
QuickReview: A Novel Data-Driven Mobile User Interface
for Reporting Problematic App Features

Tavita Su’a, Sherlock A. Licorish, Bastin Tony Roy Savarimuthu, Tobias Langlotz

Department of Information Science, University of Otago

Dunedin, New Zealand

tavitasiona.sua@gmail.com, {sherlock.licorish, tony.savarimuthu, tobias.langlotz}@otago.ac.nz

ABSTRACT

User-reviews of mobile applications provide information

that benefits other users and developers. Even though

reviews contain feedback about an app’s performance and

problematic features, users and app developers need to

spend considerable effort reading and analyzing the

feedback provided. In this work, we introduce and evaluate

QuickReview, an intelligent user interface for reporting

problematic app features. Preliminary user evaluations

show that QuickReview facilitates users to add reviews

swiftly with ease, and also helps developers with quick

interpretation of submitted reviews by presenting a ranked

list of commonly reported features.

Author Keywords

User Interface; App Reviews; Android; Mobile Devices,

Data Driven; Intelligent User Interfaces

ACM Classification Keywords

H.5.2. User Interfaces; H.5.m. Information interfaces and

presentation (e.g., HCI): Miscellaneous;

INTRODUCTION
Contemporary app marketplaces provide users and app

developers a feedback channel, in the form of app reviews

and star ratings [2]. To this end, users’ reviews are essential

to the lifecycle of an app in fulfilling two distinct purposes.

App reviews: (1) allow developers to identify bugs and

problematic features and, (2) enlighten new users about an

app’s weaknesses, and facilitate users’ purchasing and

downloading decisions [1]. However, for both these parties,

the review process poses many challenges [3]. App

developers of popular apps need to read hundreds of app

reviews to identify common problems. In addition, users are

not able to endorse or confirm previous reviews, but instead

must write new reviews if the need arises [9]. This

increases the number of reviews that need manual text-

interpretation, even though only around 35% of app reviews

have been shown to offer information that can directly help

developers to improve their apps [2].

To bridge this gap, this work explores both the feasibility

and usefulness of developing an intelligent and adaptive

user interface, QuickReview. QuickReview is motivated

by Von Reischach et al. who investigated the differences in

reviews and rating on mobile devices when compared to

web-based systems, confirming that mobile users prefer less

but aggregated product information [4]. This holds true for

both entering reviews and browsing reviews. QuickReview

provides a data-driven interface that adapts based on

existing reviews and allows users to easily provide

feedback on problematic features, while also aggregating

the most reported problematic features for app developers

and perspective new users.

We provide a review of related work in the following

section, before presenting our development of

QuickReview. Thereafter, we provide our evaluation setup

and the outcomes. We then briefly discuss our findings and

provide concluding remarks.

BACKGROUND
Several research groups have looked into related problems

of optimizing the presentation of product reviews. Jin et al.

for example, proposed a solution that focuses on

summarizing reviews for better comparison of two product

candidates by extracting attribute-value pairs from longer

reviews and presenting them in a one-page summary view

[5]. However, their work focuses on comparing two

different ways of presenting information, and not on an

interface for providing and aggregating reviews, which

forms the focus of our work. Dong et al., focused on

developing an intelligent review assistant that recommends

topics for writing better reviews on the web that contains

more relevant facts [6, 7]. There are also works that do not

focus on writing better reviews, but aim to aggregate and

analyse reviews to extract meaningful information. For

example, Liu et al. [8] used text mining and sentiment

analysis tools to extract and identify user sentiments of

specific app features. Their approach to analysing app

reviews is similar to that conducted by Patel et al. [9],

whose app analytics were adapted in extracting the

problematic features for the app(s) being reviewed in the

current study. A recent study by Chen et al. [10] proposed

AR-Miner for mining app reviews to extract the most

informative reviews for app developers. This study

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.
IUI 2017, March 13 - 16, 2017, Limassol, Cyprus

Copyright is held by the owner/author(s). Publication rights licensed to

ACM.
ACM 978-1-4503-4348-0/17/03…$15.00

DOI: http://dx.doi.org/10.1145/3025171.3025178

showcases the advancement in app review mining and

allows features to be identified for further consideration, in

supporting app improvements. The work in [24] provides

auto-completion suggestions for a new reviewer based on

reviews submitted by other users. However, this involves

all users to manually enter their reviews, which this work

aims to minimize, amidst other goals.

While works reported in [9] and [10] have largely

supported data extraction, our work goes one step further by

presenting summarised outcomes within a mobile interface.

