
PanoVC: Pervasive Telepresence using Mobile 
Phones 

Jörg H. Müller 
Advanced Concepts Team 
European Space Agency 

Noordwijk, The Netherlands  
joerg.mueller@esa.int 

Tobias Langlotz, Holger Regenbrecht 
Department of Information Science 

University of Otago 
Dunedin, New Zealand  

{tobias.langlotz, holger.regenbrecht}@otago.ac.nz

Abstract—We are presenting PanoVC - a mobile telepresence 
system based on continuously updated panoramic images. We are 
showing that the experience of telepresence, i.e. the sense of 
“being there together” at a distant location can be achieved with 
standard state-of-the-art mobile phones. Because mobile phones 
are always on hand users can share their environments with 
others in a pervasive way. Our approach is opening up the 
pathway for applications in a variety of domains such as the 
exploration of remote environments or novel forms of 
videoconferencing. We present implementation details, technical 
evaluation results, and the findings of a user study of an indoor-
outdoor environments sharing task as proof of concept.  

Keywords—telepresence; mobile computing; panorama; 
presence; pervasive computing; user study; immersive 
communication; mobile phones 

I.  INTRODUCTION 
Most of us use videoconferencing almost every day and 

even less technically minded people would use it occasionally 
or at least would have heard of it. A laptop computer, tablet, or 
mobile phone with a front-facing camera and software products 
like Skype or Facetime allow for effective real-time, audio-
visual communication. Sometimes, for instance when we are in 
a new location like on holidays or business trips, we also want 
to share our environment with others. To do so we either 
describe the environment to the other person or we turn around 

our computer or use the phones back-facing camera and 
augment the description with real-time video impressions. 
While this “pointing around” video streaming can be effective 
in terms of giving the other person a certain impression of the 
environment or at least parts of it, it most likely fails to develop 
a sense of social presence, i.e. the feeling of being together 
with another [1], a sense of being together in one place, also 
called co-presence, or of being in that other place, also known 
as a sense of spatial presence or simply presence. One could 
argue that in remote communication and collaboration systems 
the combination of a sense of (spatial) presence and of social 
presence allows for the development of true telepresence. 

Wouldn’t it be desirable to have such an environment-
sharing capability on your mobile phone? Such a mobile 
telepresence system would not only allow for a richer 
communication but also for effective support for certain 
professions, like supporting technicians working in remote 
locations or police examining a scene while communicating in 
real-time with their expert counterparts at other locations. 

We are proposing a novel approach and implementation, 
which allows for mobile telepresence using panoramic picture 
and video techniques in combination with a suitable human-
computer interface. Our system implementation coined 
PanoVC is based on standard videoconferencing techniques 
and extends them towards pervasive telepresence on mobile 
phones.  

Jörg Müller’s research internship at the University of Otago was partially 
supported with a travel and hardware scholarship awarded from Graz 
University of Technology. This work was partially supported by InternetNZ's 
Conference Attendance fund. 

 
Fig. 1. Conceptual illustration of our implemented PanoVC prototype. (Left) A user of our PanoVC system (the local user) shares the environment by 

capturing it with the mobile phone, (Middle) a distant user (the remote user) receives a camera stream, and builds and updates a panoramic 
representation of the distant environment. Using orientation tracking the phone becomes a window into the distant environment as both users can 
independently control their current view. (Right) By providing a window into the distant environment, users of PanoVC experience the feeling of 
presence as they are virtually "being there together". 



In a controlled user study we can show that spatial presence 
and social presence significantly improve over to-dates 
“pointing around” techniques. With this, mobile 
communication develops into pervasive telepresence. A 
multitude of sensors is used to realize this: e.g. we sense 
features in the surrounding environment and build a panoramic 
environment which also allows us to track the users’ look-
around movement in space using computer vision (see Figure 
1). We further use built-in sensors in mobile phones to allow 
for interactive exploration and to improve stability and 
precision of the vision-based tracking. 

We present the system architecture and relevant 
implementation details of our novel mobile telepresence 
prototype PanoVC and relate those to previous work in the 
field. We also describe an evaluation study to prove our 
concept. To our best knowledge, PanoVC is the first system, 
which allows for pervasive telepresence on off-the-shelf 
mobile phones.  

II. RELATED WORK 
Telepresence can and has to be viewed in two ways: 

technological and experiential. The experience of being present 
in another place is supported by a set of appropriate hard- and 
software components. If the sense of presence, i.e. the sense of 
“being there” [2] in a virtual or remote natural environment is 
successfully combined with social presence [3], i.e. the sense 
of “being together”, a sense of “being there together” can be 
achieved - a defining element for usable and useful 
telepresence. Our focus here is on considering technological 
approaches to achieve pervasive telepresence. 

We will first briefly look into systems and studies in office 
or meeting room environments, which we characterize as static 
telepresence systems. In opposition, we look at mobile 
telepresence. Historically, telepresence research stems from 
questions on controlling remote robotic systems. There is a 
huge body of work on telepresence and robots and we will 
briefly discuss those works with respect to relevance to our 
mobile, pervasive telepresence system. Finally, more recently, 
researchers focused on actually using mobile devices to 
achieve the experience of telepresence. Those works will be 
discussed with the most attention. 

A. Static Telepresence 
The experience of telepresence can be achieved in 

videoconferencing environments, if cameras, microphones, 
displays, participants, and furniture and lighting are combined 
with specialized teleconferencing systems. 

