolute orientation Ra−1. We also find the set of feature points ft−1
within the latest camera image using the ORB method [30]. For each
subsequent frame we detect its feature set ft using the same method
and find matches between the two sets through a brute force approach,
comparing every feature point in ft−1 to each in ft and assigning a
similarity score to each pair based on the immediate neighbourhood
of their keypoints. The pair with the highest similarity score for each
feature is kept and added to a set of matches m if its similarity score
is above 70% of the highest possible and is at least double the next
best matching pair. Once m is found, we use a homography-based
estimator to calculate the relative rotation matrix Rr between the two
images, which is then refined through bundle adjustment. We check this
estimated rotation against the rotation Rs estimated by our sensor fusion
approach by calculating their difference D = RrR -1

s and discarding the
result and its corresponding frame if a discrepancy of more than 5◦ is
found; this is needed since recovering from an erroneous estimate is
difficult. Once a relative rotation between the two frames is found, we
calculate the absolute rotation of the new frame Ra = Ra−1Rr , which is
used as the device’s orientation matrix R.

4.3 Networking and Synchronisation

To facilitate the connection between users we use Google’s open-source
implementation of WebRTC7, which allows for efficient sharing of

5https://developers.google.com/ar/
6https://developer.apple.com/arkit/
7https://webrtc.org

YOUNG ET AL.: IMMERSIVE TELEPRESENCE AND REMOTE COLLABORATION USING MOBILE AND WEARABLE DEVICES 1911

Fig. 2. An overview of the presented panoramic immersive mobile telepresence system. A local user sends their camera stream and device
orientation to a remote user where the received data can be used to render different panoramic representations of the shared environment. The
remote user can perform hand-based gestures, which are captured and sent to the local user along with their orientation so they can be spatially
mapped onto the physical environment. Both sides also exchange audio, allowing for natural conversations as if the two parties are spatially present.
Either user may also increase immersion within the environment by viewing it through a mobile HMD.

could make spatially mapping the remote user’s actions within the en-
vironment difficult [20]; Kratz et al. found that this could be mitigated
by displaying the remote user’s current FoV in a see-through HMD.

2.3 Interaction within Shared Environments
Some telepresence systems place more emphasis on user interaction
than how the environment is displayed. BeThere [32] provides gesture-
based interaction between users by scanning the remote user’s hand
with a tablet-mounted depth sensor and displaying it within the shared
environment; unfortunately the sensor’s technical limitations make the
system impractical for mobile or outdoor use.

JackIn [15] provides full view independence within a SLAM-tracked
real-world panoramic environment. The remote user can point to ob-
jects of interest through use of a Leap Motion Controller1 with the
target shown to the local user in an optical see-through HMD. Again,
this depth sensor restricts the system to stationary indoor use.

Several systems provide interaction through unmediated video of the
user’s hands, though these also have their limitations. HandsinAir [13]
displays these gestures to the local user in a video see-through HMD,
though the users’ views are coupled so movement of the camera during
a gesture could result in a misunderstanding of its intent.

Gauglitz et al. improve upon this by allowing for full view indepen-
dence using homographies [11] or SLAM [12] and overlaying gestures
on the remote user’s view. However, these techniques are computation-
ally expensive and so rely on more powerful stationary hardware.

These systems aim to provide an immersive telepresence experience
by providing independent views, FoV awareness, or gesture-based
interaction between users, however most focus on only one of these
aspects and nearly all require stationary hardware on one or both ends
of the connection. We argue that an increasingly mobile world requires
telepresence solutions that allow for point to point communication
independent of non-ubiquitous hardware. To the best of our knowledge,
our approach is the first that successfully demonstrates how all of
these features can be combined into one system and be experienced
in real time on mobile devices. As such, our system can achieve
levels of presence previously restricted to stationary systems while
providing superior portability and ubiquity, potentially enabling many
new application scenarios.

3 A FRAMEWORK FOR IMMERSIVE MOBILE TELEPRESENCE

We present a framework for an immersive telepresence system that ful-
fils the previously identified requirements by allowing users to interact
within a shared panoramic representation of a real-world environment
as if they were spatially present within it. Our solution uses off-the-
shelf mobile hardware for both clients and supports communication
from anywhere as long as there is sufficient network connectivity.

1https://www.leapmotion.com/

The local user captures their surroundings, using either their device’s
integrated camera or an optional external panoramic one, and shares
it with a remote user, who can obtain independent viewpoints within
it by reorienting their device. The two users can then communicate
through voice, gestures and shared FoV awareness to allow for natural
conversation between them, as illustrated in Fig. 2. The system supports
several ways to create this environment, called our modes of interaction,
which between them sample the full continuum of techniques possible
in such a panoramic space. We present these in order of increasing
view independence:

• Live Video Calling: The local user’s camera feed is shown di-
rectly to the remote user. This mode functions almost identically
to conventional video-calling solutions such as Skype2 and is
included as a point of comparison.

• Live Spatial Video Calling: Both users are situated at the center of
a virtual sphere, and the local user’s camera feed is projected onto
its inside surface based on the orientation of their device. Each
user can then independently control their viewpoint by reorienting
their device, but the remote user still requires that any areas they
wish to see are within the local user’s FoV.

• Incremental Panoramic Calling: Similar to Live Spatial Video
Calling, however each frame projected to the inside of the sphere
from the local camera is recorded there, which over time creates
a panoramic representation of the space. This allows the remote
user to view previously seen areas at their leisure, providing static
context to the live focus in the local user’s FoV.

• Panoramic Calling with Live Inserts: A full panorama of the local
user’s environment is captured and shared ahead of time, allowing
the remote user to see content in areas the remote user has not
yet visited. We make use of a focus and context technique [7]
by projecting the live view from the local user’s camera onto this
pre-recorded panorama.

• Live Panoramic Video Calling: An external 360◦ camera is used
to capture the full environment in real-time. This allows for full
view independence, however requiring the panoramic camera
reduces this mode’s potential for spontaneous use. The local
user may wear the camera around their neck, which will give the
remote user a more accurate representation of their viewpoint at
the cost of obscuring half of the environment, or use a mount such
as the one used by Tang et al. [33] to capture the full environment.

2https://www.skype.com/en/new/

Fig. 3. Each of our modes of interaction in use, from the leftmost column to the rightmost: Live Video Calling, Live Spatial Video Calling, Incremental
Panoramic Calling, Panoramic Calling with Live Inserts, Live Panoramic Video Calling. The top row shows an equirectangular projection of the
panoramic environment constructed by that mode, with the bottom row showing how it would be seen by the remote user. Both views are the same in
Live Video Calling as the two users’ views are coupled. The FoV of the local and remote user are shown as a blue and orange outline, respectively.

For ease of reference each mode other than Live Video Calling shall
be referred to as our spatial modes throughout the rest of this work.
An environment constructed using each is shown in Fig. 3. All modes
allow the user to view the environment through their mobile phone’s
display or an optional mobile HMD. An equirectangular projection
of the whole environment may also be seen if desired. Each of these
representations is shown in Fig. 4.

Since each user can obtain an independent view of the environment,
we spatially map their current FoV as a coloured outline to allow
for these viewpoints to be coordinated. If either user is outside the
other’s FoV, the edge of their screen is coloured to show the direction
they have turned, allowing each to easily respond to spatially sensitive
observations or instructions.

Previous work has shown that gestures are an integral part of every-
day conversation [10, 11]. Consequently, we have allowed both users
to incorporate their hands into conversation in a way that does not
interfere with the representation of the shared environment. The remote
user’s hands are captured by their device’s integrated camera, isolated
from the background and projected into the environment within their
current FoV. This projection is shared with the local user, allowing
the remote user to point to objects of interest or perform other natural
conversational cues. Verbal communication is also possible through
inbuilt VoIP capabilities.

4 TECHNICAL FOUNDATION

Our application is designed to operate on any Android device. To
allow for run-time configuration all modes of interaction share the same
low-level subsystems which we describe in the following sections. The
interactions between these are illustrated in Fig. 5.

4.1 Camera Access

Camera access is performed via Google’s Camera2 API which grants
direct access to the raw camera stream. Parameters such as focus,
exposure and white balance can be controlled at run-time, which is
crucial for building panoramas in Incremental Panoramic Calling with
consistent illumination and ensuring lighting-independent segmentation
of the user’s hands.

Images are captured at a resolution of 1280 × 720 in all modes
to reduce bandwidth requirements. As each frame is captured it is
stored in two buffers; one is CPU-controlled and passes images to the
networking module to be sent to the remote peer, while the other is
backed by an OpenGL texture and is used to display the camera stream
locally. Frames are captured in NV12 format so require conversion to
I420 for the network module and RGBA for rendering. All operations
on these images are performed using either OpenCV3 or OpenGL4.

3https://opencv.org
4https://www.opengl.org

4.2 Orientation Estimation

To allow for independent views within the environment we must imple-
ment some way to track the orientation of each user’s device. Existing
solutions such as ARCore5 and ARKit6 were considered, though these
would limit the application’s use to compatible devices and thus com-
promise its ubiquity.

Two orientation estimation methods are supported that can be used
interchangeably at run-time. Both produce a three-dimensional rotation
matrix which is encoded in each frame so that the users’ FoV and
camera images may be positioned correctly within the environment.
We restrict movement to 3D rotation as the panoramic representation
of the environment is position invariant, which is reasonable for the
envisioned use case.

The simplest but fastest method is a fusion of the device’s inbuilt
sensors and Kalman filtering, as described by Pacha [27]. For most
modes of interaction this is acceptable as the calculated orientation
does not have to accurately represent reality as long as it is internally
consistent. However, sensor drift can cause visible seams in the con-
structed panorama in Incremental Panoramic Calling; for this reason a
vision-based approach is supported which uses feature detection and
matching to estimate the device’s orientation with higher precision.

For the first frame we assume its rotation to be a combination of the
pitch and yaw estimated by the sensor fusion approach and use this as
our absolute orientation Ra−1. We also find the set of feature points ft−1
within the latest camera image using the ORB method [30]. For each
subsequent frame we detect its feature set ft using the same method
and find matches between the two sets through a brute force approach,
comparing every feature point in ft−1 to each in ft and assigning a
similarity score to each pair based on the immediate neighbourhood
of their keypoints. The pair with the highest similarity score for each
feature is kept and added to a set of matches m if its similarity score
is above 70% of the highest possible and is at least double the next
best matching pair. Once m is found, we use a homography-based
estimator to calculate the relative rotation matrix Rr between the two
images, which is then refined through bundle adjustment. We check this
estimated rotation against the rotation Rs estimated by our sensor fusion
approach by calculating their difference D = RrR -1

s and discarding the
result and its corresponding frame if a discrepancy of more than 5◦ is
found; this is needed since recovering from an erroneous estimate is
difficult. Once a relative rotation between the two frames is found, we
calculate the absolute rotation of the new frame Ra = Ra−1Rr , which is
used as the device’s orientation matrix R.

