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ABSTRACT 
Marker tracking has revolutionized Augmented Reality about a 
decade ago. However, this revolution came at the expense of 
visual clutter. In this paper, we propose several new marker 
techniques, which are less obtrusive than the usual black and 
white squares. Furthermore, we report methods that allow tracking 
beyond the visibility of these markers further improving 
robustness. All presented techniques are implemented in a single 
tracking library, are highly efficient in their memory and CPU 
usage and run at interactive frame rates on mobile phones. 
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1 INTRODUCTION 
Although there has been much work on Augmented Reality (AR) 
tracking from natural features, these techniques are commonly 
less robust and require much more processing resources than 
tracking from markers. In particular, when using mobile phones as 
a platform for AR, computing power is an order of magnitude 
smaller than on desktop computers, and this ratio is not likely to 
change soon because of inherent limitations of the battery 
technology powering the phone’s CPU. 

Despite the obvious shortcomings of marker based tracking, 
most noteworthy the visual pollution of the environment, there is 
a proliferation of successful academic and commercial projects 
relying on fiducial markers. In particular when developing 
practical (and foolproof!) AR applications for mobile phones, 
marker-based tracking seems to provide the best trade-off between 
computational feasibility and robustness. Moreover, markers 
containing digital barcode patterns can not only be used for pose 
tracking, but also to uniquely distinguish thousands of objects or 
even provide unique pointers to online resources such as web 
pages or 3D content to be displayed on the phone. Providing the 
equivalent capabilities from purely natural features would require 
not only implementing a pose tracking system, but also a reliable 
object detection system, all under stringent real-time constraints. 

We were therefore motivated to extend our previous work on 
marker-based tracking for mobile phones [15] with new features 
that are designed to overcome the most severe limitations of 
previous approaches, without sacrificing the robustness and 
overall low computational complexity. Specifically, we describe 
three new marker designs that occupy significantly less space and 
therefore reduce the amount of visual pollution in the augmented 

area. 
We also describe two computationally inexpensive techniques 

based on feature following and pixel flow, which can be used for 
incremental tracking in cases where the marker is partially 
occluded or out of sight. Together, space-economic marker 
designs and incremental tracking allow placing markers in 
situations that were previously not really feasible, or at least very 
cumbersome to instrument. All techniques have been 
implemented to run in real time on current mobile phones and can 
be combined to make the use of markers significantly more 
flexible and less painful. 

2 RELATED WORK 
Probably the first marker tracker developed for AR was 
Rekimoto’s Matrix Code [5]. It pioneered the use of square planar 
shapes for pose estimation and embedded 2D barcode patterns for 
distinguishing markers. Later Kato used a similar approach in 
ARToolKit [3], which was released as open source and 
consequently became enormously popular among AR researchers 
and enthusiasts alike. Since then many similar systems emerged, 
of which Fiala’s ARTag [1] and Rekimoto’s Cybercode [6] are 
most well known. 

Compared to the vast number of marker tracking systems 
available on desktop computers, only few solutions for mobile 
phones have been reported in literature. In 2003 our group ported 
ARToolKit to Windows CE and thus created the first self-
contained AR application [12] on an off-the-shelf embedded 
device. This port later evolved into the ARToolKitPlus tracking 
library [11]. In 2004 Möhring [4] created a tracking solution for 
mobile phones that tracks color-coded 3D marker shapes. Around 
the same time Rohs created the VisualCodes system for 
smartphones [7]. Both Möhring’s as well as Rohs’ techniques 
provide only simple tracking of 2D position on the screen, 1D 
rotation and a very coarse distance measure. In 2005 Henrysson 
[2] created a Symbian port of ARToolKit, partially based on the 
ARToolKitPlus source code. In 2007 Rohs created a software for 
Symbian phones that tracks maps, which are outfitted with regular 
grids of dots, again tracked with 2.5 DOF [8]. The dot markers, 
presented in section 3.4 are similar, but provide full 6DOF 
tracking. 