For instance, a complex but effective system is presented 
by Schreer et al. [4] where three participants are placed in a 
virtual world giving the impression of sitting around a table. 
Four cameras on each system are used to reconstruct the upper 
bodies of the participants and are synthesized into one 
telepresence experience, including eye-to-eye contact. Similar 
experiences are provided by systems like HoloPort [5] or 
MultiView [6]. Some commercial systems, like Cisco 
TelePresence1 implement telepresence in meeting rooms. 

While all those approaches and systems deliver high 
technical fidelity and can lead to the experience of 

                                                             
1 https://ciscomeetingonus.com 

telepresence, they are restricted to the (indoor-) environments 
they are installed in and are designed to capture the participants 
and not the environment. The static environment and system 
setup predetermines in particular the spatial and co-presence 
aspects of the experience.  

B. Mobile Telepresence 
To overcome some of the restrictions of static telepresence 

systems, telepresence systems needs to become mobile. One 
possibility is to use teleoperated robots, which have been 
extensively studied in the context of telepresence. Jouppi for 
example presents a system remotely showing the user’s head 
from four sides on the robot [7]. The four displays show videos 
streamed from four cameras placed around the user’s head. 
However, the robot was still constrained to indoor usage. The 
miniaturisation of teleoperated robots such as presented by 
Kratz et al. allowed them to take the robot outside [8]. Here, a 
mobile phone is mounted on a gimbal next to the shoulder of 
the carrier. The remote user can control his view using the 
gimbal. An important conclusion by Kratz et al. is that the free 
choice of view enhances the engagement of the remote user 
however they do not report on presence. While the use of 
remote controlled robots enables many beneficial possibilities 
for telepresence, the hardware requirements, costs and 
limitation to indoor usage prohibit the casual use of such a 
system for many application areas. Furthermore, switching the 
environment is only possible when both sides have a robot 
adding additional costs.  

Jo et al. presented Chili [11], a mobile video calling system 
allowing people to request a specific view without the need of 
special hardware by using mobile phones. Here remote users 
can indicate which part of the environment they want to see by 
rotating their phone into the desired direction. This is visually 
displayed to the local users who can then point their camera in 
this direction to share the view. While this system is related to 
ours, the users views are still coupled as well as there is no 
study to reveal if any effects on presence can be measured.  
Gauglitz et al. [12] have shown that Simultaneous Localization 
And Mapping (SLAM) can be used to create a virtual 
representation of the remote environment in a telepresence 
system. JackIn by Kasahara et al. [13] uses this approach to 
create an environment for a stationary user based on the 
exploration of a mobile user who wears a head-mounted 
display (HMD). The problem of SLAM algorithm as discussed 
by the authors is, that it needs a big enough parallax to create a 
3D point cloud of the environment and it needs comparably 
high processing power. Therefore, in their subsequent work, 
Kasahara et al. [14] use LiveSphere, a head-mounted device 
with multiple cameras, to create a panoramic video for the 
spectator to overcome the problems of SLAM. While these 
systems allow for free view control they only have one mobile 
user (the one sharing the environment), as the techniques need 
enough processing power on the stationary side. Consequently, 
they don’t allow for switching worlds, require expensive 
hardware, and one user is constrained to indoor environments.  

Besides Kratz et al. and Kasahara et. al. also other groups 
investigated free view control in video calling applications. 
Free view control has for example been concluded as a major 
possibility for improvement by Jones et al. from an 
observational study of mobile collaborative tasks using video 
calling applications [9]. Additionally Jones et al. found that 
better support for interactions in video calling applications 



would counter problems found during their study. One example 
of such an advanced interaction technique is a collaborative 
drawing interface as shown by Fussel et al. that greatly aids the 
interaction between participants [10]. Billinghurst et al. [15] 
conceptually explored the application of shared panoramas 
using Android tablets or Google Glass. However, the concept 
was only demonstrated with pre-recorded panoramas and not as 
part of a working system. 

III. SYSTEM OVERVIEW 
Our system, PanoVC, is based around the requirement to  

decouple the views of the communication partners and give the 
partners free viewpoint control while also using mobile phones 
on both sides of the telepresence system. Thus the local user 
(the user sharing the environment) and the remote user (the 
user receiving the distant environment) can look into different 
regions of the shared environment. As such our work is similar 
to the work by Kasahara et al. [13,14]. However, we want to 
achieve this without requiring desktop hardware or expensive 
360º cameras such as those used by Kasahara et al. [14]. We 
will show that by doing so we truly enable pervasive 
telepresence. Because both sides, local user and remote user, 
have the same mobile hardware, we also allow for switching 
the environment as well as both users can use our system in a 
mobile outdoor scenario. We argue that this is an important 
requirement to a truly pervasive telepresence system. 

To achieve our goals, we propose that the users of our 
system do not see the remote environment directly using the 
camera stream but look at the environment via a panorama of 
the environment that is built on the fly while also being 
constantly updated. Users can control their view into the 
environment by rotating the phone providing a feeling of a 
window into a distant world. Instead of building the panorama 
on the local user’s device and streaming it to the remote user, 
both users build their own version of the panoramic map using 
latest frames from the camera stream (see Figure 2). The main 
reason for this approach is to reduce required bandwidth. 
Dependent on the used camera resolution, the panorama that 
would need to be streamed might be impractical to be 
transmitted and processed. Instead, in our system the local user 
builds the panorama from the camera stream but also sends the 

camera stream to the remote user via the communication 
component of our system. There, the camera stream is used to 
recreate and update the panorama based on the local user’s 
environment. We use the communication component also for 
bidirectional audio communication and can furthermore 
exchange additional information, such as touch events and 
view information (where is each user looking at) in real-time. 
The latter one is needed as once we are able to decouple the 
views (users can look around independently), we want to also 
support gaze awareness, indicating to each user the current 
view of the other person. The view information is computed for 
both users in the tracking component by precisely tracking the 
device orientation relative to the surrounding world.  