4.3 Networking and Synchronisation

To facilitate the connection between users we use Google’s open-source
implementation of WebRTC7, which allows for efficient sharing of

5https://developers.google.com/ar/
6https://developer.apple.com/arkit/
7https://webrtc.org

1912 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 5, MAY 2019

Fig. 4. The ways in which a user may view the shared environment.
(Left): An equirectangular projection of the entire panorama. (Centre):
A first-person view of the environment based on the orientation of the
user’s device. (Right): A pseudo-stereoscopic view for mobile HMDs.

audio and video with minimal configuration. Matchmaking requires a
central server but communication is completely peer-to-peer.

When users connect to each other, three separate channels are cre-
ated for each: one for audio encrypted using the Opus codec, one for
encrypted video using VP8, and one for data, which is used to send
each device’s orientation to the communication partner. Since WebRTC
provides no means of synchronising video and data packets, we en-
code an identification tag into two 8× 8 regions of pixels in the top
left corner of each frame, with the bits encoded in a way that ensures
significant difference in luminosity between frames despite the tags
being consecutive integers. When an image arrives over the connection,
the client waits for the accompanying data packet and reconstructs the
frame with the missing data before passing it to the rendering pipeline.

5 CONSTRUCTING THE SHARED ENVIRONMENT

Now that we have low-level functionality we can begin constructing
and sharing the environment. How this is done differs between modes,
though to ensure modularity each is built upon the same foundation
which we describe here along with methods for interacting with and
viewing the resulting environment.

5.1 Representation of the Shared Environment
Though the various spatial modes differ in terms of how the envi-
ronment is created, all can be generalised as to provide some virtual
spherical space for users to interact within. To ease implementation and
allow switching between modes at run-time we store the various envi-
ronments in exactly the same manner: as a panorama that is updated
differently depending on the desired mode.

We store this panorama as a simple two-dimensional texture rather
than a more complicated representation such as a point cloud or a 3D
mesh due to much lower requirements for memory and computation
time. Previous approaches store such a panorama using a cylindrical
model [1, 26], which is computationally simple but results in a reduced
vertical field of view due to missing information at the latitudinal
poles; this is a problem when displaying the panorama in an HMD and
may affect the sense of presence. We instead use a spherical model,
which allows these poles to be visible. We assume that all rotations
of the device are performed with the camera’s optical centre as the
origin with no movement of the device itself; this creates a discrepancy
in the predicted and actual rotation of the environment, though this
will be negligible for sufficiently distant objects [8]. For this reason
we conceptualise the sphere as infinitely large such that all points
on the sphere are at an infinite distance from the origin, making the
environment position-insensitive.

The panorama is stored as an equirectangular projection in a texture-
backed OpenGL framebuffer. Since the maximum size of any side
of a buffer in OpenGL is 4096 texels we use this as its width, and
the equirectangular model requires its height to be half of this, giving
us a total resolution of 4096× 2048. A higher resolution is possible
but would require splitting the panorama across multiple framebuffers;
the slight increase in quality was not deemed to be worth the extra
computational load. All operations on this framebuffer are performed
through fragment shaders to maximise performance.

5.2 Projection into Panorama Space
Projecting images into the panorama is a vital part of our application as
it allows each user’s camera stream to be shown in the correct position

Fig. 5. An overview of the system’s shared modules and how they interact.
Paths marked ∗, †, or ‡ are only conditionally followed, for example when
a specific mode of operation is in use.

in the environment. Projection is performed in a fragment shader during
rendering to ensure optimal performance.

We first transform the panorama’s texture coordinates t = (tx, ty) to
the equirectangular sphere map coordinates

(θ ,φ) =
(
2π

(
tx − 1

2
)
, πty

)
, (1)

where tx, ty ∈ [0,1] and θ ∈ [-π,π], φ ∈ [-π
2 , π

2] are the azimuth and
inclination on the environment sphere respectively. These are then
projected to a unit vector u = (ux,uy,uz) on this sphere such that

u =

sin(φ)sin(θ)
cos(φ)

sin(φ)cos(θ)

 (2)

We then rotate the sphere-space projection based on the device’s esti-
mated orientation matrix R, followed by a projection to the camera’s
sensor space using its intrinsic matrix K. Thus the camera coordinate
u′ for a given pixel is given by

u′ = KRT u. (3)

Since pixels near the poles may appear in the camera’s forward and
back projection, we choose not to render a pixel if the calculated u′z ≤ 0.
We then normalise the calculated coordinates across the camera’s pixel
coordinates, giving the final texel coordinates v = (vx,vy) such that

v =

(
u′x

rxu′z
,

u′y
ryu′z

)
(4)

where (rx,ry) = (1280,720) is the resolution of the camera. If both
vx, vy ∈ [0,1) then the texel at v in the input image is displayed at the
current fragment.

5.3 Field of View Awareness
To show each user’s current FoV, we colour a fragment blue (for the
local user) or orange (for the remote user) if its vx or vy, calculated at
the end of the projection step, are within some small threshold to 0 or
1. We also colour the fragment if it is near the edge of the screen and
the calculated vx, vy �∈ [0,1] imply that the area projected to is outside
that edge to indicate which direction the user needs to turn in order to
see their partner’s current FoV.

5.4 View Unprojection
Now that we can store the environment we must implement some
way of viewing it. For Live Video Calling we can simply display the
local user’s camera stream, but for the other modes more sophisticated
methods are needed.

The first way of viewing the environment is to simply map the
panorama texture to the device’s screen, allowing the entire space to
be viewed at once. We can alternatively obtain a novel view of the
environment for each user by unprojecting a region of the panorama
based on the current orientation of their device. To do this, we create a

virtual camera with an 82◦ FoV and intrinsic matrix K and retrieve the
user’s estimated orientation matrix R. Then for each fragment we cast
a unit vector m′ from the centre of the sphere M such that

m′ = KT RT M, (5)

which we normalise to obtain the coordinate m = m′

m′
z

in the panorama
texture to sample from.

For increased immersion within the environment either user may
optionally view it through a mobile HMD. Since no depth data is stored
we simply split our unprojected view in half vertically and show the
same image to each eye. With our intended outdoor use case (and
even in most indoor scenarios) most objects are too distant for this
lack of depth to be noticeable, and its absence has been shown to
have no detrimental effect on collaborative performance [21]. These
unprojection techniques are performed within the rendering shader after
each user’s camera frame has been projected into the environment.

5.5 Hand Segmentation
While the local user’s gestures are visible within the existing camera
stream, to allow the remote user to perform them their hands are cap-
tured using their device’s camera, isolated from the background and
projected into the panorama using their current orientation. As this
segmentation process needs to be robust enough to work in most envi-
ronments while still fast enough to not affect application performance
we use a simple colour-based approach.

Whenever a frame is captured from the remote user’s camera, each
pixel’s colour is checked and is assumed to not belong to a hand if its
YUV and corresponding RGB values satisfy the following conditions
proposed by Al-Tairi et al. [2]:

u ∈ (80,130), v ∈ (136,200), r > 80, g > 30, b > 15, |r−g|> 15.

Since human skin has similar hue and mostly only differs in lightness
[34], ignoring the Y channel ensures compatibility with a range of
different skin colours.

To reduce the risk of other skin-coloured objects being included in
the results, we remove pixels if their Euclidean distance to the nearest
non-skin coloured pixel is below some small threshold. Large skin-
coloured regions will still be visible, but as seen in Fig. 6 this method
can still give acceptable results given our real-time constraint. More
advanced techniques such as GrabCut [29] were considered but were
found to be infeasible for real-time use on current mobile hardware.

6 MODES OF INTERACTION

Here we describe our implementation of each of the proposed modes of
interaction. All but Live Video Calling utilise the previously described
low-level subsystems.

6.1 Live Video Calling
Live Video Calling is the simplest of our modes to implement as it
displays the local user’s camera stream directly. Once a network connec-
tion has been established, each frame captured by each user’s camera
is sent to their communication partner; to allow the remote user to
perform hand gestures their image will first pass through the hand
segmentation module. When rendering we then simply sample from
the remote user’s image if the current texel is determined to belong to a
hand and otherwise sample from the local user’s image, resulting in the
remote user’s gestures always being visible.

6.2 Live Spatial Video Calling
Live Spatial Video Calling is more complex as each user’s camera im-
age must be correctly mapped within the environment to give it spatial
context and so both users’ estimated device orientation matrix must
also be sent along with each captured camera image. The previously
outlined projection step is then used by the rendering shader to project
the images and FoV indicators onto the panorama framebuffer, and
the unprojection step is then performed to render the environment to

Fig. 6. An example of the segmentation accuracy we can achieve in real-
time. (Left): The original image. (Centre): The image after colour-based
segmentation. (Right): The segmented image after distance-based
thresholding is applied.

the users’ screens. Both users are shown a spherical grid in otherwise
empty areas to provide them with a consistent sense of orientation.

While similar to the Chili system [14], we use gesture-based interac-
tion which is preferred to the annotations employed by Jo et al. [10,15]
which should increase the system’s potential as a collaborative tool [19]
and make it more enjoyable for users.

6.3 Incremental Panoramic Calling
Incremental Panoramic Calling builds upon Live Spatial Video Calling
by recording each of the local user’s camera frames whenever they
are projected into the environment to provide additional static context.
Over time this constructs a panorama of the local user’s surroundings,
allowing the remote user to view areas the local user has previously
visited at their leisure.

To do this we require an additional step in our application pipeline.
Each time a new camera frame arrives from the local user we project
it into the environment in a separate shader before the rendering step
with the panorama framebuffer as the output rather than the screen. To
ensure that the panorama always reflects the most recent view of the
space we overwrite each affected texel each frame; due to our real-time
constraint we assume that the calculated device orientation is accurate
and do not perform any stitching.

To prevent the local user’s hand gestures being permanently recorded
in the panorama and thus occluding the background it is possible to
perform the previously described hand segmentation process during
this projection. Each pixel is prevented from being recorded if it is
determined to belong to a hand, thus leaving the occluded background
information intact. The original image is unaffected and so the gesture
will still be visible after rendering.

Because the panorama is used as the output for this step, the shader
would usually operate on all 4096×2048 fragments in the framebuffer
even though most will not be affected by the projection. To improve
performance we overlay the panorama with 144 culling quads and only
run the shader on each if it will be affected by the projection. For a
camera with diagonal field of view F we can determine if a culling
quad will be fully or partially inside the area being projected to if any
of its sphere space corners c satisfy

Rz · c ≥ cos
(F

2
)
, (6)

where z is the unit vector along the z axis and R the orientation matrix
associated with this frame.

While reminiscent of PanoVC [26], our system differs in a few key
areas. We use a spherical panorama rather than a cylindrical one to
better accommodate HMD use, and each user only calculates their own
orientation, ensuring the environment remains consistent between users
and allowing for scalability beyond two parties. Our use of gestures also
solves PanoVC’s inability to induce significant co-presence between
users due to a lack of representation of the remote user.

