
SoftPOSIT for Augmented Reality in complex
environments: Limitations and challenges

Lewis Baker
Dept. of Computer Science

University of Otago
Dunedin, New Zealand

bakelew@gmail.com

Stefanie Zollmann
Dept. of Computer Science

University of Otago
Dunedin, New Zealand

stefanie.zollmann@otago.ac.nz

Steven Mills
Dept. of Computer Science

University of Otago
Dunedin, New Zealand
steven@cs.otago.ac.nz

Tobias Langlotz
Dept. of Information Science

University of Otago
Dunedin, New Zealand

tobias.langlotz@otago.ac.nz

Image 3D Model Registration via model-based localization

Abstract—Localization in dynamic environments is a challeng-
ing problem for Augmented Reality (AR) applications. Model-
based localization methods use a prior model and an image to
perform localization, and make use of the appearance of the
environment. These methods cannot always be relied on, since
in dynamic environments, the current appearance may be very
different from the model. In this paper, we investigate SoftPOSIT,
a model-based pose algorithm that does not rely on appearance.
We apply line-based SoftPOSIT to a range of model types and
complexities, and show that while SoftPOSIT produces promising
results on basic cases, more work is needed in this area to attain
useful results in complex real cases and AR applications.

Index Terms—pose, localization, lines, SoftPOSIT

I. INTRODUCTION

Localization in dynamic environments has a wide range of
applications to Augmented Reality (AR). A common approach
to localization is to use a prior model, and an image to perform
the localization. These methods often use the appearance of
features to find 2D-to-3D correspondences and compute the
camera pose [1], [2]. In some dynamic environments, the
appearance is constantly changing, so finding these feature
matches is unreliable. An example is a sport stadium, where a
prior model may not be able to capture the appearance of the
spectators at any given sport event. In this paper, we investigate
what can be achieved with localization methods that ignore the
appearance of features.

By modelling only the unchanging features in the environ-
ment, and detecting those features in 2D, we can eliminate
problems caused by appearance-based descriptors. Line fea-
tures can help achieve this since lines will often correspond
with structural components of a given scene, whereas points
may correspond with textures. Previous work has demonstrated

that line features can be effectively used for localization such
as the work by Zhang and Koch [3], but there has been little
research in line-based localization with appearance-free lines.

In most cases, appearance-based features are used to help
find correspondences between 2D and 3D points or lines.
By considering the colour of features, many incorrect corre-
spondences can be easily discarded. Appearance-free methods
also exist such as SoftPOSIT [4]. SoftPOSIT is a point-
based algorithm that computes both correspondences and pose
simultaneously without using appearance-based descriptors.
David et al. show that this method can also be applied to lines
[5]. SoftPOSIT has been tested thoroughly in synthetic test
cases, and some real applications using computer-aided design
(CAD) models. The results are promising, but it is often not
possible to attain CAD models of the environment. Structure
from Motion (SfM) has been shown to produce accurate
models of large environments easily [6], but SoftPOSIT has
not been thoroughly tested on these types of models.

There have been a variety of related works in the area
of model-based localization, also referred to as image-based
localization. Sattler et al. show a method for localizing images
against a large prior point cloud model [1]. Their initial
work used 2D-to-3D feature-to-point correspondences, but the
authors later expanded their work to employ an efficient search
that leverages both 2D-to-3D and 3D-to-2D correspondences
using SIFT descriptors readily available in the model [7]. The
work of Li et al. is similar in that it combines “forward” and
“inverse matching”, also making use of SIFT [2]. In our case,
we cannot guarantee that the appearance of the environment
will be consistent with the model, so this method and other
similar approaches cannot be used as they rely on SIFT, or
other appearance-based descriptors.978-1-7281-0125-5/18/$31.00 ©2018 IEEE

Campbell et al. show a method for estimating the globally
optimal camera pose and correspondences of a set of 2D points
to a 3D point cloud [8] without appearance information. The
method uses SoftPOSIT as part of its computation to speed
up convergence to the global optimum. This method is point-
based, and has a large computation time for relatively small
point clouds. This makes it unsuitable for large line-based SfM
models, and interactive AR applications. However, their work
supports the need for a pose computation method that does not
require appearance-based correspondences, and works toward
a similar goal as this paper, and SoftPOSIT.