This summarised data is subsequently used for generating

new reviews (reports about problematic app features). To

the best of our knowledge, this work is the first to present a

data-driven mobile interface to improve the quality and

structure of app reviews. In addition, preliminary

evaluations suggest that our intelligent app, QuickReview,

could be of utility to users and developers.

QUICKREVIEW DEVELOPMENT

We anticipated that an intuitive, data-driven interface needs

to meet three aspects of mobile user interfaces. First, it

should be able to eliminate the need for extensive human

analysis that is currently required to process voluminous

reviews, while at the same time supporting the users of an

app to generate a new review with ease (i.e., enable better

usability when compared to a traditional system) [21].

Second, beyond aiding users’ in generating reviews, an

intuitive review interface should demand minimal cognitive

load, in taking account of varying mobile contexts often

requiring users’ attention [22]. Third, the performance of

the data-driven interface should be superior to that of

traditional systems used for capturing users’ feedback [23].

We considered these criteria to guide the development of

our intelligent and adaptive user interface.

Review Extraction and Processing

We first employed natural language processing (NLP)

techniques to the reviews extracted from Google Play. Our

goal was to process reviews to identify the problematic

features reported in the reviews and the nature of issues

(e.g., “GPS feature being slow”, where GPS is the feature

and slowness is the issue). In order to focus on features that

are problematic, we extracted all reviews with negative

emotions such as anger, sadness and fear, which signal

discontent of users [11]. We used the LIWC tool dictionary

to inform our negative words cohort, which contains 431

negative words [12]. Noun terms in unstructured text reflect

the main concepts in the subject of a clause. From a part-of-

speech (POS) perspective, nouns are indeed reflective of

specific objects or things. From a linguistic perspective,

nouns often form the subjects and objects of clauses or verb

phrases. Hence, nouns are the features that are deemed

problematic and the verbs are the issues. These and other

understandings have been embedded as rules in natural

language processing (NLP) tools, such as the Stanford

parser which performs POS tagging [13]. We incorporated

the Stanford API in our toolset to enable us to extract noun

phrases (features) from reviews, before counting the

frequency of each noun as a unigram (e.g., if “SMS”

appeared at least once in each of 20 reviews, our app would

then output SMS = 20). The ranking of words in this

manner draws from computational linguistics, and is

referred to as n-gram analysis. The n-gram is defined as a

continuous sequence of n words in length that is extracted

from a larger stream of elements [14]. We extracted the

syntactic relations between pairs of features (nouns) and

issues (verbs) in each request by providing counts of these

noun-verb pairs in the reviews. For example, if one review

reads “the Search feature freezes every five minutes”, and

another “the Search feature always freezes”, our output

would be Search-freezes = 2. We aggregated these feature-

issue occurrences as input for the QuickReview interface,

where the counts was used for ranking.

A Data-Driven User Interface (QuickReview)

Outputs extracted from reviews as described in the previous

section were used to populate QuickReview’s user interface

as an actionable graphical element (with buttons and check

boxes), which allows users to select the features and issues

they wish to include in their report (see Figures 1b and 1c).

We anticipate that this would reduce the need for entering

detailed comments when compared to traditional review

interfaces (see Figure 1a). Given that some apps may have

little reviews, and thus, the text mining process may not be

relevant in this context, QuickReview also allows users to

optionally enter descriptive reviews expressing their

personal opinion if needed (see Figure 1d). Thus, a review

in QuickReview will contain a set of problematic features

and issues selected by the user (e.g., Battery and drain)

and/or an optional descriptive review. We were careful to

design QuickReview interface with consideration for the

limited screen size and input methods associated with

mobile devices, also conforming to the Android design

guidelines. An iterative approach to user interface

development was adopted, with the final interface using a

minimalistic design (exposing information only essential

for the current user task).

We first developed a replica of the Google Play review

interface as a basis for comparison with QuickReview (see

Figure 1a). Using the Google Play review interface, users

are able to add a textual review and provide a star rating.

Thereafter, we designed and developed QuickReview (see

Figures 1b – 1d). In what follows, we discuss QuickReview

design choices and implications for the overview screen

(Figure 1a) before the comparative presentation of the data-

driven interface with the Google Play interface.

The overview screen shown on the left of Figure 1(Figure

1a) uses a Master/Detail structure where app reviews are

shown without cluttering the main screen based on design

principles reported in other works [15, 16]. Also, the

overview screen presents a single clickable button

(indicated by the Orange oval with an edit-icon) that

presents a clear and consistent action choice that minimizes

the cognitive load on users [17-19].