6.4 Panoramic Calling with Live Inserts
While the device’s inbuilt camera can create convincing representations
of the environment, the quality of this representation depends on the
accuracy of the device’s orientation estimates and is also sensitive
to temporal changes in the environment. Sensor-based tracking is
susceptible to drift over time, and vision-based approaches assume no
movement in the environment, so artefacts will likely be present in the
panorama in imperfect conditions. Panoramic Calling with Live Inserts

YOUNG ET AL.: IMMERSIVE TELEPRESENCE AND REMOTE COLLABORATION USING MOBILE AND WEARABLE DEVICES 1913

Fig. 4. The ways in which a user may view the shared environment.
(Left): An equirectangular projection of the entire panorama. (Centre):
A first-person view of the environment based on the orientation of the
user’s device. (Right): A pseudo-stereoscopic view for mobile HMDs.

audio and video with minimal configuration. Matchmaking requires a
central server but communication is completely peer-to-peer.

When users connect to each other, three separate channels are cre-
ated for each: one for audio encrypted using the Opus codec, one for
encrypted video using VP8, and one for data, which is used to send
each device’s orientation to the communication partner. Since WebRTC
provides no means of synchronising video and data packets, we en-
code an identification tag into two 8× 8 regions of pixels in the top
left corner of each frame, with the bits encoded in a way that ensures
significant difference in luminosity between frames despite the tags
being consecutive integers. When an image arrives over the connection,
the client waits for the accompanying data packet and reconstructs the
frame with the missing data before passing it to the rendering pipeline.

5 CONSTRUCTING THE SHARED ENVIRONMENT

Now that we have low-level functionality we can begin constructing
and sharing the environment. How this is done differs between modes,
though to ensure modularity each is built upon the same foundation
which we describe here along with methods for interacting with and
viewing the resulting environment.

5.1 Representation of the Shared Environment
Though the various spatial modes differ in terms of how the envi-
ronment is created, all can be generalised as to provide some virtual
spherical space for users to interact within. To ease implementation and
allow switching between modes at run-time we store the various envi-
ronments in exactly the same manner: as a panorama that is updated
differently depending on the desired mode.

We store this panorama as a simple two-dimensional texture rather
than a more complicated representation such as a point cloud or a 3D
mesh due to much lower requirements for memory and computation
time. Previous approaches store such a panorama using a cylindrical
model [1, 26], which is computationally simple but results in a reduced
vertical field of view due to missing information at the latitudinal
poles; this is a problem when displaying the panorama in an HMD and
may affect the sense of presence. We instead use a spherical model,
which allows these poles to be visible. We assume that all rotations
of the device are performed with the camera’s optical centre as the
origin with no movement of the device itself; this creates a discrepancy
in the predicted and actual rotation of the environment, though this
will be negligible for sufficiently distant objects [8]. For this reason
we conceptualise the sphere as infinitely large such that all points
on the sphere are at an infinite distance from the origin, making the
environment position-insensitive.

The panorama is stored as an equirectangular projection in a texture-
backed OpenGL framebuffer. Since the maximum size of any side
of a buffer in OpenGL is 4096 texels we use this as its width, and
the equirectangular model requires its height to be half of this, giving
us a total resolution of 4096× 2048. A higher resolution is possible
but would require splitting the panorama across multiple framebuffers;
the slight increase in quality was not deemed to be worth the extra
computational load. All operations on this framebuffer are performed
through fragment shaders to maximise performance.

5.2 Projection into Panorama Space
Projecting images into the panorama is a vital part of our application as
it allows each user’s camera stream to be shown in the correct position

Fig. 5. An overview of the system’s shared modules and how they interact.
Paths marked ∗, †, or ‡ are only conditionally followed, for example when
a specific mode of operation is in use.

in the environment. Projection is performed in a fragment shader during
rendering to ensure optimal performance.

We first transform the panorama’s texture coordinates t = (tx, ty) to
the equirectangular sphere map coordinates

(θ ,φ) =
(
2π

(
tx − 1

2
)
, πty

)
, (1)

where tx, ty ∈ [0,1] and θ ∈ [-π,π], φ ∈ [-π
2 , π

2] are the azimuth and
inclination on the environment sphere respectively. These are then
projected to a unit vector u = (ux,uy,uz) on this sphere such that

u =

sin(φ)sin(θ)
cos(φ)

sin(φ)cos(θ)

 (2)

We then rotate the sphere-space projection based on the device’s esti-
mated orientation matrix R, followed by a projection to the camera’s
sensor space using its intrinsic matrix K. Thus the camera coordinate
u′ for a given pixel is given by

u′ = KRT u. (3)

Since pixels near the poles may appear in the camera’s forward and
back projection, we choose not to render a pixel if the calculated u′z ≤ 0.
We then normalise the calculated coordinates across the camera’s pixel
coordinates, giving the final texel coordinates v = (vx,vy) such that

v =

(
u′x

rxu′z
,

u′y
ryu′z

)
(4)

where (rx,ry) = (1280,720) is the resolution of the camera. If both
vx, vy ∈ [0,1) then the texel at v in the input image is displayed at the
current fragment.

5.3 Field of View Awareness
To show each user’s current FoV, we colour a fragment blue (for the
local user) or orange (for the remote user) if its vx or vy, calculated at
the end of the projection step, are within some small threshold to 0 or
1. We also colour the fragment if it is near the edge of the screen and
the calculated vx, vy �∈ [0,1] imply that the area projected to is outside
that edge to indicate which direction the user needs to turn in order to
see their partner’s current FoV.

5.4 View Unprojection
Now that we can store the environment we must implement some
way of viewing it. For Live Video Calling we can simply display the
local user’s camera stream, but for the other modes more sophisticated
methods are needed.

The first way of viewing the environment is to simply map the
panorama texture to the device’s screen, allowing the entire space to
be viewed at once. We can alternatively obtain a novel view of the
environment for each user by unprojecting a region of the panorama
based on the current orientation of their device. To do this, we create a

virtual camera with an 82◦ FoV and intrinsic matrix K and retrieve the
user’s estimated orientation matrix R. Then for each fragment we cast
a unit vector m′ from the centre of the sphere M such that

m′ = KT RT M, (5)

which we normalise to obtain the coordinate m = m′

m′
z

in the panorama
texture to sample from.

For increased immersion within the environment either user may
optionally view it through a mobile HMD. Since no depth data is stored
we simply split our unprojected view in half vertically and show the
same image to each eye. With our intended outdoor use case (and
even in most indoor scenarios) most objects are too distant for this
lack of depth to be noticeable, and its absence has been shown to
have no detrimental effect on collaborative performance [21]. These
unprojection techniques are performed within the rendering shader after
each user’s camera frame has been projected into the environment.

5.5 Hand Segmentation
While the local user’s gestures are visible within the existing camera
stream, to allow the remote user to perform them their hands are cap-
tured using their device’s camera, isolated from the background and
projected into the panorama using their current orientation. As this
segmentation process needs to be robust enough to work in most envi-
ronments while still fast enough to not affect application performance
we use a simple colour-based approach.

Whenever a frame is captured from the remote user’s camera, each
pixel’s colour is checked and is assumed to not belong to a hand if its
YUV and corresponding RGB values satisfy the following conditions
proposed by Al-Tairi et al. [2]:

u ∈ (80,130), v ∈ (136,200), r > 80, g > 30, b > 15, |r−g|> 15.

Since human skin has similar hue and mostly only differs in lightness
[34], ignoring the Y channel ensures compatibility with a range of
different skin colours.

To reduce the risk of other skin-coloured objects being included in
the results, we remove pixels if their Euclidean distance to the nearest
non-skin coloured pixel is below some small threshold. Large skin-
coloured regions will still be visible, but as seen in Fig. 6 this method
can still give acceptable results given our real-time constraint. More
advanced techniques such as GrabCut [29] were considered but were
found to be infeasible for real-time use on current mobile hardware.

6 MODES OF INTERACTION

Here we describe our implementation of each of the proposed modes of
interaction. All but Live Video Calling utilise the previously described
low-level subsystems.

6.1 Live Video Calling
Live Video Calling is the simplest of our modes to implement as it
displays the local user’s camera stream directly. Once a network connec-
tion has been established, each frame captured by each user’s camera
is sent to their communication partner; to allow the remote user to
perform hand gestures their image will first pass through the hand
segmentation module. When rendering we then simply sample from
the remote user’s image if the current texel is determined to belong to a
hand and otherwise sample from the local user’s image, resulting in the
remote user’s gestures always being visible.

6.2 Live Spatial Video Calling
Live Spatial Video Calling is more complex as each user’s camera im-
age must be correctly mapped within the environment to give it spatial
context and so both users’ estimated device orientation matrix must
also be sent along with each captured camera image. The previously
outlined projection step is then used by the rendering shader to project
the images and FoV indicators onto the panorama framebuffer, and
the unprojection step is then performed to render the environment to

Fig. 6. An example of the segmentation accuracy we can achieve in real-
time. (Left): The original image. (Centre): The image after colour-based
segmentation. (Right): The segmented image after distance-based
thresholding is applied.

the users’ screens. Both users are shown a spherical grid in otherwise
empty areas to provide them with a consistent sense of orientation.

While similar to the Chili system [14], we use gesture-based interac-
tion which is preferred to the annotations employed by Jo et al. [10,15]
which should increase the system’s potential as a collaborative tool [19]
and make it more enjoyable for users.

6.3 Incremental Panoramic Calling
Incremental Panoramic Calling builds upon Live Spatial Video Calling
by recording each of the local user’s camera frames whenever they
are projected into the environment to provide additional static context.
Over time this constructs a panorama of the local user’s surroundings,
allowing the remote user to view areas the local user has previously
visited at their leisure.

To do this we require an additional step in our application pipeline.
Each time a new camera frame arrives from the local user we project
it into the environment in a separate shader before the rendering step
with the panorama framebuffer as the output rather than the screen. To
ensure that the panorama always reflects the most recent view of the
space we overwrite each affected texel each frame; due to our real-time
constraint we assume that the calculated device orientation is accurate
and do not perform any stitching.

To prevent the local user’s hand gestures being permanently recorded
in the panorama and thus occluding the background it is possible to
perform the previously described hand segmentation process during
this projection. Each pixel is prevented from being recorded if it is
determined to belong to a hand, thus leaving the occluded background
information intact. The original image is unaffected and so the gesture
will still be visible after rendering.

Because the panorama is used as the output for this step, the shader
would usually operate on all 4096×2048 fragments in the framebuffer
even though most will not be affected by the projection. To improve
performance we overlay the panorama with 144 culling quads and only
run the shader on each if it will be affected by the projection. For a
camera with diagonal field of view F we can determine if a culling
quad will be fully or partially inside the area being projected to if any
of its sphere space corners c satisfy

Rz · c ≥ cos
(F

2
)
, (6)

where z is the unit vector along the z axis and R the orientation matrix
associated with this frame.