Work by Reitmayr and Drummond supports the idea of
using lines (or edges) for correspondence matching for model-
based tracking [9]. In their work, they use a textured 3D model
and an appearance-based edgel matching method in order to
align a projection of their 3D model to their mobile camera
feed. Their method requires a pose initialization from a known
location, so cannot be directly applied to localization from
arbitrary positions. This work shows that edges can be applied
reliably to localization and tracking problems, though edge
appearance is also an important factor.

There is also the Simultaneous Localization and Mapping
(SLAM) approach, which aims to create a map of the envi-
ronment and localize the user with respect to this map con-
currently. PTAM by Klein and Murray [10], and ORB SLAM2
by Mur-Artal and Tardos [11], are some examples of this ap-
proach. These SLAM methods, while showing huge potential
for AR, have several limitations which make them unsuitable
for stadium localization, and multi-user AR. Due to their use
of monocular vision in triangulating 3D map points, they
require significant translational motion to produce the parallax
required to build accurate maps. It is also challenging to align
these SLAM maps to a global co-ordinate system that can be
shared among multiple users. In our case, we relieve these
problems by assuming that a prior model is already available
through SfM methods. In this way, we have accurate 3D data,
and a global co-ordinate system that multiple users can share.

As previously introduced, SoftPOSIT is a method that can
be applied to line-models to compute pose without relying
on the appearance of the features. SoftPOSIT and some of its
variations have been applied in some basic real-life cases such
as work by Diaz and Abderrahim who employ SoftPOSIT for
localization of mechanical parts [12]. Since SoftPOSIT can
also be applied to line models, and does not use appearance-
based line descriptors, we have elected it as our localization
method for the experiments in this paper.

SoftPOSIT seems to be the most appropriate method that
theoretically accommodates our requirement of appearance-
free line models. In this paper, we investigate the effectiveness
of SoftPOSIT in a range of scene complexities and two model
formats. With our initial objective being to localize in a sport
stadium, we also demonstrate the limitations of this method
when applied to other complex SfM models. As SoftPOSIT
has not thoroughly been applied to real data, our contribution
is an overview of the kind of performance that can be expected
from this method under real-life use cases.

II. METHOD

In this section we outline our method for experimentation
and evaluation of SoftPOSIT. Since we already know from
previous research that this method works in basic cases, we
build a dataset of increasing complexity from a small CAD
model of a line-based object to a large 3D reconstruction of
a sport stadium. The process consists of: ground-truth pose
acquisition, model creation, and localization to this model with
SoftPOSIT. The method is applied to five test cases across
two types of models. In the following subsections, we will
explain our line-based SoftPOSIT implementation, our two
model types, our method for acquiring ground-truth pose, our
pre-processing steps, and our dataset.

A. Localization with SoftPOSIT

As explained in Section I, we choose SoftPOSIT as our
candidate for localization since it requires no information of
line appearance, and is less computationally complex com-
pared to other approaches. In this section, we explain our
implementation of SoftPOSIT, and some preprocessing steps
that we introduce that can reduce computational complexity.

SoftPOSIT is an algorithm that can be used for model-based
localization. It takes as input an initial estimate of the pose,
a 3D model (line or point based), and an image of the model
[4], [5]. The algorithm has been extensively tested on synthetic
examples, and virtual examples [14].

The method works by using the pose estimate to project
model lines into the image. It then creates an initial assignment
matrix based on the geometric differences between the pro-
jected 3D lines, and the observed 2D lines. This step is based
on the SoftAssign method [15]. This matrix is normalized,
and then used by the POSIT algorithm to produce an updated
pose estimate [16]. Finally, this process is repeated for several
iterations until an accurate pose is achieved. Figure 1 shows
the first six iterations on our basic Dodecahedron test case.