When the button is selected, the QuickReview interface

showcases a vertical list of selectable elements, ranked

based on the most commonly reported features about the

specific app being reviewed, extracted during the automatic

review analysis (see Figure 1b). The use of specific icons

for the features provides easy recognition of the features, a

shared principle found in many studies (e.g. [19]).

Touching a certain feature (e.g., GPS) shows a different

vertical list highlighting the top ten automatically extracted

issues (i.e. issues co-occurring with the currently selected

feature (see Figure 1c)). Again, a Master/Detail approach

was applied to this screen to separate the detailed issues that

users have associated with each identified feature in the list.

These issues are also arranged in descending order based on

occurrence in the reviews. The user can select the issues

they would like to report.

On clicking the OK button on Figure 1c users are taken to

the submit screen (see Figure 1d) which presents candidate

features and issues selected by the user (also confirming

previous users’ complaints). The reason for presenting a list

of previous users’ problematic features and the

corresponding issues is to reduce the choices made

available upfront to the user, thus reducing their cognitive

load (i.e., a user’s memory about a feature can be kindled

through a list of previous problems reported in reviews;

developers are also able to browse options in Figures 1b

and 1c to explore users’ feedback about app features).

Having provided that, the user is also able to provide a

textual response via the app review summary screen (see

Figure 1d). This screen allows users to inspect their app

review before submission, and enables them to easily

change any aspect of their review (rating, identified

features/issues, title or description).

It should be noted that the QuickReview app was designed

for a top-down screen structure to avoid potential

information overload by arranging the functionalities using

a multilevel hierarchy [20], thus exposing users only to

information that is necessary for each intermediate step.

The review interface on Google Play Store was developed

(which has the same overview screen of Figure 1a) in order

to facilitate comparisons with QuickReview. Upon

selecting the review button in the overview screen, textual

comments and the star rating can be provided by the user

(not shown here due to space limitation).

QUICKREVIEW EVALUATION SETUP

A user study was conducted to evaluate QuickReview in

comparison to the existing interface on Google Play Store.

The study used a randomized trial as part of a within-

subject design comparing the Google Play Store review

interface (now referred to as GP) against our data-driven

interface, QuickReview (now referred to as QR). For both

cases we populated the interfaces with data from existing

Figure 1. Traditional app review system and QuickReview. a) App review interface as used in the Google Play Store. b) Proposed

QuickReview interface extending traditional interface by presenting problematic features (e.g. GPS and Time) extracted by

mining the existing text reviews and displaying them. c) Selecting a feature (here GPS) displays corresponding issues, also

extracted using data mining, for this specific feature such as “lost” and “stops”. Users can confirm one or multiple issues for the

selected feature without typing lengthy reviews. d) Users can still provide additional information via text comments.

app reviews (4500 reviews) for the app MyTracks
1
 as the

dataset was made available to us and the described app

showed enough weaknesses that were worth analysing.

After a short introduction to the study and background

questionnaires, the participants were presented with two

scenarios (one simple and one complex scenario) based on

actual reported problems with the MyTracks app. For each

scenario the participants had to report a problem using each

of the review interfaces (GP and QR). Note GP requires the

provision of a text-summary of the problem while QR

provides an intelligent and adaptive interface.

Upon studying both scenarios and completing their tasks,

participants were then asked to answer two questionnaires

on usability and cognitive load. Usability was measured

using a modified System Usability Scale (SUS) [21]. Four

questionnaire items (questions 2, 5, 6 and 7) were omitted

as they were not applicable to app evaluations resulting in 6

questions. The resulting usability scores from the SUS were

calculated from the questionnaire items using the weighted

calculation, ranging from 0 – 60 instead of 0 – 100 as

described by Brooke [21]. Cognitive load was measured

using the standard NASA-Task Load Index (TLX) [22]

questionnaire. Finally, performance of the two apps was

measured by recording the time taken by the users to

complete app reviews using both interfaces, and we also

recorded task completion rate and error rate. Twenty (20)

participants (age 18 to 24 years, 13 females and 7 males)

evaluated QuickReview, with all participants using a

Samsung Galaxy S3 Android smartphone.

QUICKREVIEW EVALUATION OUTCOMES

An alpha level of 0.05 was applied for all statistical tests,

and our outcomes are presented below.

Usability: Our outcomes show that QR had a higher mean

(M) usability score than the GP interface (49 versus 44;

with standard deviation (SD) for QR=12.5 and GP=13.9).