While reminiscent of PanoVC [26], our system differs in a few key
areas. We use a spherical panorama rather than a cylindrical one to
better accommodate HMD use, and each user only calculates their own
orientation, ensuring the environment remains consistent between users
and allowing for scalability beyond two parties. Our use of gestures also
solves PanoVC’s inability to induce significant co-presence between
users due to a lack of representation of the remote user.

6.4 Panoramic Calling with Live Inserts
While the device’s inbuilt camera can create convincing representations
of the environment, the quality of this representation depends on the
accuracy of the device’s orientation estimates and is also sensitive
to temporal changes in the environment. Sensor-based tracking is
susceptible to drift over time, and vision-based approaches assume no
movement in the environment, so artefacts will likely be present in the
panorama in imperfect conditions. Panoramic Calling with Live Inserts

1914 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 5, MAY 2019

Fig. 7. A pre-captured environment split and unprojected into multi-
ple segments for feature matching. The relative rotation between new
camera frames and the segment with the most matches to the new
frame is combined with that segment’s rotation to calculate the absolute
orientation of the user’s device.

avoids these shortcomings by constructing the environment before
communication starts, allowing for slower, more accurate stitching to
be used at the expense of spontaneity.

When the application starts, the pre-captured panorama is loaded
from disk into the panorama framebuffer. We assume that the panorama
is already equirectangularly projected so this is done with a bitwise
copy. Other than this initial step the implementation is identical to Live
Spatial Video Calling.

To ensure that objects in the local user’s camera stream align with
their position in the static environment we must determine where these
objects are; to do this, we have implemented an additional orientation
estimation method that calculates the relative rotation between the new
frame and pre-defined segments of the existing panorama.

Once the panorama is loaded we rotate around the environment
sphere at set angles and at each rotation obtain an unprojected view
of the panorama. This results in a two-dimensional array of images
such as in Fig. 7 which between them show the entire environment. We
then detect and store the features and absolute rotation of each of these
segments using the ORB method [30].

Each time a new frame arrives from the local user’s camera we detect
its feature set, again using the ORB method. Since the pitch of an object
in the pre-captured environment is likely to match its relative pitch in
the real world, we use the pitch estimated through the sensor fusion
approach to find a likely row of segments the new image could match.
We then match the new image against each segment in this row, take the
segment with the most matches and calculate the relative rotation matrix
between it and the camera frame, which is multiplied by the absolute
rotation matrix of the chosen segment to find the absolute orientation
of the device. Matching image features against a full panorama is
predictably slow, taking 453ms on average for each frame; for this
reason we only perform this absolute tracking every 500 frames and
use the calculated orientation as an offset for sensor-based tracking.

Despite the computational limitations of mobile phones, this mode
achieves a similar experience to PanoInserts [28] at a much higher frame
rate, resulting in a much more comfortable and portable experience for
users. We additionally allow for more natural interaction via unmedi-
ated gestures, providing an interaction method and representation of
the remote user that PanoInserts lacks.

6.5 Live Panoramic Video Calling

While Panoramic Calling with Live Inserts allows the entire space to
be shared, its static nature means that the remote user will not be able
to see temporal changes in the environment. Live Panoramic Video
Calling enables this by utilising an external 360◦ camera to share the
full environment in real time. We use a Ricoh Theta S8, a portable and
inexpensive camera designed for use with mobile phones. The Theta
provides its own API via remote HTTP requests, however this requires
connecting the mobile device to a dedicated wireless network broadcast

8https://theta360.com/en/about/theta/s.html

Fig. 8. An example of the 360◦ images we obtain from the Ricoh camera.
(Left): The raw dual-fisheye image provided by the camera. (Right): The
result of projecting this image into our equirectangular panorama.

by the camera that only accepts one client, making communication with
the remote peer impossible. We instead connect to the camera via USB
using the UVCCamera library9.

Frames are retrieved from the camera and sent to the remote user
in the dual fisheye format seen in Fig. 8. This is then converted to
an equirectangular format and projected into the panorama using the
following method. As with Incremental Panoramic Calling, this is
performed in a fragment shader before the rendering step each frame
with the panorama framebuffer as the target.

For each fragment in the panorama framebuffer we calculate its
latitude ϕ and longitude λ

(ϕ,λ) =
(

-π
2 +

πty
ry
, -π + 2πtx

rx

)
(7)

where (tx, ty) is the coordinate of the current fragment and (rx,ry) =
(4096,2048) the resolution of the panorama framebuffer. We project
these to a unit vector m on the environment sphere, which is rotated so
that it aligns with the coordinate space of our panorama:

m =

0 0 -1
-1 0 0
0 1 0

 ·

cos(ϕ)cos(λ)
sin(ϕ)

-cos(ϕ)sin(λ)

 (8)

From here we calculate the spherical equirectangular coordinates

θ =

{
0 if |my| ≥ 1,
cos-1 (|my|

)
if |my|< 1

φ =

tan-1
(

mx
mz

)
if my < 0,

tan-1
(

-mx
mz

)
if my ≥ 0

(9)

where θ is the azimuth and φ the inclination of the environment sphere,
and find their corresponding texel coordinates (u,v) in the fisheye
texture

(u,v) = (tx, ty) ·

cx +

rπ
2 cos(φ)

∣∣∣sin
(

θ
2

)∣∣∣
cy +

rπ
2 sin(φ)

∣∣∣sin
(

θ
2

)∣∣∣

 . (10)

Here (cx,cy) is the centre point of one of the fisheye images seen in
Fig. 8 and r its radius. If my < 0 we take the texel from the left image,
otherwise we take it from the right. Since each lens of the Ricoh covers
slightly more than 180◦ and its intrinsics are not publicly available we
cannot perform a perfect projection without computationally expensive
stitching, causing visible seams where the two images meet.

Our implementation solves a few key problems Tang et al. [33] found
with their 360◦ videoconferencing system. Their remote users often
felt frustrated that the local user could not see their gestures or FoV, and
despite this often used them when giving instructions anyway. We allow
for both of these interaction methods to be fully utilised, increasing the
system’s collaborative potential and decreasing user frustration.

7 PERFORMANCE

For this shared experience to provide a real sense of presence we require
that it performs in real time with a high frame rate and low latency so
that actions are shown as they would be in the real world.

9https://github.com/saki4510t/UVCCamera

In our testing we use two Google Pixels with Android 7.1.2 con-
nected via Wi-Fi paired with Google’s Daydream HMD. The latency
of these devices’ cameras was measured to be at most 128ms. We
similarly measured the network latency to be 128ms at worst. The
Pixel’s camera operates at 30 frames per second (fps), and its screen
has a refresh rate of 60Hz. The Ricoh Theta we use for panoramic
image capture has a worst-case latency of 256ms and is only capable
of streaming to third-party applications at 15fps.

The average end-to-end latency for each frame is shown in Fig. 9
with the average frame rate and time required to process each frame
shown in Fig. 10. These results proved constant over several measures
and so standard deviations were negligible. The application’s average
frame rate is 60fps in most modes, which is the highest attainable on
these devices due to Android’s enforced VSync. Incremental Panoramic
Calling sees slightly lower performance, averaging 50fps and 48fps
for the local and remote user respectively due to the extra projection
required for building the panorama. The local user will see their camera
image only 141ms after it is captured in most cases, and it will be shown
to the remote user in only 302.34ms on average for images from the
inbuilt camera or 351.54ms for images from the panoramic camera.
The remote user can expect to wait 175ms to see their own hands, which
will be visible to the local user in 246.19ms on average. This latency is
lower than was achieved in similar systems with no ill effects reported
by the authors [26, 33], and almost all is unavoidable due to camera
and network constraints and may be removed almost completely with
future hardware revisions.

Our application is comprised of three main threads: the rendering
thread, which determines the refresh rate of the display, the sending
thread, which determines how often local frames are displayed and sent
to the remote peer, and the receiving thread, which determines how
often the remote peer’s frames are displayed. In the following sections
we evaluate the performance of each, including a description of what
tasks they are responsible for and the time taken to perform them.

7.1 Rendering
The rendering thread is responsible for constructing and rendering the
shared environment and performs the following tasks each frame:

1. Retrieves the latest frames from both the local camera and the
receiving thread. The time taken for this is negligible, requiring
much less than a millisecond.

2. In Incremental Panoramic Calling or Live Panoramic Video Call-
ing, the local user’s camera frame is projected into the shared
environment. This takes 8.42ms for standard images and 12.00ms
for images from the panoramic camera. The local user’s hands
may also be removed from the image during this process to avoid
occluding the environment, requiring a further 34ms.

3. Renders views to the device display. This takes 14.05ms, 13.75ms
or 13.97ms to display the full panorama, the oriented unprojected
view or the HMD view, respectively.

The frame rate of this thread determines the overall frame rate for
the application and as such is the most important to optimise. A low
frame rate would affect the update rate for local orientation tracking,
and high latency could result in motion sickness when using an HMD
as head rotations would not provide immediate feedback; fortunately
this thread runs at 60fps in most cases. Performance is slightly lower
on the remote user’s device in both Incremental Panoramic Calling
and Live Panoramic Video Calling; this can be attributed to increased
contention for resources caused by hand segmentation and the extra
projection.

7.2 Sending Frames
The sending thread is responsible for processing frames from the local
camera and passing them to the network module so that they can be
sent to the remote peer. It performs the following tasks each frame:

1. Captures an image from the camera. This takes at most 128ms
for the integrated camera and 256ms for the panoramic camera.

Fig. 9. The average end-to-end latency of each mode. This assumes
a typical use case where the panoramic camera is not used and the
user views the environment in the unprojected view. Note that ORB
tracking is optional, projecting to the panorama is only required in Incre-
mental Panoramic Calling and Live Panoramic Video Calling, and hand
segmentation usually only occurs on the remote user’s device.

2. Hand segmentation is performed on the remote user’s device,
which takes 34ms on average.

3. The user’s orientation is estimated using either sensor fusion,
which takes less than 1ms, or using our vision-based approach,
which takes 82.38ms and reduces this thread’s frame rate to 14fps.

4. The image is then processed for sending, including encoding of
an identification tag into the frame. This takes 3ms.

This thread’s performance is restricted by the hardware limitations
of the cameras, resulting in a best-case latency of 128ms or 256ms and
a best-case frame rate of 30fps or 15fps for the integrated or panoramic
camera respectively. This is much less frames than the application is
capable of rendering so immediate benefits will be seen once mobile
phones integrate more capable cameras.

7.3 Receiving Frames
The receiving thread is responsible for receiving frames from the remote
peer and processing them so that they can be displayed within the
environment. It performs the following tasks each frame:

1. Receives a new image from the remote peer. Network latency is
at worst 128ms.

2. Reconstructs the received image with the missing pixels and pairs
it with its associated data packet, which will contain the remote
peer’s orientation at the time the image was taken. This takes
2.57ms on average.