In the following, we present each component of our 
PanoVC system. These components are (1) the communication 
component for data exchange between the communication 
partners, (2) the environment mapping component, for creating 
and updating the panorama in real-time, and (3) the tracking 
component for tracking the user’s orientation and view into the 
environment. We integrate these components with a user 
interface that is responsive and runs interactively on a mobile 
phone. Based on our experience, we are aware that even on the 
most recent mobile phones running all these components will 
be a challenge in terms of available processing power, if 
possible at all. We therefore planned our initial design in a way 
that these described components are as modular as possible and 
as loosely coupled as possible to not block each other but use 
the existing resources most efficiently. We therefore 
implemented each of the described components in their own 
threads to exploit the parallel processing power of today’s 
mobile phones. 

IV. COMMUNICATION 
For implementing the real-time communication component, 

we require a protocol that allows us to connect the devices 
directly and transmit the data peer-to-peer to allow for the 
lowest possible latency. Apart from standardized protocols for 
real-time communication and video conferencing software, 
there are video call solutions such as Skype that have their own 
proprietary implementation. For our work we were looking for 
a protocol and implementation that fulfils our requirements for 

 
Fig. 2. Overview on our PanoVC system. The local user creates a panoramic image from the camera stream which is also used for vision-based tracking. The 

camera stream is sent to the remote user where it is used to create and update a panoramic image of the distant environment. Additionally, the user 
exchange audio and view information. View information allows both users to see where they are currently looking. 

 



low latency, high-quality audio and video transmission, extra 
data channels for transmitting tracking and other meta data, and 
most importantly, an implementation that can be used on 
mobile devices. 

After a careful review of existing solutions including 
solutions that build on top of H.323, Session Initiation Protocol 
(SIP), Extensible Messaging and Presence Protocol (XMPP) + 
Jingle, and Session Description Protocol (SDP), we decided for 
Google’s WebRTC (Web Real-Time Communication) 
implementation that uses SDP [16]. WebRTC fulfils our 
requirements, is actively developed and a state-of-the-art 
technology. The WebRTC API was originally specified by 
Global IP Solutions, a company that has been bought by 
Google Inc. Since then it has been adopted by the World Wide 
Web Consortium (W3C) to create a standardized real-time 
communication API for browsers [17]. Google’s 
implementation can also be used to implement a native client 
running on mobiles, in particular on Android. WebRTC uses 
several standardized protocols to accomplish its tasks, 
including SDP and ICE. WebRTC uses the Secure Real-time 
Transport Protocol (SRTP) to transfer the audio, video and 
data streams encoded in Opus and H.264 or other commonly 
used codecs, like VP8. 

Based on Googles WebRTC library, we implemented our 
own WebRTC client that serves us the purpose of connecting 
the users of our system and transmitting all data between the 
users. To setup the connection between the two clients, a server 
is required that simply forwards the signalling data provided by 
WebRTC. As WebRTC doesn’t specify, how exactly the 
signalling data has to be transmitted, we wrote a simple 
signalling server in Go using websockets [18]. The server waits 
for two clients to connect and simply forwards the data 
between them. Once the clients established a direct connection, 
they disconnect from the server, as they can now communicate 
using the direct connection at the lowest possible latency. 

V. ENVIRONMENT MAPPING 
Giving remote parties free view control requires building a 

representation of the environment to overcome the restrictions 
of the constrained camera view. There are several ways to 
achieve this: 2D environment mapping or 3D environment 
mapping. The later one builds a 3-dimensional model of the 
environment using dedicated depth cameras (e.g. Microsoft 
Kinect) or by using stereo-vision. Unfortunately, both 
approaches and consequently 3D environment mapping 
seemed not feasible for us. While there is a prototypical version 
of depth-cameras equipped mobile phones (e.g., Google 
Tango), they are based on infrared light making them only 
work indoors. SLAM, an approach that can be used to build a 
3D model of the environment only using a monocular camera 
instead of full stereo vision, is very computational expensive 
and requires a wide baseline (large parallax) in the captured 
image material for being able to work. Consequently, we 
decided for 2D environment mapping by building a panoramic 
representation of the environment.  

Our approach creates a panorama on the fly and updates it 
at each frame rather than stitching a static panorama 
beforehand. This allows our application to start without time-
consuming panorama preparation and the constant update of 
the panorama allows capturing dynamic environments. 
However, this comes at relatively high computational costs. In 

the following we briefly present our approach that runs in real-
time despite the high computational requirements.  

Our method is based on the approach by Wagner et al. [19]. 
They introduced an implementation creating a cylindrical 
mapped panorama on the fly by only rotating the phones’ 
camera. The approach can be seen as a 2D SLAM approach. 
The algorithm for creating the panorama starts by taking the 
initial camera image that is projected in the centre of the 
panorama. Following camera frames are added to the panorama 
in two steps. First, the orientation of the camera relative to the 
panorama is determined based on feature matching. This visual 
tracking step will be explained in more detail in the following 
section. Secondly, the tracked orientation is used to update the 
panorama with the camera image. 

 

Fig. 3. Mapping the panorama on the GPU to achieve real-time generation and 
update of the panorama on mobile phones. The panorama is stored in a 
framebuffer object. For each incoming camera frame a vertex shader 
maps a polygon into the panorama space based on the transformation 
gained from visual tracking. In a second stage a fragment shader reads 
back colours from the inpute texture (the camera image) to the 
panorama. 