However, an independent samples t-test shows that these

results were not significantly different (p>0.05).

Cognitive Load: Six workload measures were used to

examine cognitive load: mental demand, physical demand,

time pressure, effort expended, performance and frustration.

An overall cognitive load score was calculated, combining

these scores into a single mean score for each participant

(M: QR=23.5, GP=35.3; SD: QR=18.9, GP=26.2). These

measures indicate that QR required less cognitive load

when adding reviews than GP (mean difference of 11.8).

An independent samples t-test conducted showed no

significant difference (p>0.05). Follow up tests for each of

the cognitive dimensions were also not significant.

Performance: As noted above, we initially considered

measures for time taken for task completion, task

completion rate (whether a task was successfully

1https://play.google.com/store/apps/details?id=com.google.android.maps.m
ytracks&hl=en

completed), and error rate (whether a participant misused or

misunderstood features of the app) when testing the

interfaces of GP and QR. However, task completion rate

and error rate did not produce any data points, as all

evaluations were completed successfully without errors.

Therefore, only time for task completion was considered

when comparing performance for QR and GP. These

distributions violated normality, and thus, a Mann-Whitney

U non-parametric test was conducted which confirmed

statistically significant differences in performance when

conducting reviews using GP (M = 67.7, SD = 19.6) and

QR (M = 50.3, SD = 20.10), with the process being much

faster on QR, z = -2.37, p = 0.01. The effect size associated

with this finding, d = 0.88, was found to exceed Cohen’s

size convention for a large effect size (d = 0.8).

DISCUSSION AND CONCLUSION

We examined the feasibility and usefulness of developing

an intelligent and adaptive user interface, QuickReview.

While two aspects our results were not significant,

QuickReview recorded higher usability score than the

current Google Play interface for adding reviews. In

addition, evaluation outcomes show that QuickReview

demanded less cognitive workload. The utility of

QuickReview in these aspects is exemplified through

participants’ written feedback. One noted that the new

system was “easy to use and understand” and the other

noted it "didn't take too much physical and mental effort".

These findings are particularly satisfying given that the lack

of familiarity may have moderated our results somewhat, as

all of the users were familiar with the old review system on

Google Play, while only seeing and using QuickReview for

the first time when introduced in the evaluation.

Psychologists have established that cued recall (i.e.,

prompting based recall of QuickReview) is faster than free

recall (i.e., recollecting and then writing reviews as done

via Google Play). We believe that this may have been

reflected in the decrease in cognitive load for all the six

cognitive load factors for QuickReview [19]. This

assessment may be particularly valid given the results for

performance outcomes, which also show that users were

able to log reviews much faster when using QuickReview

than the Google Play interface. This confirms the relevance

of limiting time overhead in mobile interface design [23].

QuickReview could also be useful for app developers. The

populated list of features and corresponding issues are

ranked and presented such that improvement opportunities

could be quickly identified by the developers. That said,

while these initial outcomes are encouraging, a power

analysis using the GPower indicated that 336 evaluators

were needed to detect large effects (d = 0.8) with 95%

power using an independent samples t-test with an alpha

value at 0.05. We thus plan to extend our evaluations, both

in terms of respondents and including reviews for a wider

range of apps. We also plan to extend QuickReview to

include positive aspects of apps, showing how key features

satisfied users.

REFERENCES

1. Judith A Chevalier and Dina Mayzlin. 2006. The effect

of word of mouth on sales: Online book reviews. Journal of

marketing research, 43 (3). 345-354.

2. Chen, Jialiu Lin, Steven CH Hoi, Xiaokui Xiao and

Boshen Zhang. 2014. AR-Miner: mining informative

reviews for developers from mobile app marketplace. In

Proc. of the ICSE conference, ACM, 767-778.

3. Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason

Hong and Norman Sadeh. 2013. Why people hate your

app: Making sense of user feedback in a mobile app store.

In Proc. of SIGKDD conference, 1276-1284.

4. Felix Von Reischach, Erica Dubach, Florian

Michahelles and Albrecht Schmidt. 2010. An evaluation of

product review modalities for mobile phones. In Proc. of

the 12th international conference on Human computer

interaction with mobile devices and services, ACM, 199-

208.

5. Haojian Jin, Tetsuya Sakai and Koji Yatani. 2014.

ReviewCollage: a mobile interface for direct comparison

using online reviews. In Proc. of the 16th international

conference on Human-computer interaction with mobile

devices & services, ACM, 349-358.