Much like the sending thread, this thread’s latency is largely limited
by the network, and its frame rate is limited by the capture rate of the
remote peer’s camera. It has the least processing to perform of our
threads, allowing it to easily keep up with demand, and spawning a
thread for each new frame ensures that network latency does not affect
the overall frame rate.

8 USER EVALUATION

A preliminary study was conducted to gauge the application’s ability
to induce a sense of spatial or co-presence within the shared environ-
ment. We hypothesised that there would be a correlation between the
degree of view independence and the sense of spatial presence felt
within the environment, and a similar correlation between the degree
of view independence and the co-presence felt between users. Due
to the preliminary nature of this study we limited the number of par-
ticipants recruited and thus the number of conditions evaluated. Live
Video Calling was excluded as it does not lend itself to HMD use,
and Panoramic Calling with Live Inserts was similarly excluded as it
essentially provides a best-case scenario for Incremental Panoramic
Calling.

YOUNG ET AL.: IMMERSIVE TELEPRESENCE AND REMOTE COLLABORATION USING MOBILE AND WEARABLE DEVICES 1915

Fig. 7. A pre-captured environment split and unprojected into multi-
ple segments for feature matching. The relative rotation between new
camera frames and the segment with the most matches to the new
frame is combined with that segment’s rotation to calculate the absolute
orientation of the user’s device.

avoids these shortcomings by constructing the environment before
communication starts, allowing for slower, more accurate stitching to
be used at the expense of spontaneity.

When the application starts, the pre-captured panorama is loaded
from disk into the panorama framebuffer. We assume that the panorama
is already equirectangularly projected so this is done with a bitwise
copy. Other than this initial step the implementation is identical to Live
Spatial Video Calling.

To ensure that objects in the local user’s camera stream align with
their position in the static environment we must determine where these
objects are; to do this, we have implemented an additional orientation
estimation method that calculates the relative rotation between the new
frame and pre-defined segments of the existing panorama.

Once the panorama is loaded we rotate around the environment
sphere at set angles and at each rotation obtain an unprojected view
of the panorama. This results in a two-dimensional array of images
such as in Fig. 7 which between them show the entire environment. We
then detect and store the features and absolute rotation of each of these
segments using the ORB method [30].

Each time a new frame arrives from the local user’s camera we detect
its feature set, again using the ORB method. Since the pitch of an object
in the pre-captured environment is likely to match its relative pitch in
the real world, we use the pitch estimated through the sensor fusion
approach to find a likely row of segments the new image could match.
We then match the new image against each segment in this row, take the
segment with the most matches and calculate the relative rotation matrix
between it and the camera frame, which is multiplied by the absolute
rotation matrix of the chosen segment to find the absolute orientation
of the device. Matching image features against a full panorama is
predictably slow, taking 453ms on average for each frame; for this
reason we only perform this absolute tracking every 500 frames and
use the calculated orientation as an offset for sensor-based tracking.

Despite the computational limitations of mobile phones, this mode
achieves a similar experience to PanoInserts [28] at a much higher frame
rate, resulting in a much more comfortable and portable experience for
users. We additionally allow for more natural interaction via unmedi-
ated gestures, providing an interaction method and representation of
the remote user that PanoInserts lacks.

6.5 Live Panoramic Video Calling

While Panoramic Calling with Live Inserts allows the entire space to
be shared, its static nature means that the remote user will not be able
to see temporal changes in the environment. Live Panoramic Video
Calling enables this by utilising an external 360◦ camera to share the
full environment in real time. We use a Ricoh Theta S8, a portable and
inexpensive camera designed for use with mobile phones. The Theta
provides its own API via remote HTTP requests, however this requires
connecting the mobile device to a dedicated wireless network broadcast

8https://theta360.com/en/about/theta/s.html

Fig. 8. An example of the 360◦ images we obtain from the Ricoh camera.
(Left): The raw dual-fisheye image provided by the camera. (Right): The
result of projecting this image into our equirectangular panorama.

by the camera that only accepts one client, making communication with
the remote peer impossible. We instead connect to the camera via USB
using the UVCCamera library9.

Frames are retrieved from the camera and sent to the remote user
in the dual fisheye format seen in Fig. 8. This is then converted to
an equirectangular format and projected into the panorama using the
following method. As with Incremental Panoramic Calling, this is
performed in a fragment shader before the rendering step each frame
with the panorama framebuffer as the target.

For each fragment in the panorama framebuffer we calculate its
latitude ϕ and longitude λ

(ϕ,λ) =
(

-π
2 +

πty
ry
, -π + 2πtx

rx

)
(7)

where (tx, ty) is the coordinate of the current fragment and (rx,ry) =
(4096,2048) the resolution of the panorama framebuffer. We project
these to a unit vector m on the environment sphere, which is rotated so
that it aligns with the coordinate space of our panorama:

m =

0 0 -1
-1 0 0
0 1 0

 ·

cos(ϕ)cos(λ)
sin(ϕ)

-cos(ϕ)sin(λ)

 (8)

From here we calculate the spherical equirectangular coordinates

θ =

{
0 if |my| ≥ 1,
cos-1 (|my|

)
if |my|< 1

φ =

tan-1
(

mx
mz

)
if my < 0,

tan-1
(

-mx
mz

)
if my ≥ 0

(9)

where θ is the azimuth and φ the inclination of the environment sphere,
and find their corresponding texel coordinates (u,v) in the fisheye
texture

(u,v) = (tx, ty) ·

cx +

rπ
2 cos(φ)

∣∣∣sin
(

θ
2

)∣∣∣
cy +

rπ
2 sin(φ)

∣∣∣sin
(

θ
2

)∣∣∣

 . (10)

Here (cx,cy) is the centre point of one of the fisheye images seen in
Fig. 8 and r its radius. If my < 0 we take the texel from the left image,
otherwise we take it from the right. Since each lens of the Ricoh covers
slightly more than 180◦ and its intrinsics are not publicly available we
cannot perform a perfect projection without computationally expensive
stitching, causing visible seams where the two images meet.

Our implementation solves a few key problems Tang et al. [33] found
with their 360◦ videoconferencing system. Their remote users often
felt frustrated that the local user could not see their gestures or FoV, and
despite this often used them when giving instructions anyway. We allow
for both of these interaction methods to be fully utilised, increasing the
system’s collaborative potential and decreasing user frustration.

7 PERFORMANCE

For this shared experience to provide a real sense of presence we require
that it performs in real time with a high frame rate and low latency so
that actions are shown as they would be in the real world.

9https://github.com/saki4510t/UVCCamera

In our testing we use two Google Pixels with Android 7.1.2 con-
nected via Wi-Fi paired with Google’s Daydream HMD. The latency
of these devices’ cameras was measured to be at most 128ms. We
similarly measured the network latency to be 128ms at worst. The
Pixel’s camera operates at 30 frames per second (fps), and its screen
has a refresh rate of 60Hz. The Ricoh Theta we use for panoramic
image capture has a worst-case latency of 256ms and is only capable
of streaming to third-party applications at 15fps.

The average end-to-end latency for each frame is shown in Fig. 9
with the average frame rate and time required to process each frame
shown in Fig. 10. These results proved constant over several measures
and so standard deviations were negligible. The application’s average
frame rate is 60fps in most modes, which is the highest attainable on
these devices due to Android’s enforced VSync. Incremental Panoramic
Calling sees slightly lower performance, averaging 50fps and 48fps
for the local and remote user respectively due to the extra projection
required for building the panorama. The local user will see their camera
image only 141ms after it is captured in most cases, and it will be shown
to the remote user in only 302.34ms on average for images from the
inbuilt camera or 351.54ms for images from the panoramic camera.
The remote user can expect to wait 175ms to see their own hands, which
will be visible to the local user in 246.19ms on average. This latency is
lower than was achieved in similar systems with no ill effects reported
by the authors [26, 33], and almost all is unavoidable due to camera
and network constraints and may be removed almost completely with
future hardware revisions.

Our application is comprised of three main threads: the rendering
thread, which determines the refresh rate of the display, the sending
thread, which determines how often local frames are displayed and sent
to the remote peer, and the receiving thread, which determines how
often the remote peer’s frames are displayed. In the following sections
we evaluate the performance of each, including a description of what
tasks they are responsible for and the time taken to perform them.

7.1 Rendering
The rendering thread is responsible for constructing and rendering the
shared environment and performs the following tasks each frame:

1. Retrieves the latest frames from both the local camera and the
receiving thread. The time taken for this is negligible, requiring
much less than a millisecond.

2. In Incremental Panoramic Calling or Live Panoramic Video Call-
ing, the local user’s camera frame is projected into the shared
environment. This takes 8.42ms for standard images and 12.00ms
for images from the panoramic camera. The local user’s hands
may also be removed from the image during this process to avoid
occluding the environment, requiring a further 34ms.

3. Renders views to the device display. This takes 14.05ms, 13.75ms
or 13.97ms to display the full panorama, the oriented unprojected
view or the HMD view, respectively.

The frame rate of this thread determines the overall frame rate for
the application and as such is the most important to optimise. A low
frame rate would affect the update rate for local orientation tracking,
and high latency could result in motion sickness when using an HMD
as head rotations would not provide immediate feedback; fortunately
this thread runs at 60fps in most cases. Performance is slightly lower
on the remote user’s device in both Incremental Panoramic Calling
and Live Panoramic Video Calling; this can be attributed to increased
contention for resources caused by hand segmentation and the extra
projection.

7.2 Sending Frames
The sending thread is responsible for processing frames from the local
camera and passing them to the network module so that they can be
sent to the remote peer. It performs the following tasks each frame:

1. Captures an image from the camera. This takes at most 128ms
for the integrated camera and 256ms for the panoramic camera.

Fig. 9. The average end-to-end latency of each mode. This assumes
a typical use case where the panoramic camera is not used and the
user views the environment in the unprojected view. Note that ORB
tracking is optional, projecting to the panorama is only required in Incre-
mental Panoramic Calling and Live Panoramic Video Calling, and hand
segmentation usually only occurs on the remote user’s device.

2. Hand segmentation is performed on the remote user’s device,
which takes 34ms on average.

3. The user’s orientation is estimated using either sensor fusion,
which takes less than 1ms, or using our vision-based approach,
which takes 82.38ms and reduces this thread’s frame rate to 14fps.

4. The image is then processed for sending, including encoding of
an identification tag into the frame. This takes 3ms.

This thread’s performance is restricted by the hardware limitations
of the cameras, resulting in a best-case latency of 128ms or 256ms and
a best-case frame rate of 30fps or 15fps for the integrated or panoramic
camera respectively. This is much less frames than the application is
capable of rendering so immediate benefits will be seen once mobile
phones integrate more capable cameras.

7.3 Receiving Frames
The receiving thread is responsible for receiving frames from the remote
peer and processing them so that they can be displayed within the
environment. It performs the following tasks each frame:

1. Receives a new image from the remote peer. Network latency is
at worst 128ms.

2. Reconstructs the received image with the missing pixels and pairs
it with its associated data packet, which will contain the remote
peer’s orientation at the time the image was taken. This takes
2.57ms on average.