3 UNOBTRUSIVE MARKER TRACKING 
Albeit still popular, the techniques used in the original ARToolKit 
[3] become dated, as new more efficient techniques are being 
developed. We therefore stopped the work on ARToolKitPlus 
[11] and started developing Studierstube Tracker, a new marker 
tracking library developed from scratch to optimally support 
mobile phones. The most important aspect of the new library is 
that it uses a modular computer vision pipeline, making it easy to 
plug in alternative implementations of specific stages, and that all 
available algorithms have been carefully tuned to use only a 
minimum of computational bandwidth. After working on better 
performance and robustness we turned to developing less 
obtrusive markers, which are explained in this section. 
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3.1 Background and overview 
Studierstube Tracker currently supports 6 different marker 

types (including those 3 described in this paper), 2 different pose 
estimators and 3 different thresholding algorithms, that all have 
their specific strengths and weaknesses. Memory requirements are 
one order of magnitude lower than with ARToolKitPlus and are 
typically in the range of 150Kbyte. The main steps of Studierstube 
Tracker using square markers with 2D barcodes as described in 
[15] are summarized for convenience (see Figure 2): 

1. Adaptive thresholding into binary image 
2. Detect closed contours in image by scanning for 

black/white edges and follow contour in image 
3. Detect corner points of a rectangle from contours; check if 

there are exactly 4 corners 
4. Estimate homography 
5. Unwarp marker interior using homography and sample 2D 

barcode from a regular grid 
6. Decode digital id from recovered 2D barcode 
7. If id is valid, compute camera pose from homography 

Studierstube Tracker supports digitally encoded ids with 
forward error correction (Bose/Chaudhuri/Hocquenghem) in the 
style of ARTag, but has more flexibility in the structure and 
layout of the digital code. This allows to encode a large amount of 
information – for this purpose, Studierstube Tracker supports the 
DataMatrix barcode standard (ISO/IEC16022), which can store up 
to 2KB of data. However, in many typical AR applications, only a 
handful of markers must be distinguished. If the marker must 
encode only a few bits, it is sensible to reduce the area covered by 
the marker, leaving a larger portion of the interaction space 
untouched. 

Three designs for such less obtrusive markers, frame markers, 
split markers and dot markers are presented in this section, while 
the next sections explain how tracking can be continued 
incrementally if the marker is lost. 

3.2 Frame markers 
Robustness of marker tracking is largely owed to the high 

contrast afforded by the black frame in a thresholded image. The 
frame itself is not disturbing in many situations, if the interior can 
be filled with application specific artwork, like a framed painting. 
With frame markers we therefore take the approach of encoding a 
digital id with error correction at the interior side of the frame, 
making it appear like a frame decoration (see 2nd image in Figure 
1 and left image in Figure 4). Compared to regular black/white 
markers (see left marker in Figure 1), frame marker only sample 
the marker interior area differently (step 5 in the list above), while 
the rest of the tracking pipeline remains unmodified. 

Frame markers have turned out to be highly attractive for 
branding, since companies can place a logo inside the marker, and 
are therefore currently used in commercial projects. Note that the 
original ARToolKit allowed arbitrary marker interior identified by 
template matching, but was easily confused by high frequencies in 
such images, which made this approach rather poor in practice 
[14]. Frame markers do not require any interior at all and can 

therefore be put around existing flat objects such as pictures on a 
wall. 
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Figure 2: The tracking pipeline can be configured to three options 

for unobtrusive marker tracking – shape, split, or dot markers. If the 
marker tracking fails because the marker is occluded or clipped, 

incremental tracking based on either planar feature tracking or pixel 
flow can be applied to continue tracking without markers. 

The width of the squares was set to match the width of the 
border, so the size of the squares can directly be determined after 
the border has been identified. The gap between adjacent squares 
is computed by evenly distributing the remaining space between 
adjacent squares. Depending on the width of the squares relative 
to the overall marker size, the gap can be chosen to vary from 0 to 
about the width of the border. A gap of 0 makes the identification 
more robust, because the squares have maximum size in the 
image. However, smaller squares are more decorative and less 
obtrusive. 

A 36 bit code including 27 bit redundancy is encoded alongside 
each of the 4 sides of the frame, in the form of 9 individual black 
or white squares encoding 1 bit each (9bit = 512 different 
markers). The code is arranged in clockwise order, and is chosen 
in a way so that only one of the 4 possible corners yields a valid 
code without errors. This allows determining the code as well as 
the correct orientation of the marker.  

        
Figure 1. Left: regular black/white marker, 2nd to 4th images: layout of frame markers, split markers and dot markers. 