Unfortunately, the original approach by Wagner et al. only 
delivered real-time performance on mobile phones by writing 
each pixel in the panorama once. This reduces the possible 
number of pixels to be written each frame as the difference 
between two subsequent images in a camera stream is 
relatively small requiring only a few pixels to be mapped, 
consequently increasing the speed of the approach. However, 
this comes with the disadvantage that the panorama is not 
continuously updated as already mapped pixels are not 
updated. So changes in the environment are not added to the 
panorama. However, in our approach we want to update the 
panorama at each frame using the latest camera image.  

We achieved this by changing the original approach and 
mapping the panorama on the integrated GPU of the mobile 
phone instead of the CPU. We wrote a GPU shader program 
that in the first stage (vertex shader) takes in vertices of a 
subdivided rectangle representing the camera frame. These 
vertices are projected into the panorama space utilizing the 
transformation data from the keypoint matching (see Figure 3). 
The panorama to be generated is stored in a framebuffer object 
(FBO), which is set as a render target. In our current 
implementation we use a panorama size of 2048 × 512 pixels. 
In the second stage, we apply a fragment shader that projects 
back from the panorama space to the camera space to 
determine the colour to be drawn in the panorama. This 



approach allows us to update the panorama with the latest 
camera image while still delivering real-time performance on 
current generation mobile phones, as the first stage prevents 
pixels of the panorama that are outside the camera frame to be 
processed. One drawback of this approach is that the panorama 
might show inconsistencies caused by moving objects in the 
scene but this can only be avoided if a 360º camera is used. 

VI. TRACKING 
Tracking the phones’ pose is essential to our approach and 

the tracked pose is used for various purposes. Firstly, we use 
the pose information to stitch and update the panorama for both 
users. Both users stitch the panorama using the camera feed 
(local users the local camera feed, remote users using the 
camera feed from the local user transmitted via WebRTC) and 
have to compute the pose first using vision-based tracking on 
the camera feed. Secondly, we track the pose to control the 
current view in the panorama. This only applies to the remote 
users as they see the environment through the panorama. Here 
we have two options for tracking which can be switched in the 
settings: We can use a vision-based tracking analyzing the 
remote users environment as captured by the integrated camera 
or we can use the phone-integrated sensors in case the current 
environment does not offer good visual features (e.g., dark 
room or white walls). The latter one offers less accuracy but 
works in nearly all cases [19]. Finally, we also share the pose 
information with our communication partner to visualize each 
other’s view direction showing where we are currently looking 
at in the shared environment. Common to all approaches is that 
we only track the orientation of the phone with 3 degrees of 
freedom (3DoF). Our approach relies on the panorama 
therefore we only have a rotational movement that we need to 
track, as a larger translational movement would not permit for 
panorama creation. This goes hand-in-hand with our 
envisioned scenario of keeping a fixed position while rotating 
the phone to browse the environment.  

A. Vision-based tracking 
Vision-based tracking is known to be more accurate 

compared to the error-prone sensors integrated in mobile 
phones as described by Wagner et al. [19]. Their algorithm first 

analyses camera frames for keypoints using the FAST keypoint 
detector [20]. The computed keypoints are later matched 
against keypoints in the panorama. The keypoints of the current 
camera image are matched with keypoints within the panorama 
using a constant-velocity motion model predicting the position 
of the image feature within the panorama and template 
matching using normalized cross correlation (NCC). This 
matching of the keypoints gives the transformation between the 
existing panorama and the current camera frame and allows us 
to extend or update the panorama by mapping the camera 
frame into the panorama with high accuracy. This vision-based 
tracking approach shows only a small error of ~ 1º for the 
horizontal axis and is also able to relocalize in case the tracking 
is lost. Unfortunately, vision-based tracking is computational 
expensive, but we need to track the phone’s rotation to build 
and update the panorama as the sensor based tracking is too 
inaccurate. 

B. Sensor Fusion  
The remote user’s phone builds the distant panorama based 

on visual tracking using the camera feed obtained via 
WebRTC. However, we also need to compute the remote users  
own orientation. We can achieve this using visual tracking as 
described before but on the camera stream of the remote user. 
However, sometime there are not enough features in the 
environment or on slow phones we can increase the 
performance of the application by using sensor-based 
orientation. While not being as accurate, the sensor-based 
orientation has the advantage of having a higher update rate 
and lower latency. This enables the user to enjoy an interactive 
view, as the orientation sensors are accurate enough for looking 
around in the remote user’s panorama. Additionally, in the rare 
case when the vision-based tracking is lost, we use the 
integrated orientation sensors as a backup. We compute the 
phone’s orientation using the built-in sensors, namely the 
accelerometer, the magnetometer and the gyroscope by fusing 
together their individual results. The magnetometer and 
accelerometer are used to get an absolute orientation, which is 
noisy and has a slow update rate. Therefore, we use it in 
combination with the gyroscope, which is precise and quick, 
but drifts over time. We fuse together the results by using a 

 
Fig. 4. The final application as used in the user study. (Left) The local user starts our app and calls a remote user. Once the connection is established, our 

application automatically captures the environment and streams the camera feed to the remote user. The local user sees the current camera view and a 
visualises where the remote user is looking at. A blue polygon shows the own view while a red polygon outlines the view of the remote user. (Right) The 
remote user looks at the panorama of the distant environment. Rotating the phone allows to select the current view while the red and blue polygons 
highlights each others view. Both users see a minature version of the full panorama to provide context information.  

 



low-pass filter on the former to compensate for the noise and a 
high-pass filter on the latter to compensate for the drift before 
adding the two signals as outlined in [21].  

VII. APPLICATION AND INTERFACE  
In the following we present a brief summary of the 

implemented interface components. The central interface 
element of our developed application prototype shows the view 
into the environment. Assuming that we currently share our 
environment with the remote user, the remote user would 
browse the environment by rotating its phone to select the 
portion of the panorama to be displayed.  