Much like the sending thread, this thread’s latency is largely limited
by the network, and its frame rate is limited by the capture rate of the
remote peer’s camera. It has the least processing to perform of our
threads, allowing it to easily keep up with demand, and spawning a
thread for each new frame ensures that network latency does not affect
the overall frame rate.

8 USER EVALUATION

A preliminary study was conducted to gauge the application’s ability
to induce a sense of spatial or co-presence within the shared environ-
ment. We hypothesised that there would be a correlation between the
degree of view independence and the sense of spatial presence felt
within the environment, and a similar correlation between the degree
of view independence and the co-presence felt between users. Due
to the preliminary nature of this study we limited the number of par-
ticipants recruited and thus the number of conditions evaluated. Live
Video Calling was excluded as it does not lend itself to HMD use,
and Panoramic Calling with Live Inserts was similarly excluded as it
essentially provides a best-case scenario for Incremental Panoramic
Calling.

1916 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 5, MAY 2019

Fig. 10. The average frame rate (left) and required time per frame (right) for each of our modes of interaction for the local and remote user. Each of
our main threads executes asynchronously and so their performance is evaluated separately. These results assume that vision-based tracking is not
used. The standard deviations for each result were negligible and thus are omitted.

8.1 Study Design

19 participants were recruited between the ages of 18-65 that self-
identified as having no history of simulator sickness. Only seven had
prior experience with virtual reality. The study followed a within-
subjects design with the independent variable being the mode of inter-
action used. A Google Daydream HMD was used to view the shared
environment for all conditions. Spatial and co-presence were evaluated
for each condition via modified versions of questionnaires by Schubert
et al. [31] and Biocca et al. [5] respectively that comprised of state-
ments about the participant’s experience within the virtual environment,
with the participant noting the degree to which they agreed with each
statement via a 7-point Likert scale (1 = strongly disagree, 7 = strongly
agree). Statements were presented in a way that higher scores indicated
a higher sense of presence. Participants could also write free-form
comments about their experience, and any simulator sickness felt was
evaluated using the questionnaire designed by Kennedy et al. [16].

The order of conditions was randomised for each participant to re-
duce any potential learning effects. For each condition, participants
were instructed on how to use that mode of interaction, and were then
allowed to familiarise themselves with the system for two minutes
within a pre-recorded environment; this was different than the envi-
ronment used for evaluation and was done without a communication
partner to encourage experimentation. They were then connected to
the study mediator and placed within a hill-top, urban, outdoor scene
where they were asked to have a free-form discussion with the mediator.
Participants were shown various landmarks and were encouraged to
point out and ask questions about any others they could see. Once two
and a half minutes had elapsed they were asked to complete the pres-
ence questionnaires. This was repeated for the remaining conditions,
after which participants were asked to complete the simulator sickness
questionnaire and were gifted a $20 voucher.

To ensure that the presented environment remained consistent be-
tween conditions and participants the study mediator’s video was
recorded ahead of time. Each frame was stored along with its times-
tamp and orientation matrix so that it could be played back as if it were
arriving from a real remote partner, allowing us to control unpredictable
factors such as noise and the weather; removing these important en-
vironmental cues could limit environmental immersion but prevents
extreme conditions from interrupting the experiment. Participants were
informed of this at the beginning of the study. Their own video was
still broadcast live to the study mediator over Wi-Fi so that their ges-
tures and FoV could be seen in relation to the environment. Both the
participant and the mediator were situated within the same room so
could hear each other speak without using the application’s inbuilt VoIP
functionality. The same mediator and environment were used for all
participants and conditions. As it is difficult to place a panoramic cam-
era without the local user being visible, the environment was limited to
180◦ to ensure a consistent first-person view between conditions.

As simulating a communication partner may have some effect on co-
presence, the study was repeated with live video to determine whether

the system would behave similarly in a real-life scenario. Seven par-
ticipants took part, with a second study mediator placed within the
same environment as in the pre-recorded study and connected to the
participant over Wi-Fi using the system’s VoIP capabilities.

8.2 Results
For each condition, its spatial and co-presence scores, as shown in
Fig. 11, were determined by the mean of the relevant questionnaire re-
sponses. Live Spatial Video Calling (C1) scored the lowest of our tested
modes for both forms of presence in the pre-recorded environment with
mean scores of 4.56 and 4.98 for spatial and co-presence respectively.
Incremental Panoramic Calling (C2) was higher rated, with mean scores
of 5.22 and 5.35 , and Live Panoramic Video Calling (C3) achieved
similar results with mean scores of 5.19 and 5.54 . Friedman tests
showed a significant difference between conditions (p ≤ 0.05) in both
spatial presence (p = 0.019) and co-presence (p = 0.015). Wilcoxon
signed-rank tests (N = 19) revealed that C1 induced significantly lower
spatial presence than both C2 (p = 0.012) and C3 (p = 0.019), with no
significant difference between C2 and C3 (p = 0.917). Co-presence
was similarly distributed, with C3 scoring significantly higher than
C1 (p = 0.008) but with no significant difference between C1 and C2
(p = 0.343) or between C2 and C3 (p = 0.586).

The results of the live study were similar to the first. C1 was rated
the lowest for both forms of presence, with mean scores of 3.99 and
5.39 for spatial and co-presence respectively. C2 and C3 were again
similar, with C2 achieving mean scores of 4.70 and 5.71 and C3
scoring 4.94 and 5.57 . Friedman tests again showed a significant
difference in induced spatial presence between conditions (p = 0.030),
but this time no significant difference in co-presence was found (p =
0.368). Wilcoxon signed-rank tests (N = 7) showed that participants
felt significantly more spatially present within the environment in C3
than in C1 (p= 0.035), but no significant difference was found between
C1 and C2 (p = 0.051) or between C2 and C3 (p = 1.00).

Reported simulator sickness was low across all participants. Re-
sponses to each symptom were coded to allow for numerical analysis
(“None” = 0, “Severe” = 3), resulting in an average response of 0.313
(σ = 0.192) across all symptoms. Participants were informed that
they may conclude the experiment at any time if they felt any severe
symptoms, though none felt it necessary to do so.

8.3 Discussion
We believe that view independence is the single most important fac-
tor for increasing spatial presence within the shared environment, and
that per our first hypothesis there would be a correlation between the
two. This was partially supported by our experiments; both Incre-
mental Panoramic Calling and Live Panoramic Video Calling induced
significantly higher spatial presence than Live Spatial Video Calling,
suggesting that allowing the remote user to view areas outside of the
local user’s field of view could be beneficial to providing a sense of
presence within that space. This view was shared by many of our par-

Fig. 11. Participants’ reported levels of spatial presence and co-presence within the live environment (left) and pre-recorded environment (right) for
each of the evaluated modes of interaction, as indicated by 7-point Likert scales.

ticipants, who made comments such as “[C3] felt more immersive [than
C1] as you can see the whole area”, “Looking through a small window
[in C1] made it harder to fully immerse”, and “I felt more immersed
with being able to see outside the blue square”.

Our preliminary results indicate that there is little difference in
induced spatial presence between C2 and C3. Based on this observation,
we suggest that the full environment presented in Live Panoramic Video
Calling could provide no additional benefit over Incremental Panoramic
Calling’s partial panorama. This could potentially be due to the low
resolution of the panoramic camera, which was noticed by almost all
participants with comments such as “The lower resolution made me
feel slightly dizzy”, “I felt the resolution on this really impacted how
immersed I felt”, and “because the image was so grainy I felt like I
was in a game rather than a real location”. Though the resolution of
panoramic cameras may improve in future, we believe this will remain
an issue; network limitations will always constrain the resolution of
images able to be streamed in real time, and using all of that resolution
over a smaller area as in Incremental Panoramic Calling rather than
over the full panorama will always result in higher quality environments
(assuming perfect stitching). We assumed that the panoramic camera’s
low frame rate would have similar detrimental effects, however none of
the participants mentioned this as being an issue and the performance
of the system as a whole proved satisfactory for participants. Only one
reported any performance issues, which were caused by unscheduled
background processing and not experienced in subsequent conditions.

The ability to gesture within the environment was well received by
participants. Deictic references were used frequently, and representa-
tional gestures were also often used for tasks such as tracing the path of
a river. At least one participant found that “being able to see the move-
ments of my own hands creates a much higher sense of engagement
than if this feature was not included, and drives most of the sense of
‘being there’”, suggesting that this unmediated view of their gestures
could induce spatial presence within the environment. Despite our
segmentation algorithm’s prioritisation of performance over quality, no
participants reported any issues arising from incorrect segmentation,
even in the unprepared room they were situated within.

Our hypothesis that there would be a correlation between the degree
of view independence provided and co-presence induced was not sup-
ported by our results; there is a small correlation, though not enough for
significant differences to present themselves. Co-presence was rated
highly across all conditions, which was particularly surprising for the
pre-recorded environment given that the study mediator could not prop-
erly react to the participants’ actions. Bias may have been introduced by
the mediator’s presence within the same room as participants, however
co-presence scoring similarly in the live conditions where the mediator
was remotely located suggests no such bias exists.

It is also worth mentioning that the results of Incremental Panoramic
Calling mode are in agreement with experimental results found by
Müller et al. [26], which validates our general study design and the
shown results as well as the potential of our system.

Overall, the system was very well received by participants, with
even those unfamiliar with VR experiencing little simulator sickness.
This implies that the system could be used by the wider public without

issue, though it is unsure whether this would hold true for longer
exposure times [17]. Many saw the system’s potential as the future of
telecommunications, with some commenting “After I took [the HMD]
off I had forgotten exactly where I was... really did feel like I was there”
and “makes one actually feel they are really in the same place with the
other person. Taking communication to another level!”.

9 CONCLUSION AND FUTURE WORK

We presented several approaches for enabling real-time immersive
telepresence using mobile and wearable devices. Each utilised a shared
spherical mapping of the local environment that can be created and
updated on the fly. This shared environment can be viewed indepen-
dently by each user, and shared mutual FoV awareness and support for
gesture-based interaction allow for natural interaction between commu-
nicating parties. To the best of our knowledge, ours is the first system
to provide these features using purely mobile devices. A preliminary
study showed this system was well received by novice users, who found
it induced a sense of presence within the shared space. A full evalua-
tion of all factors (e.g. resolution, frame-rate) and their contribution
to the sense of presence, as well as a full evaluation of each mode of
interaction, will be the subject of future work.

Given the extensive literature on desktop-based telepresence solu-
tions, mobile telepresence research seems to be in its infancy. However,
as shown in this work, modern mobile hardware has now reached the
point where it is capable of supporting real-time immersive telepres-
ence experiences in unprepared outdoor environments. We argue that
this is a big step forward for mobile telepresence research as it allows
for spontaneous experiences independent of location, supporting new
application scenarios not possible in existing stationary solutions. This
required compromises in tracking and stitching quality and thus still
poses a significant engineering challenge, however even with these con-
straints we have shown that such systems are viable and are encouraging
further research in this domain.