3.3 Split markers 
 While frame markers still contain a closed border that defines the 
marker area, split markers are composed of two separate 
barcodes, which further reduces the occupied area. These split 
markers are inspired by Sony’s Eye of Judgment game 
(www.eyeofjudgement.com), which uses a similar design. Eye of 
Judgment markers contain four green triangles that are used to 
perform the actual tracking. The barcode is then detected and read 
relative to these triangles. In contrast, the split markers described 
in this paper do not require any structure in the marker interior, 
and do not rely on the use of colors. Instead, we directly track the 
two barcodes, which define the marker geometry as well as its id. 
Compared to typical rectangular markers (such as frame framers), 
split markers use a different rectangle fitting algorithm and 
sample the marker area differently (steps 3 and 5 of the list 
above). 

 
Figure 3. Barcode of a split marker. If “bad corner” was detected 

as C4, the sampling would fail due to wrong sampling coordinates. 

After employing the standard contour finder also used for 
square markers, the dominant direction of the elongated candidate 
contours is determined using perpendicular line regression (red 
line in Figure 3). The intersection of the contours with the line 
through the contour’s centroid M in the direction of the 
perpendicular line regression yield the left and right border points 
B1 and B2 of the barcode. The 4 outer corners C1-C4 of the 
barcode are estimated by the following heuristic: Construct 
D1=1/8M+7/8B1 and D2=1/8M+7/8B2; find C1 and C4 along the 
contour starting from B1 at the maximum distance from D1;  find 
C2 and C3 along the contour starting from B2 at the maximum 
distance from D2. 

Once the corners are known, the barcode is sampled by setting 
up a 2x13 regular sampling grid: The outer row of samples must 
be all black. 2 samples each to the left and right hand side of the 
inner row must be verified to be black. This design is necessary to 
reliably detect C1 to C4 in the previous step. The inner 9 samples 
(see 3rd picture in Figure 1) encode a 6 bit id plus a 2 bit 
checksum to improve robustness. Checksum and id can never be 
completely black simultaneously, so the inner and outer side of 
the barcode cannot be confused – a valid barcode cannot be a 
solid rectangle. The 9th bit is added to distinguish between the 

upper and lower barcode of one marker. A single point sample 
without any filtering is sufficient in practice for high performance 
and low error rates. Contours that do not pass any of the above 
tests are discarded. 

Finally, the algorithm searches for pairs of matching barcodes 
with opposite orientation bits. If such a pair is found, the two sets 
of corners {C1, C2} from both barcodes are used to construct a 
rectangle. The camera pose relative to the marker is computed 
from the homography of this rectangle. 

Similar to frame markers, the interior area is not taken into 
account for tracking and can therefore be chosen arbitrarily. Since 
only two of the four sides of the marker contain features required 
for tracking, one can conveniently hold a marker in the hand with 
the thumb covering part of the marker, without affecting the 
tracking (see middle picture in Figure 4). 

3.4 Dot markers 
The previous two marker types are well suited for tracking of 
small objects such as cards with minimum obtrusion, but are less 
suitable for covering larger areas, due to the increased visual 
clutter resulting from placing multiple markers in it. 

Most often markers are deemed undesirable since they cover 
underlying objects or images. It is therefore preferable to reduce 
the area covered by artificial markings as much as possible, and 
instead make use of the already existing natural features. 

This hybrid approach of minimal markings, which make the 
analysis of natural texture fast and robust, was taken with the dot 
markers (see right picture in Figure 4). A dot marker consists of a 
two-dimensional grid of black circular dots with white 
surrounding rings, superimposed on a textured flat surface, similar 
to the design described in [8]. The original texture enclosed by 
four dots is interpreted as a grid cell, and the appearance of all 
these grid cells is precomputed to rapidly and reliably identify a 
particular grid cell. Compared to regular black/white markers, dot 
markers use different steps 3 (circle instead of rectangle fitting) 
and steps 5 (marker detection). 

The precomputation samples each grid cell to a 32x32 grayscale 
pattern, which is indexed to associate the pattern with the position 
of the cell. At runtime, a low threshold value (typically at a 3% 
level in the intensity histogram) is selected, and closed black 
contours are extracted. For performance reasons, a standard test 
for elliptical shape of a contour is replaced by computing the 
minimum and maximum distance of all contour points from the 
centroid, and requiring a maximum/minimum ratio of less than 3 
to pass. Moreover, the interior of candidate dots is checked to 
only contain black pixels. 