We decided that the local user (the user sharing the 
environment) is not just seeing the current camera frame but is 
provided with a bigger field of view. We can display a wider 
field of view based on the locally built panorama (see Figure 
4). Using the panorama for both users ensures that they have a 
similar interface for the shared environment. 

We also decided that we need to provide gaze awareness to 
indicate where each user is looking at. We achieve this in two 
ways: Firstly, we draw a red frame in the user’s view indicating 
the current view of the other user.  However, if the view differs 
too much (e.g. the other user looks exactly in the opposite 
direction) the frame is outside of the user’s view frustum. We 
therefore also added a mini-map depicting a 360º view of the 
environment. It is basically a small version of the panorama, 
which is also constantly refreshed to show the latest update of 
the panorama. Similarly to the main view we draw small 
frames to indicate the view of the remote users. As the small 
panorama always covers 360º we see the current view of the 
remote person even if it is outside of our current view frustum 
and with this support gaze awareness in all cases. 

In addition to visualising each other’s current view, we also 
integrated pointing gestures using the touch screen. Both users 
can draw or highlight objects in the environment by touching 
the screen at the corresponding position. We track the finger’s 
coordinate and send it to the other user using WebRTC’s data 
channel. Based on the finger’s coordinate and the tracking 
information of the device we can map the remote user’s touch 
events (and consequently the drawn graphics) into the local 
user’s screen. 

 Figure 4 shows the final implemented. The control buttons 
allow the users to manually restart the panoramic environment 
mapping, to save the panorama, to open the settings, and to 
switch roles. The latter allows the users to switch from seeing 
their environment to browsing the remote environment. For 
simplicity, we synchronized both users so switching one role 
automatically switches the other user’s view as well. This 
should guarantee that the users of our systems always stay in 
the same environment (in the local user’s or remote user’s 
environment). This however, was a design decision and the 
implementation supports different combinations. The settings 
screen allows customization of the application including 
switching user interface components on or off (e.g., mini-map, 
frames for gaze awareness). 

VIII. EVALUATION 
We decided to evaluate our initial prototype for pervasive 

telepresence using a technical evaluation and a user evaluation. 
The technical evaluation should inform us about the 

performance that can be achieved using our prototype and the 
bottlenecks of our pipeline. The user study aims to provide 
feedback on how our prototype achieves the desired goal of 
telepresence. 

A. Technical evaluation 
The performance of the system is dependent on many 

components in the system. Foremost the camera performance: 
We tried several current Android devices, all with the most 
recent Android version (Android 4.4 to Android 5.1 depending 
on the device). The camera performance when accessing the 
camera using WebRTC (which uses the official Android API) 
ranged from 10 frames per second (fps) on a Google Nexus 4 
to consistent 30fps on a Google Nexus 5. Other devices (e.g. 
Samsung Galaxy S3, Samsung Galaxy S5, HTC One M8, LG 
G2) achieved a camera frame rate of 20-28fps. Based on these 
results we decided to use the Google Nexus 4 and Nexus 5 as 
worst and best case devices of all tested devices. The camera 
frames are delivered to us from WebRTC via a callback at 
which moment we start measuring the time spent in our 
pipeline. The first step is simply copying the camera frame  
into a queue and return from the callback to not stall WebRTC. 
This takes far less than 1ms for all tested phones (see Figure 5). 

The next step required after acquiring the camera image is 
the visual tracking, which runs in a separate thread. This thread 
constantly waits for new threads to be delivered and picks them 
up within less than 1ms on all devices (Queue 1). Tracking is 
the most time consuming step in the pipeline. The tracking 
performance is affected by the used CPU but interestingly also 
by the camera frame rate. The higher the camera frame rate is, 
the smaller is the difference between two consecutive frames. 
This improves the tracking speed, as it is easier for the tracker 
to find matching features if the difference between frames is 
small. This can easily be seen when looking at the tracking 
time needed for the Nexus 4, which has the lowest camera 
frame rate (see Figure 5). When the tracking is finished, the 
frame is put in a second queue (Queue 2). 

 

Fig. 5. Average timings for updating the panorama on different phones. Copy 
frame is the time that is required for copying the image data into 
memory, track frame is the time required for determing the tracking 
information using the provided frame. The Queue 1 and Queue 2 timings 
indicate the time the data is waiting to be picked up by the next thread. 
Mapping is the time it takes to update the panoramic map on the GPU 
using the provided frame and tracking data. Copy, Queue 1 and Mapping 
time have been rounded up to 1ms to be visible in the graph. 

Finally, the last step in the pipeline is the panorama 
generation which is done in the rendering thread. This thread 
runs in intervals depending on the frame rate. Consequently, 
the time until the frame for the panorama is picked up by the 
rendering thread is on average theoretically half the average 
time of this interval. As rendering works asynchronously on the 
GPU, measuring the time spent rendering is difficult as 



OpenGL function calls return before the rendering finished. 
The mapping time shown in Figure 5 shows only the time spent 
until the OpenGL calls to update the panorama are finished. 
Afterwards the user’s view and the graphical user interface are 
rendered, which are not included in the figures. 

In sum, we measured the time the system takes from 
accessing the camera frame to updating of the panorama. On 
the Nexus 5 it took on average 38ms, on the HTC One M8 it 
took 55ms, and on the Nexus 4 it took 92ms (see Figure 5). 
These timings were measured on a local client and while the 
connection with a remote phone was running. They give us an 
idea on how much more latency we can expect from our 
system compared to a system that simply renders the frames 
after they have been received by WebRTC. 