6. Ruihai Dong, Kevin McCarthy, Michael O'Mahony,

Markus Schaal and Barry Smyth. 2012. First demonstration

of the intelligent reviewer's assistant. In Proc. of the 2012

ACM international conference on IUI, ACM, 337-338.

7. Ruihai Dong, Kevin McCarthy, Michael O'Mahony,

Markus Schaal and Barry Smyth. 2012. Towards an

intelligent reviewer's assistant: recommending topics to

help users to write better product reviews. In Proc. of the

2012 ACM international conference on Intelligent User

Interfaces, ACM, 159-168.

8. Jiawen Liu, Mantosh Kumar Sarkar and Goutam

Chakraborty. 2013. Feature-based Sentiment Analysis on

Android App Reviews Using SAS® Text Miner and SAS®

Sentiment Analysis Studio. In Proc. of the SAS Global

Forum 2013 Conference.

9. Patel, P., Licorish, S., Savarimuthu, B. T. R. and

MacDonell, S. 2016. Studying expectation violations in

socio-technical systems - A case study of the mobile app

community In Proc. of the European Conference on

Information Systems (ECIS) (Istanbul, Turkey).

10. Chen, Jialiu Lin, Steven CH Hoi, Xiaokui Xiao and

Boshen Zhang. 2014. AR-Miner: mining informative

reviews for developers from mobile app marketplace. In

Proc. of the ICSE conference, ACM, 767-778.

11. Guzman, Emitza, and Walid Maalej. 2014. How do

users like this feature? a fine grained sentiment analysis of

app reviews. In Proc. of the RE conference, 153-162.

12. Pennebaker, J. W., Francis, M. E. and Booth, R. J.

Linguistic Inquiry and Word Count. Mahway: Lawrence

Erlbaum Associates, 71 (2001).

13. Toutanova, K., Klein, D., Manning, C. D., and Singer,

Y. 2003. Feature-Rich Part-of-Speech Tagging with a

Cyclic Dependency Network, In Proc. of the 2003

Conference of the North American Chapter of the

Association for Computational Linguistics on Human

Language Technology - Volume 1. Edmonton, Canada:

Association for Computational Linguistics, pp. 173-180.

14. Manning, C. D., and Schtze, H. 1991. Foundations of

Statistical Natural Language Processing. London: MIT

Press.

15. Orkut Buyukkokten, Hector Garcia-Molina and

Andreas Paepcke. 2001. Seeing the whole in parts: text

summarization for web browsing on handheld devices. In

Proc. of the international conference on WWW, ACM, 652-

662.

16. Thanh-Diane Nguyen and Jean Vanderdonckt. 2012.

User interface master detail pattern on Android. In Proc. of

the 4th ACM SIGCHI symposium on Engineering

interactive computing systems, ACM, 299-304.

17. Luca Chittaro and Paolo Dal Cin. 2002. Evaluating

interface design choices on WAP phones: Navigation and

selection. Personal and Ubiquitous Computing, 6 (4). 237-

244.

18. Rachel Harrison, Derek Flood and David Duce. 2013.

Usability of mobile applications: literature review and

rationale for a new usability model. Journal of Interaction

Science, 1 (1). 1-16.

19. M. Negulescu, J. Ruiz, Y. Li and E. Lank. 2012. Tap,

swipe, or move: Attentional demands for distracted

smartphone input. In Proc. of International Working

Conference on Advanced Visual Interfaces, AVI 2012,

Capri Island, 173-180. 10.1145/2254556.2254589

20. Stephen Brewster. 2002. Overcoming the lack of

screen space on mobile computers. Personal and

Ubiquitous Computing, 6 (3). 188-205.

21. John Brooke. 1996. SUS-A quick and dirty usability

scale. Usability evaluation in industry, 189 (194). 4-7.

22. Sandra G Hart and Lowell E Staveland. 1988.

Development of NASA-TLX (Task Load Index): Results of

empirical and theoretical research. Advances in psychology,

52. 139-183.

23. Ivan Poupyrev, Shigeaki Maruyama and Jun Rekimoto.

2002. Ambient touch: designing tactile interfaces for

handheld devices. In Proc. of the 15th annual ACM

symposium on User interface software and technology,

ACM, 51-60.

24. Arnold, Kenneth C., Krzysztof Z. Gajos, and Adam T.

Kalai. 2016. On Suggesting Phrases vs. Predicting Words

for Mobile Text Composition. In Proc. of the 29th Annual

Symposium on User Interface Software and Technology,

ACM, 603-608.