We believe these insights and results are beneficial for future research
in immersive mobile telepresence systems. We argue that systems
like this have the potential to change activities such as maintenance
scenarios, remote collaboration and tele-tourism. Future advances in
mobile technology will make such systems more viable, and we believe
it is inevitable that users will seek more immersive experiences such as
this when traditional systems fail to provide them the collaborative and
social experiences they desire.

ACKNOWLEDGMENTS

The authors wish to thank Oliver Reid for his help in conducting the
user study, Katie Tong for her constant support, and the rest of the HCI
lab for their valuable input throughout the duration of this research.

REFERENCES

[1] A. Agarwala, K. C. Zheng, C. Pal, M. Agrawala, M. Cohen, B. Curless,
D. Salesin, and R. Szeliski. Panoramic Video Textures. In ACM SIG-
GRAPH 2005 Papers, SIGGRAPH ’05, pp. 821–827. ACM, New York,
NY, USA, 2005. doi: 10.1145/1186822.1073268

YOUNG ET AL.: IMMERSIVE TELEPRESENCE AND REMOTE COLLABORATION USING MOBILE AND WEARABLE DEVICES 1917

Fig. 10. The average frame rate (left) and required time per frame (right) for each of our modes of interaction for the local and remote user. Each of
our main threads executes asynchronously and so their performance is evaluated separately. These results assume that vision-based tracking is not
used. The standard deviations for each result were negligible and thus are omitted.

8.1 Study Design

19 participants were recruited between the ages of 18-65 that self-
identified as having no history of simulator sickness. Only seven had
prior experience with virtual reality. The study followed a within-
subjects design with the independent variable being the mode of inter-
action used. A Google Daydream HMD was used to view the shared
environment for all conditions. Spatial and co-presence were evaluated
for each condition via modified versions of questionnaires by Schubert
et al. [31] and Biocca et al. [5] respectively that comprised of state-
ments about the participant’s experience within the virtual environment,
with the participant noting the degree to which they agreed with each
statement via a 7-point Likert scale (1 = strongly disagree, 7 = strongly
agree). Statements were presented in a way that higher scores indicated
a higher sense of presence. Participants could also write free-form
comments about their experience, and any simulator sickness felt was
evaluated using the questionnaire designed by Kennedy et al. [16].

The order of conditions was randomised for each participant to re-
duce any potential learning effects. For each condition, participants
were instructed on how to use that mode of interaction, and were then
allowed to familiarise themselves with the system for two minutes
within a pre-recorded environment; this was different than the envi-
ronment used for evaluation and was done without a communication
partner to encourage experimentation. They were then connected to
the study mediator and placed within a hill-top, urban, outdoor scene
where they were asked to have a free-form discussion with the mediator.
Participants were shown various landmarks and were encouraged to
point out and ask questions about any others they could see. Once two
and a half minutes had elapsed they were asked to complete the pres-
ence questionnaires. This was repeated for the remaining conditions,
after which participants were asked to complete the simulator sickness
questionnaire and were gifted a $20 voucher.

To ensure that the presented environment remained consistent be-
tween conditions and participants the study mediator’s video was
recorded ahead of time. Each frame was stored along with its times-
tamp and orientation matrix so that it could be played back as if it were
arriving from a real remote partner, allowing us to control unpredictable
factors such as noise and the weather; removing these important en-
vironmental cues could limit environmental immersion but prevents
extreme conditions from interrupting the experiment. Participants were
informed of this at the beginning of the study. Their own video was
still broadcast live to the study mediator over Wi-Fi so that their ges-
tures and FoV could be seen in relation to the environment. Both the
participant and the mediator were situated within the same room so
could hear each other speak without using the application’s inbuilt VoIP
functionality. The same mediator and environment were used for all
participants and conditions. As it is difficult to place a panoramic cam-
era without the local user being visible, the environment was limited to
180◦ to ensure a consistent first-person view between conditions.

As simulating a communication partner may have some effect on co-
presence, the study was repeated with live video to determine whether

the system would behave similarly in a real-life scenario. Seven par-
ticipants took part, with a second study mediator placed within the
same environment as in the pre-recorded study and connected to the
participant over Wi-Fi using the system’s VoIP capabilities.

8.2 Results
For each condition, its spatial and co-presence scores, as shown in
Fig. 11, were determined by the mean of the relevant questionnaire re-
sponses. Live Spatial Video Calling (C1) scored the lowest of our tested
modes for both forms of presence in the pre-recorded environment with
mean scores of 4.56 and 4.98 for spatial and co-presence respectively.
Incremental Panoramic Calling (C2) was higher rated, with mean scores
of 5.22 and 5.35 , and Live Panoramic Video Calling (C3) achieved
similar results with mean scores of 5.19 and 5.54 . Friedman tests
showed a significant difference between conditions (p ≤ 0.05) in both
spatial presence (p = 0.019) and co-presence (p = 0.015). Wilcoxon
signed-rank tests (N = 19) revealed that C1 induced significantly lower
spatial presence than both C2 (p = 0.012) and C3 (p = 0.019), with no
significant difference between C2 and C3 (p = 0.917). Co-presence
was similarly distributed, with C3 scoring significantly higher than
C1 (p = 0.008) but with no significant difference between C1 and C2
(p = 0.343) or between C2 and C3 (p = 0.586).

The results of the live study were similar to the first. C1 was rated
the lowest for both forms of presence, with mean scores of 3.99 and
5.39 for spatial and co-presence respectively. C2 and C3 were again
similar, with C2 achieving mean scores of 4.70 and 5.71 and C3
scoring 4.94 and 5.57 . Friedman tests again showed a significant
difference in induced spatial presence between conditions (p = 0.030),
but this time no significant difference in co-presence was found (p =
0.368). Wilcoxon signed-rank tests (N = 7) showed that participants
felt significantly more spatially present within the environment in C3
than in C1 (p= 0.035), but no significant difference was found between
C1 and C2 (p = 0.051) or between C2 and C3 (p = 1.00).

Reported simulator sickness was low across all participants. Re-
sponses to each symptom were coded to allow for numerical analysis
(“None” = 0, “Severe” = 3), resulting in an average response of 0.313
(σ = 0.192) across all symptoms. Participants were informed that
they may conclude the experiment at any time if they felt any severe
symptoms, though none felt it necessary to do so.

8.3 Discussion
We believe that view independence is the single most important fac-
tor for increasing spatial presence within the shared environment, and
that per our first hypothesis there would be a correlation between the
two. This was partially supported by our experiments; both Incre-
mental Panoramic Calling and Live Panoramic Video Calling induced
significantly higher spatial presence than Live Spatial Video Calling,
suggesting that allowing the remote user to view areas outside of the
local user’s field of view could be beneficial to providing a sense of
presence within that space. This view was shared by many of our par-

Fig. 11. Participants’ reported levels of spatial presence and co-presence within the live environment (left) and pre-recorded environment (right) for
each of the evaluated modes of interaction, as indicated by 7-point Likert scales.

ticipants, who made comments such as “[C3] felt more immersive [than
C1] as you can see the whole area”, “Looking through a small window
[in C1] made it harder to fully immerse”, and “I felt more immersed
with being able to see outside the blue square”.

Our preliminary results indicate that there is little difference in
induced spatial presence between C2 and C3. Based on this observation,
we suggest that the full environment presented in Live Panoramic Video
Calling could provide no additional benefit over Incremental Panoramic
Calling’s partial panorama. This could potentially be due to the low
resolution of the panoramic camera, which was noticed by almost all
participants with comments such as “The lower resolution made me
feel slightly dizzy”, “I felt the resolution on this really impacted how
immersed I felt”, and “because the image was so grainy I felt like I
was in a game rather than a real location”. Though the resolution of
panoramic cameras may improve in future, we believe this will remain
an issue; network limitations will always constrain the resolution of
images able to be streamed in real time, and using all of that resolution
over a smaller area as in Incremental Panoramic Calling rather than
over the full panorama will always result in higher quality environments
(assuming perfect stitching). We assumed that the panoramic camera’s
low frame rate would have similar detrimental effects, however none of
the participants mentioned this as being an issue and the performance
of the system as a whole proved satisfactory for participants. Only one
reported any performance issues, which were caused by unscheduled
background processing and not experienced in subsequent conditions.

The ability to gesture within the environment was well received by
participants. Deictic references were used frequently, and representa-
tional gestures were also often used for tasks such as tracing the path of
a river. At least one participant found that “being able to see the move-
ments of my own hands creates a much higher sense of engagement
than if this feature was not included, and drives most of the sense of
‘being there’”, suggesting that this unmediated view of their gestures
could induce spatial presence within the environment. Despite our
segmentation algorithm’s prioritisation of performance over quality, no
participants reported any issues arising from incorrect segmentation,
even in the unprepared room they were situated within.

Our hypothesis that there would be a correlation between the degree
of view independence provided and co-presence induced was not sup-
ported by our results; there is a small correlation, though not enough for
significant differences to present themselves. Co-presence was rated
highly across all conditions, which was particularly surprising for the
pre-recorded environment given that the study mediator could not prop-
erly react to the participants’ actions. Bias may have been introduced by
the mediator’s presence within the same room as participants, however
co-presence scoring similarly in the live conditions where the mediator
was remotely located suggests no such bias exists.

It is also worth mentioning that the results of Incremental Panoramic
Calling mode are in agreement with experimental results found by
Müller et al. [26], which validates our general study design and the
shown results as well as the potential of our system.

Overall, the system was very well received by participants, with
even those unfamiliar with VR experiencing little simulator sickness.
This implies that the system could be used by the wider public without

issue, though it is unsure whether this would hold true for longer
exposure times [17]. Many saw the system’s potential as the future of
telecommunications, with some commenting “After I took [the HMD]
off I had forgotten exactly where I was... really did feel like I was there”
and “makes one actually feel they are really in the same place with the
other person. Taking communication to another level!”.

9 CONCLUSION AND FUTURE WORK

We presented several approaches for enabling real-time immersive
telepresence using mobile and wearable devices. Each utilised a shared
spherical mapping of the local environment that can be created and
updated on the fly. This shared environment can be viewed indepen-
dently by each user, and shared mutual FoV awareness and support for
gesture-based interaction allow for natural interaction between commu-
nicating parties. To the best of our knowledge, ours is the first system
to provide these features using purely mobile devices. A preliminary
study showed this system was well received by novice users, who found
it induced a sense of presence within the shared space. A full evalua-
tion of all factors (e.g. resolution, frame-rate) and their contribution
to the sense of presence, as well as a full evaluation of each mode of
interaction, will be the subject of future work.

Given the extensive literature on desktop-based telepresence solu-
tions, mobile telepresence research seems to be in its infancy. However,
as shown in this work, modern mobile hardware has now reached the
point where it is capable of supporting real-time immersive telepres-
ence experiences in unprepared outdoor environments. We argue that
this is a big step forward for mobile telepresence research as it allows
for spontaneous experiences independent of location, supporting new
application scenarios not possible in existing stationary solutions. This
required compromises in tracking and stitching quality and thus still
poses a significant engineering challenge, however even with these con-
straints we have shown that such systems are viable and are encouraging
further research in this domain.