The next step aims to identify groups of 4 dots which form a 
grid cell. Since there is a large number of possible combinations, 
including contours falsely identified as dots, it is important to 
quickly reject incorrect combinations. 

         

Figure 4. frame markers (left), split markers (middle) and dot markers (right) used on mobile phones. 



As a first step, the dot positions (taken to lie at the contour 
centroid) are corrected for lens distortion, since we require 
accurate positions for later tests. A matrix of distances between all 
dots is created, to quickly find nearest neighbors. 

Unlike rectangular markers designs, which are considered in 
isolation, the dot grid allows to work with the hypothesis that 3 or 
more collinear dots form a line of the grid. Lines are constructed 
by connecting dots with their nearest neighbors. Lines are merged 
by testing every dot for lying on every line, and then sorted by the 
number of dots they contain. 

Lines are then clustered into sets with similar angle in image 
space, in order to find parallel lines. Finally, the cross product of 
the line sets is generated. Intersecting pairs of lines from the sets 
creates the points that form the candidate grid cells. Most 
candidate grid cells can be rejected quickly using the following 
hierarchy of tests: 

• An intersection lies outside the camera image 
• An intersection point is too far from the next dot 
• Intersecting lines create duplicate points in roughly the same 

location 
• The grid cell is not convex 
• The grid cell’s area is too small 
• The ratio of the sums of opposite edges of a (square) grid cell 

is not close to 1; in practice we set a threshold of 2.2 
• Angles of two adjacent edges of a grid cell must be in the 

interval [45°,145°] (we do not allow too oblique viewing 
angles, since the image becomes too distorted to be useful) 

• If the edges e1 and e2 adjacent to a point form a right angle 
(90°±20°) and length(e1)≥length(e2), then e1/e2 must be ≤1.5. 

Grid cells that pass all conditions above are then tested using 
template matching. The matching starts with the cell with the 
largest area, which is assumed to provide the best matching result. 
The cell’s content is unwarped at 65x65 pixels using a 
homography computed from its corner points. The resulting 
pattern is downscaled to 32x32 using a 3x3 Gauss kernel. 
Furthermore, a low resolution version at 8x8 pixels is created. The 
image patch is then checked in all four 90° rotations against all 
patterns in the database using normalized cross correlation. The 
comparison starts with the 8x8 resolution and proceeds to the 
more expensive test at 32x32 only if the matching at 8x8 exceeds 
a threshold. 

If a grid cell was successfully detected, its offset in the grid is 
determined and used for estimating the 6DOF of the camera pose 
relative to the grid. Nonlinear optimization of the camera pose is 
performed using standard Gauss-Newton iteration. 

4 INCREMENTAL TRACKING 
Each of the marker technologies presented in the previous chapter 
tries to minimize the visual clutter by reducing the size of 
artificial features. Yet, none of these approaches is able to track 
completely from natural features without previous training. While 
dot markers can track over large areas with minimal obtrusion, the 

tracking target must be provided in advance. However, in practice 
tracking at least temporarily from unknown environments is very 
desirable since users can usually not be constrained to always 
point the camera straight to the marker or refrain from occluding 
dots and other marker features. 

In the following, we present two computationally inexpensive 
approaches to support marker based global localization with 
incremental tracking from untrained natural features. Both 
techniques have been successfully implemented on cell phones at 
interactive frame rates, and can extend the usability of markers 
well beyond their original purpose: If markers are temporarily lost 
or occluded, the incremental tracking fills in the gap until a 
marker is reacquired. 

4.1 Incremental tracking using feature following 
In many applications markers are placed on a planar surface of 
interest that shall be augmented by the AR application. Hence 
there is usually texture around the marker that can be used for 
natural feature tracking. We exploit this fact by combining marker 
tracking with a feature following approach operating in a plane. 
As long as the marker is visible, it is treated as ground truth, and 
features around the marker are extracted, but not used. Since we 
assume that features lie in the same plane as the marker, their 3D 
location can directly be computed from the marker tracking. As 
soon as the marker tracking fails, the tracker matches the features 
of the current frame against those of the previous frame via 
template matching, and begins tracking incrementally. 

 
Figure 6. Flow vectors of features matched from the previous 

frame (added for illustration only). Corners without a line could not 
be matched. The embedded marker (left bottom) is not sufficiently 

visible for tracking anymore. 