Regardless of the phone our algorithm takes a bit longer 
during startup of the application when the first frame arrives as 
the system is initialized, which is in particular visible on the 
less powerful Nexus 4 (see Figure 6). We also evaluated the 
performance of the mapping algorithm in case the camera 
frames cannot be tracked. This means not enough image 
features can be matched between the camera frame and the 
panorama and this is usually a result of motion blur in the 
camera image caused by fast motions, non textured 
environments showing no image features (e.g. white walls), or 
bad connections resulting in high compressed camera frames 
from WebRTC. However, also in these extreme cases the 
algorithm performs only minimally worse and panorama 
mapping is skipped (see Figure 6). 

 

Fig. 6. Average timings for updating the panorama during different stages. For 
each device we measured the average time to process an incoming 
camera frame for the first 10 frames (init), a steady movement with 
panorama generation (good) and a jerky movement with bad tracking 
results where the tracking fails (bad). In the latter case no mapping is 
performed. 

Looking at the overall frame rate of our system, we find, 
that due to the parallelized architecture, the application runs 
efficient enough without having to drop any frames. As the two 
queues involved are limited to two entries, dropping frames 
would happen as soon as the pipeline gets too slow. We are 
still able to update the panorama with 30fps (Nexus 5) or 10fps 
on the slowest device (Nexus 4) once the entire system is 
initialized. 

Rendering the user interface, which includes rendering the 
panoramic map and user interface elements such as buttons or 
touch events in the panorama, is between 35fps and 55fps on 
all the tested devices. This thread runs in parallel to the other 
threads, thus we have interactivity even on the slower devices 
while only the panorama update is not interactive on the slower 
phones. 

So far we did not consider the time it takes to send the data 
to the remote phone using WebRTC. We measured the time it 
took to capture a frame and send it to the remote client where 
the image is tracked and mapped into the panorama before it is 
displayed (end-to-end latency). This total time varies between 
470ms and 550ms (Nexus 5 to Nexus 5) and 700-800ms 
(Nexus 4 to Nexus 4). The latency for only transmitting the 
image is between 400-500ms, which is in accordance with the 
latency of 300-500ms reported by WebRTC developers2. This 
is the time between the rendered result appearing on the local 
phone compared to the remote phone. We should also note that 
WebRTC adapts the coding based on the available bandwidth, 
which might lead to slightly different measurements. However, 
we repeated the measurements several times within 802.11g 
network with similar results. 

Overall, we can show that our application is interactive in 
real-time (>30fps) on all tested phones while we were also able 
to show that even the panorama/environment update running in 
a separate thread is nearly interactive in real-time (20-30fps) on 
the faster of the tested phones while we measured a latency of 
max. 500ms between the communication partners.  

B. User evaluation 
In addition to the technical evaluation we conducted a user 

evaluation to receive feedback from novice users. We picked 
novice users, as this is a common form for investigating the 
feeling of presence in particular when using well-explored 
questionnaires [1,22,23]. We were in particular interested in 
how our system affects the experienced sense of presence. 
More particular, we aimed for investigating the effect of our 
system with regards to spatial presence (“sense of being 
there”), co-presence (“sense of being near”), and social 
presence (“sense of being together”) [24]. To investigate these 
effects we decided for a study comparing our approach using a 
live updated panoramic representation (“panorama”), with a 
conventional system only showing the current camera image of 
the remote user (“non-panorama”). Our main hypotheses when 
comparing these two systems are stating that for the local user, 
i.e. the one who shares the environment (aka producer) the 
spatial presence will be unaffected by the panorama function, 
but social and co-presence will significantly increase with the 
panorama mode. For the remote user, i.e. the one experiencing 
the local user’s environment (aka consumer) spatial and co-
presence will significantly increase with the panorama mode, 
but social presence will be unaffected. 

1) Study design 
We decided against using existing systems (e.g. Skype) for 

the non-panorama mode as they use video codecs offering a 
different video quality in combination with a different user 
interface, which would introduce too many side effects. Instead 
we modified our system to just show the live camera feed 
without creating a panorama, and not displaying gaze 
awareness or pointing information (in the following called 

                                                             
2 https://www.facebook.com/WebRTC/posts/726032664137227 



VC). This modified version of our software shares many 
implementation details with our PanoVC prototype (e.g. 
similar latency and video quality, similar user interface). 

We recruited 17 participants (15 in age group 19-29, 2 in 
30-49 age group, 5 female, 12 male) through word of mouth. 
After filling out an agreement form we asked the participants 
about personal details including familiarity with mobile video 
call applications such as Skype or Facetime. This was followed 
by a short presentation of our prototypes (PanoVC and VC 
modes). The participants had a couple of minutes to try the 
prototype themselves and to ask questions about the usage. As 
our prototype at the current stage is not designed as a 
productive system we did not ask usability related questions. 
After that, we started the actual study. We asked the 
participants to place a video call with the remote person. We 
had two scenarios with two conditions each. We randomized 
the order of scenarios and conditions to avoid effects resulting 
from having the same order. One scenario is to share the 
environment with the remote user using each condition – using 
PanoVC and using the system only showing the video feed 
(VC). The other scenario is to browse the environment shared 
by the remote users again using each condition, PanoVC and 
VC only. We randomized scenarios and conditions beforehand, 
and we changed location so that the participants didn’t see the 
environment twice. The other person was always a moderator 
to avoid effects resulting from participants knowing or not 
knowing each other as well as to guarantee a controlled 
behaviour from the communication partner. We always showed 
the frames for supporting gaze awareness allowing both users 
to see where the other users is looking at. 