We believe these insights and results are beneficial for future research
in immersive mobile telepresence systems. We argue that systems
like this have the potential to change activities such as maintenance
scenarios, remote collaboration and tele-tourism. Future advances in
mobile technology will make such systems more viable, and we believe
it is inevitable that users will seek more immersive experiences such as
this when traditional systems fail to provide them the collaborative and
social experiences they desire.

ACKNOWLEDGMENTS

The authors wish to thank Oliver Reid for his help in conducting the
user study, Katie Tong for her constant support, and the rest of the HCI
lab for their valuable input throughout the duration of this research.

REFERENCES

[1] A. Agarwala, K. C. Zheng, C. Pal, M. Agrawala, M. Cohen, B. Curless,
D. Salesin, and R. Szeliski. Panoramic Video Textures. In ACM SIG-
GRAPH 2005 Papers, SIGGRAPH ’05, pp. 821–827. ACM, New York,
NY, USA, 2005. doi: 10.1145/1186822.1073268

1918 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 5, MAY 2019

[2] Z. Al-Tairi, R. Rahmat, M. Iqbal Saripan, and P. S. Sulaiman. Skin
Segmentation Using YUV and RGB Color Spaces. Journal of Information
Processing Systems, 10(2):283–299, 2014. doi: 10.3745/JIPS.02.0002

[3] I. Arminen and A. Weilenmann. Mobile Presence and Intimacy - Re-
shaping Social Actions in Mobile Contextual Configuration. Journal of
Pragmatics, 41(10):1905–1923, oct 2009. doi: 10.1016/j.pragma.2008.09.
016

[4] M. Bauer, G. Kortuem, and Z. Segall. “Where Are You Pointing At? A
Study of Remote Collaboration in a Wearable Videoconference System.
In In: Proceedings of the 3rd International Symposium on Wearable
Computers, pp. 151–158. IEEE, San Francisco, California, 1999. doi: 10.
1109/ISWC.1999.806696

[5] F. Biocca, C. Harms, and J. Gregg. The Networked Minds Measure of
Social Presence: Pilot Test of the Factor Structure and Concurrent Validity.
In 4th Annual International Workshop on Presence, pp. 1–9, 2001.

[6] C. Campos-Castillo and S. Hitlin. Copresence: Revisiting a building block
for social interaction theories. Sociological Theory, 31(2):168–192, 2013.
doi: 10.1177/0735275113489811

[7] A. Cockburn, A. Karlson, and B. B. Bederson. A Review of
Overview+Detail, Zooming, and Focus+Context Interfaces. ACM Comput.
Surv., 41(1):2:1–2:31, Jan. 2009. doi: 10.1145/1456650.1456652

[8] S. Diverdi, J. Wither, and T. Hllerert. Envisor: Online Environment Map
Construction for Mixed Reality. In Virtual Reality Conference, 2008. VR

’08. IEEE, pp. 19–26. IEEE, Reno, NE, USA, 2008. doi: 10.1109/VR.
2008.4480745

[9] S. R. Fussell, R. E. Kraut, and J. Siegel. Coordination of Communication:
Effects of Shared Visual Context on Collaborative Work. In Proceedings
of the 2000 ACM Conference on Computer Supported Cooperative Work,
pp. 21–30, 2000. doi: 10.1145/358916.358947

[10] S. R. Fussell, L. D. Setlock, J. Yang, J. Ou, E. Mauer, and A. D. I. Kramer.
Gestures over Video Streams to Support Remote Collaboration on Physical
Tasks. Human-Computer Interaction, 19(3):273–309, Sept. 2004. doi: 10.
1207/s15327051hci1903 3

[11] S. Gauglitz, C. Lee, M. Turk, and T. Höllerer. Integrating the Physical
Environment into Mobile Remote Collaboration. In Proceedings of the
14th International Conference on Human-computer Interaction with Mo-
bile Devices and Services, MobileHCI ’12, pp. 241–250. ACM, New York,
NY, USA, 2012. doi: 10.1145/2371574.2371610

[12] S. Gauglitz, B. Nuernberger, M. Turk, and T. Höllerer. World-stabilized
Annotations and Virtual Scene Navigation for Remote Collaboration. In
Proceedings of the 27th Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’14, pp. 449–459. ACM, New York, NY, USA,
2014. doi: 10.1145/2642918.2647372

[13] W. Huang and L. Alem. HandsinAir: A Wearable System for Remote
Collaboration on Physical Tasks. In Proceedings of the 2013 Confer-
ence on Computer Supported Cooperative Work Companion, CSCW ’13,
pp. 153–156. ACM, New York, NY, USA, 2013. doi: 10.1145/2441955.
2441994

[14] H. Jo and S. Hwang. Chili: Viewpoint Control and On-Video Drawing for
Mobile Video Calls. In CHI ’13 Extended Abstracts on Human Factors in
Computing Systems on - CHI EA ’13, pp. 1425–1430. ACM Press, New
York, New York, USA, 2013.

[15] S. Kasahara and J. Rekimoto. JackIn: Integrating First-Person View with
Out-of-Body Vision Generation for Human-Human Augmentation. In
Proceedings of the 5th Augmented Human International Conference, pp.
46:1–46:8. ACM, Kobe, Japan, 2014. doi: 10.1145/2582051.2582097

[16] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal. Simulator
Sickness Questionnaire: An Enhanced Method for Quantifying Simulator
Sickness. The International Journal of Aviation Psychology, 3(3):203–220,
1993.

[17] R. S. Kennedy, K. M. Stanney, and W. P. Dunlap. Duration and Exposure
to Virtual Environments: Sickness Curves During and Across Sessions.
Presence, 9(5):463–472, 2000. doi: 10.1162/105474600566952

[18] S. Kim, G. Lee, N. Sakata, and M. Billinghurst. Improving Co-Presence
with Augmented Visual Communication Cues for Sharing Experience
through Video Conference. In ISMAR 2014 - IEEE International Sympo-
sium on Mixed and Augmented Reality - Science and Technology 2014,
Proceedings, pp. 83–92, 2014. doi: 10.1109/ISMAR.2014.6948412

[19] D. Kirk and D. Stanton Fraser. Comparing Remote Gesture Technolo-
gies for Supporting Collaborative Physical Tasks. In Proceedings of the
SIGCHI conference on Human Factors in computing systems - CHI ’06,
pp. 1191–1200, 2006. doi: 10.1145/1124772.1124951

[20] S. Kratz, D. Avrahami, D. Kimber, J. Vaughan, P. Proppe, and D. Severns.

Polly Wanna Show You: Examining Viewpoint-Conveyance Techniques
for a Shoulder-Worn Telepresence System. In MobileHCI 2015 - Proceed-
ings of the 17th International Conference on Human-Computer Interaction
with Mobile Devices and Services Adjunct, pp. 567–575. Toronto, Canada,
2015. doi: 10.1145/2786567.2787134

[21] S. Kratz and F. Ferreira. Immersed Remotely: Evaluating the Use of
Head Mounted Devices for Remote Collaboration in Robotic Telepres-
ence. In IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), pp. 638–645. IEEE, August 2016. doi: 10.
1109/ROMAN.2016.7745185

[22] S. Kratz, D. Kimber, W. Su, G. Gordon, and D. Severns. Polly. In
Proceedings of the 16th international conference on Human-computer
interaction with mobile devices and services - MobileHCI ’14, pp. 625–630.
ACM Press, New York, New York, USA, sep 2014. doi: 10.1145/2628363
.2628430

[23] H. Kuzuoka. Spatial Workspace Collaboration: A SharedView Video
Support System for Remote Collaboration Capability. In Proceedings
of the ACM Conference on Human Factors in Computing Systems, vol.
Monterey,, pp. 533–540, 1992. doi: 10.1145/142750.142980

[24] H. Kuzuoka, S. Oyama, K. Yamazaki, K. Suzuki, and M. Mitsuishi. Ges-
tureMan. In Proceedings of the 2000 ACM conference on Computer
supported cooperative work - CSCW ’00, pp. 155–162. ACM Press, New
York, New York, USA, dec 2000. doi: 10.1145/358916.358986

[25] P. Luff, C. Heath, H. Kuzuoka, J. Hindmarsh, and S. Oyama. Fractured
Ecologies: Creating Environments for Collaboration. Human-Computer
Interaction, 18(1):51–84, 2003. doi: 10.1207/S15327051HCI1812 3

[26] J. Müller, T. Langlotz, and H. Regenbrecht. PanoVC: Pervasive Telepres-
ence using Mobile Phones. In 2016 IEEE International Conference on
Pervasive Computing and Communications (PerCom), pp. 1–10, March
2016. doi: 10.1109/PERCOM.2016.7456508

[27] Pacha, Alexander. Sensor Fusion for Robust Outdoor Augmented Reality
Tracking on Mobile Devices. Diploma thesis, University of Augsburg
(Institut für Software & Systems Engineering), 2013.

[28] F. Pece, W. Steptoe, F. Wanner, S. Julier, T. Weyrich, J. Kautz, and A. Steed.
Panoinserts: Mobile Spatial Teleconferencing. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems SE - CHI
’13, pp. 1319–1328, 2013. doi: 10.1145/2470654.2466173

[29] C. Rother, V. Kolmogorov, and A. Blake. ”GrabCut”: Interactive Fore-
ground Extraction Using Iterated Graph Cuts. ACM Transactions on
Graphics, 23(3):309, 2004. doi: 10.1145/1015706.1015720

[30] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient
alternative to SIFT or SURF. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2564–2571, 2011. doi: 10.1109/ICCV
.2011.6126544

[31] T. Schubert, F. Friedmann, and H. Regenbrecht. The Experience of Pres-
ence: Factor Analytic Insights. Presence: Teleoperators and Virtual
Environments, 10(3):266–281, 2001. doi: 10.1162/105474601300343603

[32] R. S. Sodhi, B. R. Jones, D. Forsyth, B. P. Bailey, and G. Maciocci.
BeThere: 3D Mobile Collaboration with Spatial Input. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’13, pp. 179–188. ACM, New York, NY, USA, 2013. doi: 10.1145/
2470654.2470679

[33] A. Tang, O. Fakourfar, C. Neustaedter, and S. Bateman. Collaboration
in 360 Videochat: Challenges and Opportunities. In Proceedings of the
2017 Conference on Designing Interactive Systems, pp. 1327–1339. ACM,
Edinburgh, United Kingdom, 2017. doi: 10.1145/3064663.3064707

[34] J. Yang and A. Waibel. A Real-Time Face Tracker. In Proceedings
Third IEEE Workshop on Applications of Computer Vision. WACV’96, pp.
142–147, 1996. doi: 10.1109/ACV.1996.572043