Candidate feature detection is performed using the FAST corner 
detector [9], which turned out to deliver high performance rates 
on phones (~8ms at 320x240 on a 400Mhz ARM CPU). For each 
candidate, an 8x8 patch is extracted and blurred using a 3x3 Gauss 
kernel. The blurring increases robustness against pixel offsets 
introduced by inaccurate corner detection and small affine 

 
Figure 5: Incremental tracking over 400 frames (~20 seconds): 1st image (frame 17): pose estimated from marker, 

2nd image (frame 53): incremental tracking takes over, 3rd image (frame 86): tracking still accurate, 
4th image (frame 164): drift becomes obvious, 5th image (frame 381): tracking is completely off. 



transformations. To quickly match a candidate against a previous 
frame, active search in a 25x25 pixel search neighborhood is used. 
All features from the previous frame are inserted into a 4x4 search 
grid of the 320x240 image that provides an almost linear search 
time. Candidates for matching are tested using sum of absolute 
differences (SAD) and ranked. If the highest ranked match for a 
candidate exceeds a certain threshold, it is treated as positive 
match (see Figure 6). 

From the matched n point pairs, 4 features are chosen to 
combine an initial estimate of the homography from the last frame 
to the current frame. Unfortunately, we have found that using a 
standard approach such as RANSAC to select the 4 features is too 
expensive for phones. Instead, a simple algorithm is performed to 
indentify suitable (sufficiently distant, non-collinear) features: 

1. Compute the dominant orientation of the features using the 
line of perpendicular regression 

2. Sort the n features along the line and select two features at 
each end of the interval, i. e., with indices {1, 2}, {n-1, n} 

3. Sort the n features perpendicular to the line and select two 
features at each end of the interval, i. e., with indices {1, 
2}, {n, n-1) 

4. Compute all 24=16 homographies given by selecting one 
point from each of the 4 sets identified in steps (2)+(3). 
The rationale of this approach is that among the 16 
combinations, which are selected to represent extremal 
positions in the 2D point cloud of features, it is very likely 
that at least one combination is suitable. 

5. Select the best homography from the 16 candidates, for 
which the largest number from all n features have a 
reprojection error smaller than a given threshold. Features 
with a larger reprojection error are removed as outliers in 
the same step. 

6. If no homography with a sufficient number of inliers can 
be found, the homography is instead extrapolated from the 
previous one using double exponential smoothing 
prediction [16], which is less computationally expensive 
than the usual Kalman filter. 

The selected homography is then refined by minimizing the 
projection error of all inliners using a Gauss-Newton least-squares 
fitting process. Finally, the camera pose estimate is updated via 
homography chaining: The homography of the frame-to-frame 
correspondence is applied on top of the homography from the 
previous frame. The pose is then calculated from the updated 
homography. A similar approach has been described by Simon et 
al. [10]. 

Naturally, the approach only works as long as at least 4 suitable 
points can be matched from one frame to the next. In practice, 
many more points are required for accurate results. Measurement 
errors inevitably accumulate, so the estimated pose drifts. In 
practice acceptable tracking can be provided for about 3-10 
seconds, depending on the amount of camera movement and error 
to be tolerated. This is sufficient in many situations to continue 
tracking when the marker is lost by an unintended movement of 
the user. Obviously, the homography-based approach works only 
for planar or nearly planar environments; in practice this covers 
most table-top and wall-mounted environments. 

4.2 Incremental tracking using pixel flow 
Incremental tracking of orientation with inertial sensors has been 
shown to be highly useful for AR applications to either improve 
tracking robustness, or as a fallback when no other tracking 
approach is available. While most of today’s mobile phones do 
not have inertial sensors, their built-in camera can be used in a 
similar way using pixel flow detection [13]. 

Our pixel flow detector is intended for augmenting a panoramic 
view of the environment. A marker is used for initially 
determining the current global location and viewing direction. 
Then the user is free to turn around observing the augmentations, 
while remaining in the same location.  
We apply two different approaches to pixel flow – a more 
accurate method is tried initially for slow and medium camera 
movements. If it fails because of fast camera movement, a second, 
more robust method is used. 

The accurate pixel flow tracker uses the same feature following 
approach as described in section 4.2. All feature flow vectors are 
inserted into a 2D histogram that encodes the image’s movement 
in X- and Y-direction. The histogram has a size of 32x32 bins and 
can therefore detect movements of up to ±15 pixels. To detect the 
dominant pixel flow, the histogram is searched for local maxima. 
The pixel flow in the overall image is finally estimated as a 
weighted sum of the maximum and its neighboring values in the 
histogram. 