Fig. 1. Six iterations of SoftPOSIT running on our basic Dodecahedron case
(clockwise from top-left). The thin red lines represent the 2D lines in the
photograph detected by LSD [13]. The black lines represent the CAD model
rendered with the current pose. Initially the pose estimate is far from correct,
but iteratively gets closer until the black and red lines align.

SoftPOSIT has several parameters that we fix empirically
in our experiments. The parameter α acts as a threshold for
the assignment matrix. When 3D lines are projected using the
pose estimate, each 3D line has its difference to each 2D
line computed, and differences above this threshold will be
assigned a correspondence that tends to zero. The difference
is computed as a weighted combination of the angle between
the lines, and the distance between their endpoints. We found
that an α value of 0.5 produced good results.

The second parameter β controls the rate of convergence,
and is increased at each iteration of the algorithm. Small values
for β will search a larger space of possible poses, but can
create larger execution times. As suggested in the original
work, large β values are better suited for cases where we know
that the pose estimate is close to the actual pose [5]. We have
this parameter set to 20. We observed that values lower than
20 caused the first few iterations of SoftPOSIT to consistently
diverge from the correct pose on our Stadium test case.

B. Model types
There are two different types of 3D models that we consider.

The first, which we refer to as CAD models, are created
manually in a 3D modelling software, where all visible lines
on the object are represented in the 3D model. The physical
objects that we targeted for these cases have simple geometry
and lack complex texture which make them suitable for manual
modelling. Our CAD models were measured and modelled to
scale using Blender modelling software [17].

The second model type is a line-based SfM model. For these
models, we use point-based VisualSFM system by Wu [18],
[19], and feed its output to Line3D++ by Hofer et al. to create
the final line model [20]. In this paper, we assume that creating
these models in advance is a required step for localization in
a large space such as a stadium. This is a fair assumption,
as these types of software are straightforward to use, and can
produce high quality models with little effort. In our stadium
example, we captured 604 photographs from various locations
on one stand, and fed them through the SfM pipeline above
to create the final result.

C. Ground-truth pose
In our SfM test cases, we simply take the output generated

by VisualSFM and consider these as our ground-truth poses.
The images we use for testing the localization method are a
random selection of 20 SfM input images.

For the CAD models, we placed a chessboard marker of
known dimensions at a measured distance from the target
object. Using standard techniques and known intrinsic camera
parameters, we detect the chessboard corners in the image, and
use this to compute the pose [21]. We then offset the origin of
our 3D model by its known translation from the chessboard
origin. Finally, the chessboard is masked out of the input when
passed to the localizer to prevent the chessboard lines from
interfering with the localization result.

While both of these methods can be expected to produce a
small amount of error, our main interest is in the rate of lo-
calization, and speed rather than accuracy. In our experiments,

Fig. 2. Example output from k-means clustering of the 3D line model. The
left image shows the original output from Line3D++ which contains over
22,000 lines. The right image shows the output of performing k-means with
k set to approximately 2,200 (10%).

we compute a reprojection error by projecting the model lines
with both the ground-truth pose, and the estimated pose, and
comparing the corresponding projections. We then introduce
an error threshold which will encompass the small errors in
our measurements, resulting in a metric for the rate of success.

D. Pre-processing and reduction of complexity

We found that the execution time of SoftPOSIT was high
when run with large SfM models. Our initial stadium model
produced by Line3D++ contained over 22,000 3D lines.
An example photograph at original resolution contained over
9,000 lines. Execution time at this level of complexity is
ungainly and not useful or practical, so we considered some
approaches to reduce the complexity for our experiments.

We reduced the number of 2D lines by scaling our input
images down to quarter-size. This scaling was applied to all
five of the test cases in our dataset. For the SfM models, the
number of 3D lines was further reduced by clustering similar
3D lines in the model using k-means [22]. The result of our
clustering (with small k for illustration purposes) is shown in
Figure 2. For each SfM model, we set k to be equal to half
the number of 3D lines in the original model, which is notably
denser than the example on the right in Figure 2.