After each condition we asked the participants to fill out a 
short questionnaire to receive feedback on spatial presence, co-
presence, and social presence. The questionnaire is based on 7-
point Likert-like scale questions. For each sub-questionnaire 
we used existing verified questionnaires from the literature and 
only modified the wording if necessary. For spatial presence, 
we used the questionnaire by Schubert et al. [23]. For co-
presence we used items from Biocca et al. [1] and adapted it to 
fit our purposes (changed 5-point to 7-point Likert-like scales 
to match the other questions and replaced “room” with 
“environment”). Finally, for social presence we applied the 
differential semantic measure by Short et al. [22]. Overall the 
questionnaire had 18 items that had to be answered using 7-
point Likert-like scales.  

After finishing the two scenarios and each condition, we 
asked the participants to fill out a final questionnaire where 
they had the chance to indicate their preference – PanoVC vs 
VC – in addition participants could provide other feedback.  

2) Results 
The sample size as well as the type of the scales lend 

themselves to non-parametric testing. This is the more 
conservative form of analysis for this type of study. The remote 
user was an indoor consumer of the panorama and non-
panorama conditions. The local user (producer) was sharing the 
environment from outdoors locations. 

A Wilcoxon Signed Rank Test (N=17) revealed a 
statistically significant increase in reported spatial presence of 
statistics for the indoor consumer, z=-2.854, p < 0.05, with a 
medium size (r=0.488). The mean score increased from non-
panorama M=3.961 (SD=1.265) to panorama M=4.961 
(SD=1.006). 

Another Wilcoxon Signed Rank Test (N=17) revealed a 
statistically significant increase in reported social presence of 
statistics for the indoor consumer, z=-2.57, p < 0.05, with a 
medium effect size (r=0.441). The mean score increased from 
non-panorama M=4.578 (SD=0.959) to panorama M=5.108 
(SD=0.931). 

All other Wilcoxon Signed Rank Tests (N=17) did not 
reveal any statistically significant differences in the reported 
co-presence for the indoor consumer and also no significant 
differences in spatial, social, or co-presence for the outdoor 
producer. 

 

Fig. 7. Likert-like (1..7) scale responses for the three presence categories for 
the panorama (PanoVC) and non-panorama (VC) conditions for the 
indoor consumer. An asterisk (*) marks a significant difference. 

Finally, the participants preferred the PanoVC over the VC 
mode (significance test against mid-point of scale, p<0.005). 
Hence, our results partially supported our hypotheses, but also 
rejected some. 

3) Discussion 
According to our results users experiencing our pervasive 

telepresence system feel that they are spatially “transported” to 
the environment of the sharing local user. They have a feeling 
of “being there”. They also feel “being together” with that 
other person, also known as social presence. Both of those 
experiences are significantly improved with our PanoVC 
system. While our users also feel being near the other person 
(co-presence), this feeling is not significantly improved with 
PanoVC when compared to a standard videoconferencing 
solution (VC). However, the calculated p-value of p=0.073 was 
not too far from the significance level of 0.05 and a higher 
sample size might reveal a significant difference. Also, perhaps 
missing representations of the users themselves (e.g., by way of 
avatars or other video representations) have led to such a 
finding. 

It is worth noting that while temporal issues in the 
panoramic representation are likely to have happened, none of 
the participants reported any problems with it. So we assume 
that the participants haven’t noticed it or they updated the 
critical areas in the panorama removing the temporal artifacts. 

IX. CONCLUSION 
Telepresence was so far restricted to static setups where 

stationary hardware in dedicated rooms was required to achieve 
the feeling of presence by virtually bridging the distance 
between remote groups. Other solutions made use of custom 
robots that explore remote environments and share their view 
or custom hardware such as expensive panoramic cameras. In 



this work we presented PanoVC a first approach for pervasive 
telepresence using only of-the-shelf mobile phones.  PanoVC 
builds and updates a panorama on the fly and shares it with 
remote users. As remote users see the distant environment via 
the panorama they can manage their own view by rotating their 
phone. We described the implementation of PanoVC including 
the panorama mapping, the orientation sensing for both parties 
and the communication. While being demanding on the 
hardware, our evaluation shows that our approach runs 
interactively on current generation mobile phones and even 
more importantly, increases the feeling of spatial presence and 
social presence for users of our system. Furthermore, we also 
allow for instant switching of the roles as both communication 
partners use the same mobile hardware. To our best knowledge 
PanoVC is the first approach investigating telepresence 
between mobile clients and we believe it offers a substantial 
contribution to academic literature in the areas of telepresence, 
human-computer interaction and pervasive immersive 
communication. By providing new ways in terms of size, 
mobility and accessibility of telepresence solutions we open 
many new application areas including personal and 
professional communication and collaboration. Example key 
application areas are maintenance scenarios, where remote 
experts can support local workers by sharing the same 
environment or tourism settings, where people can share their 
location and experience with relatives and friends at home.  

A. Limitations and Future Work 
We see many promising future research directions 

including support for multiparty video or investigating 
wearable hardware. Currently our systems architecture is built 
for one-to-one communication and does not scale well phones 
connect directly to each other. Future iterations of the 
architecture could use a server who is responsible of 
distributing the video data to all connected clients to allow for 
group calls. Another limitation of our approach is the 
sensitivity to temporal changes when creating and updating the 
panoramic representation. Unfortunately, only using less 
pervasive and additional hardware such as panoramic cameras 
or wide-angle lenses would solve this problem. While our 
focus was set on enabling pervasive telepresence on mobile 
phones, future research should address better support for co-
operation and collaboration by way of providing new forms of 
interaction. 