If a second local maximum with a value of more than 60% of 
the absolute maximum is found, the algorithm assumes a failure 
and repeats the step with a version of the image scaled down by 
50%. Downscaling suppresses noise and hence increases 
robustness, but also doubles the effective range of the flow 
detection. 

 
Figure 7. Flow vectors from feature matching. 

If no pixel flow can be successfully determined within 3 levels 
of the image pyramid, a second approach for estimating the pixel 
flow is tried, which is yet more robust, but less accurate. This 
approach is based on template matching, which is more 
commonly used for estimating the optical flow of images [13]. 

Our version of template matching re-uses the 3-level image 
pyramid (levels 0-2) already computed at this point for an 
efficient hierarchical approach and adds a forth level (level 3). 
This new level is subdivided into 2x2 regions. In each region, a 
patch of 8x8 pixels is extracted (see red squares in Figure 8). The 
patches are checked for sufficient texture using SAD of every 
patch pixel from the average intensity of the patch. Regions with 
sufficient texture are exhaustively compared with SAD in a 17x13 
search window. The resulting flow vector is estimated at sub-pixel 
accuracy by fitting a parabola to a 3x3 neighborhood around the 
best fit.  

Since a pure rotation model is assumed, a single motion vector 
valid for the whole image is expected. Hence, the estimated 
motion vectors are averaged and forwarded to the next lower level 
of the image pyramid as a starting point to limit the search area. 
At pyramid level 2, 4x4 patches are extracted and searched in a 
3x3 neighborhood around the position predicted at level 3. The 



procedure is repeated at pyramid level 1 using 8x6 regions 
covering the rectangular image. Level 0 (full resolution) is not 
searched to limit computational requirements. Table 1 summarizes 
the search parameters at the 3 levels. 

 
pyramid level 1 2 3 

scale factor 1/2 1/4 1/8 

image resolution 160x120 80x60 40x30 
patch size 8x8 8x8 8x8 

patch size (relative) 16x16 32x32 64x64 
region subdivision 8x6 4x4 2x2 

region size 20x20 20x15 20x15 
region size (relative) 40x40 80x60 160x120 

search window 3x3 3x3 17x13 

Table 1: Overview of the image pyramid levels used in the 
template based search for pixel flow computation  
(assuming a base image size of 320x240 pixels). 

In practice, the corner tracking method turns out to be much 
more accurate than the template matching. However, template 
matching is more robust under fast camera movement, which 
often results in images that are too blurred for corner detection. 
While in most cases, the first method works fine, the second 
method provides a robust fall back for extreme conditions. 

 
Figure 8. Areas for region-based matching. In the first iteration, 

the 4 large red areas, then the 16 yellow and finally the 48 blue 
areas are matched. 

The 2D pixel flow is finally interpreted as rotational motion 
based on the intrinsic camera parameters. The accumulated 
rotational offset is then applied on top of the last known absolute 
pose. 

5 EVALUATION 
We tested the described methods on an Asus M530W Windows 
Mobile smartphone. This phone was selected for its CPU, which 
is clocked at 400MHz (phones currently use CPUs clocked from 
200-600MHz) and for its high quality camera, which delivers 25 
frames per second. 

Table 2 shows the timings of the three proposed marker 
tracking methods. Naturally, thresholding is independent of the 
applied marker mode. Shape detection of split markers is slightly 
slower than for frame markers due to their more complex shape. 
Split markers take more time for marker detection since each 
marker consists of two parts and hence requires calculating 2 
homographies for unprojection (plus another one for pose 
estimation). 

Dot markers require to spend much time in filtering out non-
circular structures at the shape detection stage. The marker 
detection stage includes the detection of the dot-grid as well as 
unprojecting candidates and matching them against the database 
of templates. Altogether this makes dot markers about 2 times 
slower than rectangular markers. 

 
 Split marker Frame marker Dot marker 

Thresholding 0.9ms 0.9ms (0.9ms) 0.9ms (0.9ms) 
Fiducial 

Detection 1.6ms 1.4ms (1.4ms) 3.9ms (2.8ms) 
Marker 

Detection 3.1ms 1.8ms (0.0ms) 3.6ms (0.0ms) 

Pose 
Estimation 0.9ms 0.7ms (0.7ms) 0.6ms (0.4ms) 

Overall 6.5ms 4.8ms (3.0ms) 9.0ms (4.1ms) 

Table 2. Benchmarks of the proposed marker tracking methods. 
Values in parentheses are for slow camera movement. 