Computing k-means clustering involves a metric for deter-
mining the distance between the line segment observation and
the cluster centres. In our implementation, the distance was
taken as the 6D distance between each line described as the
union vector of its endpoints. Two 3D lines can be identical
but have different ordering of their endpoints when they are
described as a 6D vector. For comparing two line segments L
and L′, we use

D1 = ||Lp1 − L′
p1||2 + ||Lp2 − L′

p2||2

D2 = ||Lp1 − L′
p2||2 + ||Lp2 − L′

p1||2
(1)

where Lpn is the nth endpoint of L, and take the minimum
of the distances D1 and D2 to determine which of the line
pair’s endpoints are corresponding, and re-order the endpoints
in the vector if necessary.

Since we are assuming that we have an initial estimate of
our pose (as this is a requirement for SoftPOSIT), we employ
one other basic line filtering mechanism. We assume that the
pose estimate is reasonably good. Before SoftPOSIT is run, we
remove all lines from the 3D model that are not visible given

CAD Models SfM Models

Fig. 3. The top row shows a sample image from each test case, the bottom row shows a render of the 3D model we used for that test case. The CAD models
were created manually, and contain all of the visible lines in the object. The SfM models are generated by a combination of VisualSFM and Line3D++, and
are generally sparser and noisier than the CAD models.

the initial pose estimate. This will remove a large portion of
lines which are in the model but not the image. Some observed
model lines will also be removed as the estimate is not always
perfect, but the idea is that SoftPOSIT will be robust to some
occlusion as was shown by David et al. [4].

E. Dataset acquisition
Our objective is to explore SoftPOSIT’s ability to function

under test cases of varying difficulties and model types. We
constructed a dataset of five test cases, where each test case
contains 20 sample photographs. The subject of each test case
is an object or environment of which we have a prior model.
Figure 3 demonstrates a sample image from each test case,
and the corresponding 3D line model that is tested against.

The dataset consists of CAD models of two subjects: a
wireframe dodecahedron, and a snake puzzle. It also contains
SfM models of three subjects: the same snake puzzle, a stack
of books, and a sport stadium. The test cases cover some
of the key properties that can cause problems for a model-
based localizer, such as occlusion, noise, distractor lines, and
imperfections in the model.

III. EXPERIMENTS AND RESULTS

In all tests, we set an upper limit of thirty seconds on
the execution time unless stated otherwise. We deem any
execution time over thirty seconds to be well and truly over
the threshold of what is useful for an AR application, even
allowing for careful optimization. In these cases, the tests are
terminated early, and the reprojection error is taken based on
the last computed pose.

To determine the accuracy of the localization, we project
the visible model lines into the image using both the ground-
truth pose, and the final pose output by the localizer. We then
compare these projections, and compute the reprojection error
as the average of the distances between each line endpoint.
We present the final error as a percentage of the image width,
as well as pixels at 1920× 1080 resolution

We are also interested in the rate of successful localization.
To determine the success rate, we set a threshold on the

reprojection error, and compute the percentage of test cases
that produce a pose that falls below this threshold. In the
following experiments, we set the error threshold to 2% of
the image width. This is a rather accommodating threshold,
corresponding to over 30 pixels at 1920 × 1080 resolution.
This value was chosen as it is large enough to encompass any
error contained in our model and pose data.

Our first experiment looks at the effectiveness of our pre-
processing methods, the second and third experiments show
the overall results of SoftPOSIT on our dataset under both
basic, and typical use cases respectively.

A. SfM model preprocessing

In Section II-D we introduced the idea of preprocessing the
SfM models in order to reduce the complexity of localization
with SoftPOSIT. In this experiment, we show that the execu-
tion time of SoftPOSIT can be reduced using a preprocessing
method that aims to reduce the number of 3D lines. In the
Stadium case, we have a large SfM model that details nearly
all lines in the stadium. However, in most cases, a lot of these
3D lines do not lie in the spectator’s field of view.