ACKNOWLEDGMENT 
We would like to thank Samuel O’Connell and Braden Hart 

for assisting with running the user study. We further thank all 
users participating in the experiment as well as all members of 
the Human-Computer Interaction Group of the University of 
Otago for their input and valuable discussions. 

REFERENCES 
 

[1] F. Biocca, C. Harms, and J. Gregg, “The networked minds measure of 
social presence: Pilot test of the factor structure and concurrent validity,” 
in Proceedings of the 4th International Workshop on Presence, 2001, 
pp. 1-9. 

[2] M. Lombard and T. Ditton, “At the heart of it all: The concept of 
presence,” in Journal of Computer-Mediated Communication, vol. 3, no. 
2, 1997. 

[3] P. de Greef, W. IJsselsteijn, “Social Presence in the PhotoShare Tele-
Application,” in Proceedings of Presence 2000 - 3rd International 
Workshop on Presence,  2000. 

[4] O. Schreer, I. Feldmann, N. Atzpadin, P. Eisert, P. Kauff, and H. J. W. 
Belt, “3D Presence - A System Concept for Multi-User and Multi-Party 
Immersive 3D Videoconferencing,” in Visual Media Production (CVMP 
2008), 5th European Conference on, 2008, pp. 1-8. 

[5] M. Kuechler and A. Kunz, “HoloPort - A Device for Simultaneous 
Video and Data Conferencing Featuring Gaze Awareness,” in Virtual 
Reality Conference, 2006, pp. 81-88. 

[6] D. T. Nguyen and J. Canny, “Multiview: improving trust in group video 
conferencing through spatial faithfulness,” in Proceedings of the 
SIGCHI conference on Human factors in computing systems, 2007, pp. 
1465-1474. 

[7] N. P. Jouppi, “First steps towards mutually-immersive mobile 
telepresence,” in Proceedings of the 2002 ACM conference on Computer 
supported cooperative work - CSCW '02, 2002, pp. 354. 

[8] S. Katz, D. Kimber, W. Su, G. Gordon, and D. Severns, “Polly,” in 
Proceedings of the 16th international conference on Human-computer 
interaction with mobile devices & services - MobileHCI '14, 2014, pp. 
625-630. 

[9] B. Jones, A. Witcraft, S. Bateman, C. Neustaedter, and A. Tang, 
“Mechanics of Camera Work in Mobile Video Collaboration,” in 
Proceedings of the 33rd Annual ACM Conference on Human Factors in 
Computing Systems - CHI ’15, 2015, pp. 957-966. 

[10] S. Fussell, L. Setlock, J. Yang, J. Ou, E. Mauer, and A. Kramer, 
“Gestures Over Video Streams to Support Remote Collaboration on 
Physical Tasks,” in Human-Computer Interaction, vol. 19, no. 3, 2004, 
pp. 273–309. 

[11] H. Jo and S. Hwang, “Chili: viewpoint control and on-video drawing for 
mobile video calls,” in CHI'13 Extended Abstracts on Human Factors in 
Computing Systems, 2013, pp. 1425-1430. 

[12] S. Gauglitz, B. Nuernberger, M. Turk, and T. Höllerer, “World-
stabilized annotations and virtual scene navigation for remote 
collaboration,” in Proceedings of the 27th annual ACM symposium on 
User interface software and technology, 2014, pp. 449-459. 

[13] S. Kasahara and J. Rekimoto, “JackIn”, in Proceedings of the 5th 
Augmented Human International Conference on - AH '14, 2014, pp. 1-8. 

[14] S. Kasahara, S. Nagai, and J. Rekimoto, “First Person Omnidirectional 
Video: System Design and Implications for Immersive Experience,” in 
Proceedings of the ACM International Conference on Interactive 
Experiences for TV and Online Video, 2015, pp. 33-42. 

[15] M. Billinghurst, A. Nassani, and C. Reichherzer, “Social panoramas: 
using wearable computers to share experiences, ” in SIGGRAPH Asia 
2014 Mobile Graphics and Interactive Applications, 2014, p. 25. 

[16] M. Handley, C. Perkins, and V. Jacobson, (2006, July). SDP: session 
description protocol [Online]. Available: 
http://tools.ietf.org/html/rfc4566 

[17] W3C (2015, September 29). WebRTC 1.0: Real-time Communication 
Between Browsers [Online]. Available: http://w3c.github.io/webrtc-pc/ 

[18] I. Fette and A. Melnikov, (2011, December). The websocket protocol 
[Online]. Available: https://tools.ietf.org/html/rfc6455 

[19] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg, “Real-time 
panoramic mapping and tracking on mobile phones,” in Virtual Reality 
Conference (VR), 2010 IEEE, 2010, pp. 211-218. 

[20] E. Rosten and T. Drummond, “Fusing points and lines for high 
performance tracking,” in Computer Vision, 2005. ICCV 2005. Tenth 
IEEE International Conference on, 2005, pp. 1508-1515. 

[21] S. Colton, (2007). The balance filter: a simple solution for integrating 
accelerometer and gyroscope measurements for a balancing platform 
[Online]. Available: http://burt.googlecode.com/svn-
history/r121/trunk/Hardware/Sensors/filter.pdf 

[22] J. Short, E. Williams, and B. Christie, “The social psychology of 
telecommunications”. Wiley, London, 1976. 

[23] T. Schubert, F. Friedmann and H. Regenbrecht, “The experience of 
presence: Factor analytic insights”. in Presence: Teleoperators and 
virtual environments, 10(3), MIT Press, Cambridge/MA, USA. 2001, 
266-281 

[24] K. Nowak, “Defining and Differentiating Copresence, Social presence 
and Presence as Transportation”. Presence Workshop, Philadelphia, 
2001, 1-23 