Table 2 presents an overview of average timings obtained by 
tracking the target for about 15 seconds (~400 frames). The values 
in parentheses present timings for a slow moving camera (or 
marker). In this case the tracker is able to redetect the marker 
without executing the full pipeline. Generally, if circles or corners 
of square markers are redetected at close positions compared to 
the last frame, the tracker can use the new positions directly for 
pose estimation, using the last frame’s pose as a starting point for 
refinement. 

The incremental tracker as described in section 4.1 runs in two 
modes: When marker tracking succeeds, it only detects corners 
and harvests patterns. As Table 3 shows, in this mode most of the 
time is spent in the corner detector. As soon as the marker is lost, 
the incremental tracker additionally matches the new patches 
against those of the previous frame and estimates the homography 
for chaining. 

 

 Corner 
Detection 

Corner 
Tracking 

Homography 
+ Pose Overall 

Marker 
Detected 8.1ms 1.6ms 0.0ms 9.7ms 

Marker 
Undetected 8.1ms 2.3ms 2.7ms 13.1ms 

Table 3. Benchmarks for Incremental tracking using feature 
following (as described in section 4.1) 

While the speed of the methods mentioned above is mostly 
independent of image properties, the speed of the incremental 
tracker using pixel flow depends on many factors, including the 
number of corners detected, the repeatability of the extracted 
features, and especially on the speed of the camera movement, 
which determines how many levels of the image pyramid have to 
be created and checked. Our measurements show that the pixel 
flow timings vary between 8 and 14 milliseconds. 

6 APPLICATION EXAMPLE 
As an example application we developed a prototype of a 

simple mobile guidance system for indoor and outdoor usage that 
helps a user find his way on our University campus. The 
application combines marker based localization with pixel flow 
tracking when the marker is not visible anymore. 

The indoor system uses frame markers (see left image in Figure 
9) that can be tracked by the application, but are also well 
readable for people not using the guidance system. The 
application knows the position of all frame markers in the 



building. Hence, due to the marker’s fixed position in the building 
it provides global orientation as well as location to the system. 

 

   
Figure 9: Indoor guidance marker (left) and campus map (right) 

We refrained from mounting markers outdoors, but instead rely 
on users to have a map of the campus that is prepared for tracking 
using the dot marker approach (see right image in Figure 9). The 
mobile phone detects the map as a marker and overlays it with a 
textured 3D model of the campus buildings (see left image in 
Figure 10). Adding the virtual buildings helps the user to orient 
himself better than from the orthographic map alone. 

Since the map has no fixed location, it can neither provide 
position nor orientation without any further input: The user has to 
rotate the map so that it aligns with the real world. The application 
provides a virtual laser pointer (at the center of the screen) that 
allows the user to point to current position on the map. Together 
with the corrected orientation the user hereby full calibrates the 
marker in 6DOF. 

  
Figure 10: Augmented campus map (left) and cafeteria (right). 

Starting with a frame marker or the registered map, the user can 
then rotate the phone horizontally and vertically away from the 
marker while the pixel flow tracker updates the orientation 
estimation. The guidance system overlays virtual labels on top of 
the real world (see right image in Figure 10) to help the user 
finding his way. 

7 DISCUSSION AND FUTURE WORK 
We have presented a toolkit of new marker tracking techniques 
running in real-time on off-the-shelf mobile phones. The marker 
designs produce less image clutter than previous designs, and 
more easily blend into typical AR environments. By using 
incremental tracking based on planar feature following or 
hierarchical pixel flow, situations with occlusions or rapid 
movements that were difficult to accommodate with previous 
marker tracking can now be handled with ease. The primary 
advantages of marker based tracking, in particular its reliability 
and the built-in object detection capability remain unchanged. 

In future we plan to extend the incremental tracker based on 
planar feature following with true localization and mapping, 
creating a kind of a “Poor man’s SLAM”. Such an approach will 
map the marker’s environment and therefore not suffer from drift. 

However, this approach requires improved feature matching 
method that can tolerate larger affine changes. 
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