In this experiment, we tested 2 variations of k-means
clustering of the 3D lines, and a visibility filter based on the
initial pose estimate. The first variant of k-means filters the 3D
model and outputs the means (or cluster centres) as the final
model (we refer to this as KM-M in Figure 4). The second
variant of k-means outputs the longest input line assigned to
each cluster as the final model (referred to as KM-L). The
visibility filter is applied to each individual test case, rather
than the entire model. It essentially discards any lines that are
not visible, given the initial pose estimate (referred to as VF).

We apply this experiment to two of our SfM datasets, but
not the CAD datasets, as the purpose of the filtering is to
reduce spurious lines and noise which are not present in the
CAD models. We leave out the Books SfM case, as we show
in the following subsections that this case is infeasible. We
apply a random pose error to the ground-truth pose of each
sample in order to simulate real-world inaccuracies in the pose

0
10
20
30
40
50
60
70
80
90

100

No filter KM-M KM-L VF KM-M + VF KM-L + VF

S
u

cc
e

ss
 r

a
te

 (
%

)

Filter method

Success rate on SfM datasets with different filter
methods

Stadium SfM

Snake SfM

0

50

100

150

200

250

300

350

No filter KM-M KM-L VF KM-M + VF KM-L + VF

T
im

e
 (

s)

Filter method

Execution time of successful cases on SfM datasets with
different filter methods

Stadium SfM

Snake SfM

Fig. 4. Comparison of success rate (left) and execution time (right) of different line clustering methods on two SfM models in the dataset. The filter methods
are as follows. KM-M: k-means outputting the means of each cluster. KM-L: k-means outputting the longest line in each cluster. VF: visibility filtering.

estimate. Figure 4 shows the success rate, and execution time
of each clustering method in the two selected datasets.

Figure 4 shows the results of this first experiment. All test
samples were capped at an execution time of 5 minutes instead
of 30 seconds to increase the rate of success. Even this large
cap is reached, which accounts for the low success rate of
the Stadium SfM cases with KM-M, and KM-L filtering. The
VF filtering method seemed to have the most visible effect on
execution time, bringing the Stadium SfM test samples below
the 5 minute execution cap, and increasing the success rate.

The Snake SfM results suggest that if execution time is not
a priority, the best results will be obtained with no filtering
applied. But in practice, it is not feasible to run for extended
periods of time. So applying a filtering method such as VF or a
combination of VF and KM-M, can reduce the execution time.
More thorough testing of the effect of these filtering methods
is left for future work. For the remainder of the experiments,
we set the execution cap to 30 second, and use KM-M +
VF since it resulted in the best execution times with similar
success rate compared to VF for the Stadium SfM test case.

B. Basic use-case

Table I shows the results of our experiments in an ideal use
case. In this experiment, we fix SoftPOSIT’s parameters, and
provided the ground-truth pose as the initial pose estimate.
This was done as a base case, to determine how effectively it
can localize under the unlikely but valid circumstance that the
pose estimate is highly accurate.

TABLE I
SOFTPOSIT BASIC USE-CASE

Test case Dodec. Snake 1 Snake 2 Books Stadium
Model type CAD CAD SfM SfM SfM
Success (%) 90 95 40 0 20

Err. Succ. (%) 0.888 0.980 0.865 N/A 0.408
Err. Succ. (px) 17.0 18.8 16.6 N/A 7.8

Time (ms) 50 1585 691 2465 18956

The results show that even in the basic case, localization
using SfM models is difficult. The CAD test cases worked
relatively well, with an average success rate of over 90% for

both. But all of the three SfM cases had low success rates,
and the Books case failed to produce an accurate localization
result in all of its samples.

The Books case, while not completely planar, contains a
large proportion of lines on the surface of the top-most book.
Scenes consisting of co-planar lines are known to be a failure
case of the POSIT algorithm, so this result is not surprising.
A variation of POSIT (pose from known correspondences) for
co-planar scenes is presented by Oberkampf et al. [23], but
there has been no work in applying this to SoftPOSIT for
points or lines when the correspondences are unknown.

An interesting result is the Snake test, for which we had
both CAD and SfM models. Our SfM pipeline was unable
to capture all the lines that were present in the object, so
the Snake SfM model was sparse compared to its CAD
counterpart. In the cases where the SfM Snake succeeded, it
did produce a slightly lower reprojection error than the CAD
model. This could be to do with imperfections in the physical
joints of the Snake puzzle, which caused it to misalign slightly
with the “perfect” CAD model. Since the SfM model was
produced using actual observations of the object’s edges, the
lines that are present have the potential to be highly accurate.
Performing a t-test on both complete Snake datasets, we found
a p-value of 0.0211, which tells us the Snake SfM model
resulted in a small but significant improvement of reprojection
error in successful cases compared to the CAD model, at the
cost of a much lower success rate.

It is also notable that while the Stadium SfM case had a low
success rate, it also produced a relatively small reprojection
error in success cases. While the success rate leaves much to
be desired, it shows promise in its application to AR with an
average reprojection error of 0.408% image width (7.8 pixels
at 1920× 1080 resolution).

C. Typical use-case

In this experiment, we look at the performance of SoftPOSIT
under a more typical use case, where the input pose estimate
is erroneous. In an AR application, such an estimate could be
obtained from mobile device sensors.

In this experiment, we do not use mobile sensors to acquire
a pose estimate. This is because our SfM models are scaled

arbitrarily, and none of our models are aligned to GPS co-
ordinates. Instead, we artificially add error by adding random
adjustments to the ground-truth camera pose. Since SoftPOSIT
localizes by minimizing the 2D error of projected model lines,
we pick a pose adjustment that results in a random reprojection
error in a predetermined range. In this way, the 2D error added
is consistent regardless of the scale of the model.

TABLE II
SOFTPOSIT TYPICAL USE-CASE

Test case Dodec. Snake 1 Snake 2 Books Stadium
Model type CAD CAD SfM SfM SfM
Success (%) 94 81 36 0 12

Err. Succ. (%) 0.926 1.049 0.744 N/A 0.496
Err. Succ. (px) 17.8 20.1 14.3 N/A 9.5

Time (ms) 80 1646 680 2556 18693

The results in Table II show the success rate, error, and
execution time of each of our models when the ground-truth
pose is modified randomly. Each test case is run 5 times, and
the averages are presented in the table.

Compared to the basic use-case, the success rates are mostly
lower as expected. The exception here is the dodecahedron
model. This case was simple, was generally insensitive to
inaccuracies in the pose estimate, and often succeeded in
cases where the estimate was drastically wrong. The higher
percentage here could be attributed to the larger sample size
(5 runs per image) due to the randomness in the pose estimate.

IV. CONCLUSION AND FUTURE WORK

In this paper we outlined the problem of model-based
localization, specifically in cases where our image may not be
similar in appearance to our prior 3D model. We implement
a line-variant of SoftPOSIT, and apply it to some challenging
real-life examples using different model types.

Our results showed that SoftPOSIT can be effective in some
real-life cases, particularly when the model is simple. In these
cases, it can achieve a good rate of localization with short
execution times. We also showed that with some SfM models,
good results can be achieved but not as reliably, and that more
work is needed to achieve good results in complex scenes.

In the future, we would like to experiment with other
common types of 3D models, such as triangulated meshes.
Meshes are not immediately suited to this type of localization,
as they often contain many edges that do not correspond to
visible geometry or texture. We also aim to experiment with
alternative methods, or formulations of SoftPOSIT that are
robust in localizing complex SfM models.

ACKNOWLEDGMENT

We thank Forsyth Barr Stadium, and Dunedin Venues
Management Ltd. for providing stadium access to capture our
dataset. This project is supported by an MBIE Endeavour
Smart Ideas grant.

REFERENCES

[1] T. Sattler, B. Leibe, and L. Kobbelt, “Fast image-based localization using
direct 2D-to-3D matching,” in Proceedings of the IEEE International
Conference on Computer Vision. IEEE, nov 2011, pp. 667–674.

[2] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua, “Worldwide Pose
Estimation Using 3D Point Clouds.” Springer, Cham, 2012, pp. 15–29.

[3] L. Zhang and R. Koch, “An efficient and robust line segment matching
approach based on LBD descriptor and pairwise geometric consistency,”
Journal of Visual Communication and Image Representation, vol. 24,
no. 7, pp. 794–805, oct 2013.

[4] P. David, D. Dementhon, R. Duraiswami, and H. Samet, “Softposit:
Simultaneous pose and correspondence determination,” International
Journal of Computer Vision, vol. 59, no. 3, pp. 259–284, 2004.

[5] P. David, D. DeMenthon, R. Duraiswami, and H. Samet, “Simultaneous
pose and correspondence determination using line features,” in Com-
puter Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on, vol. 2. IEEE, 2003, pp. II–II.

[6] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski, “Building
rome in a day,” in Computer Vision, 2009 IEEE 12th International
Conference on. IEEE, 2009, pp. 72–79.

[7] T. Sattler, B. Leibe, and L. Kobbelt, “Efficient & Effective Prioritized
Matching for Large-Scale Image-Based Localization,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 39, no. 9, pp.
1744–1756, sep 2017.

[8] D. Campbell, L. Petersson, L. Kneip, and H. Li, “Globally-Optimal
Inlier Set Maximisation for Simultaneous Camera Pose and Feature
Correspondence,” in Proceedings of the IEEE International Conference
on Computer Vision, vol. 2017-Octob, sep 2017, pp. 1–10.

[9] G. Reitmayr and T. W. Drummond, “Going out: Robust model-based
tracking for outdoor augmented reality,” Proceedings - ISMAR 2006:
Fifth IEEE and ACM International Symposium on Mixed and Augmented
Reality, no. May, pp. 109–118, 2007.

[10] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in 2007 6th IEEE and ACM International Symposium on
Mixed and Augmented Reality, ISMAR, 2007.

[11] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras,” IEEE Transac-
tions on Robotics, vol. 33, no. 5, pp. 1255–1262, oct 2017.

[12] J. Diaz and M. Abderrahim, “Modified SoftPOSIT algorithm for 3D
visual tracking,” 2007 IEEE International Symposium on Intelligent
Signal Processing, pp. 1–6, 2007.

[13] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “Lsd: A fast
line segment detector with a false detection control,” IEEE transactions
on pattern analysis and machine intelligence, vol. 32, no. 4, pp. 722–
732, 2010.

[14] P. David, D. DeMenthon, R. Duraiswami, and H. Samet, “Evaluation of
the softposit model-to-image registration algorithm,” Evaluation, 2002.

[15] A. Rangarajan, H. C. I, and F. L. Bookstein, “The Softassign Procrustes
Matching Algorithm,” Lecture Notes in Computer Science, vol. 1230,
pp. 29–42, 1997.

[16] D. F. Dementhon and L. S. Davis, “Model-based object pose in 25 lines
of code,” International Journal of Computer Vision, vol. 15, no. 1-2, pp.
123–141, jun 1995.

[17] Blender Foundation, “Blender.” [Online]. Available:
https://www.blender.org/

[18] C. Wu, “Towards linear-time incremental structure from motion,” in 3D
Vision-3DV 2013, 2013 International Conference on. IEEE, 2013, pp.
127–134.

[19] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, “Multicore bundle
adjustment,” in Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on. IEEE, 2011, pp. 3057–3064.

[20] M. Hofer, M. Maurer, and H. Bischof, “Efficient 3D scene abstraction
using line segments,” Computer Vision and Image Understanding, vol.
157, pp. 167–178, apr 2017.

[21] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22, 2000.

[22] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[23] D. Oberkampf, D. F. DeMenthon, and L. S. Davis, “Iterative pose
estimation using coplanar feature points,” Computer Vision and Image
Understanding, vol. 63, no. 3, pp. 495–511, 1996.

