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Abstract—Fast power line detection in images is useful in
photogrammetry applications such as measuring wire tension
and sag. To make these measurements, images of entire power
line spans must be used which may include large amounts of
curvature. Previous work in power line detection has focused on
aerial or close proximity images where no power line curvature
is visible. This paper assesses feasibility of ground-based imaging
utilising smartphone cameras together with fast and robust power
line detection using two common Hough transform techniques,
and a line tracing algorithm.

I. INTRODUCTION

Overhead power lines are a common structure in urban and
rural areas that require regular maintenance and inspection.
Inspection procedures can be difficult and dangerous for lines-
men for many reasons such as the large amount of electrical
energy in the conductors, and the height of the poles above
the ground. It would be useful if these inspection procedures
could be completed remotely using cameras and photogram-
metry techniques. LineSmarts is a mobile application that can
perform these kinds of procedures [1]. It is able to make
measurements of properties such as conductor tension, sag,
and span length, while the user remains at a safe distance
from the structures.

One of the challenges with this application is how to
automatically detect power lines in the images. In particular,
these images will be taken from ground level at medium-to-
long distances, so the power lines will show large amounts of
curvature in the image, such as the example in Fig. 1. There
has been previous work in automatic power line detection, but
these works generally assume an aerial perspective where the
power lines form straight lines in the image.

However, straight line detection is not appropriate for mea-
suring these properties of power lines. To measure sag, the
curvature of the power line must be visible, and the whole span
must be in the frame. So the problem is how to detect curves
in images that approximately fit a parabolic shape. Another
problem is that the power lines will be photographed from
various angles, which results in perspective transformations
on the parabolic curves.

Yan et al. use a Radon transform to detect power line
segments which are linked at the endpoints using a Kalman
filter [2]. Their solution is robust to noisy backgrounds,

Fig. 1. Power line fitting using 3 manually selected points on the curve (top)
versus our automatic power line detection method.

and can allow small amounts of curvature, but makes many
assumptions about the properties of the lines in the image
which cannot be made for mid-range terrestrial images.

Zhang et al. expand upon this, using a Hough transform
to detect power lines in UAV imagery, and is able to achieve
real-time performance for power line tracking [3]. The lines of
interest are clustered together into one line, with the intention
of using this line to guide the UAV aircraft.

Chen et al. use an improved Radon transform to detect
power lines from high resolution satellite imagery [4]. They
also present an algorithm for reliably distinguishing straight
power lines from noise in the Radon space. However, they
make similar assumptions to [2] such as the low curvature,
and parallelism of the lines.

Aside from Hough and Radon transform techniques, there
has also been work on power line detection using line tracing978-1-5090-2748-4/16/$31.00 c©2016 IEEE



Fig. 2. Example of our method for power line detection. Clockwise from top-left: Input image, perspective transformation is applied, image is filtered, power
lines are detected, reverse perspective transformation is applied to the wires, separate lines can be distinguished in the original image.

algorithms. Wan et al. use a line tracing algorithm which is
able to extract curved power lines from aerial images. The
starting points for the line tracer were calculated with prior
knowledge about the 3-D co-ordinates of the power poles [5].

To our knowledge, there has been no previous work in
detecting power lines in mid-range terrestrial images, such
as the image in Fig. 1. However, there has been work in
parabola detection in images. Some examples of this work
include [6] where the authors employ a Hough transform to
detect the boundaries of rib bones in X-ray images, and [7]
where the authors apply a Hough transform to detect eyelashes
and eyelids in normalised images.

The nature of the Hough transform allows it to be adapted
to detect more complex shapes such as ellipses, or curves
at the cost of more expensive computation [8]. This paper
discusses the strengths and weaknesses of Hough transform
approaches for automatically detecting power lines in images.
In comparison, a line tracing algorithm is tested which requires
a small amount of user input for faster results.

Our method for power line detection assumes that the im-
ages have been transformed to remove perspective distortion.
Then we apply our parabola detection algorithms to identify
the power lines in the transformed image.

II. METHOD FOR POWER LINE DETECTION

The four stages of our power line detection method are
shown in Fig. 2. First, a perspective transformation is ap-
plied which distorts the curves into a catenary shape in the
image. Second, the transformed image is filtered using edge
detection techniques. Third, the power lines are detected in the
filtered image using one of three algorithms: Hough transform,
randomized Hough transform, or the line tracer. Finally, the
detected power lines are transformed back to the original
perspective.

III. IMAGE PREPARATION

There are two main steps required to prepare the images for
the parabola detection algorithms.

A. Perspective transformation

This step transforms the image such that the power lines are
aligned with the image plane of the camera. This perspective
transformation is necessary in order to perform parabola
detection on images taken from various angles such as the
steep angle shown in Fig. 1. The quadratic equation

y = c(x− a)2 + b (1)

was used as an approximation of the natural catenary equation
of the power lines.

The perspective transformation step requires some previ-
ously acquired information: the distance to the poles, the pixel
locations of the poles in the images, the cameras intrinsic data,
and the gravity vector from the accelerometer sensor in the
smartphone. The pole locations are selected by the user, and
the distances are acquired using a laser range finder.

The following steps describe the perspective transformation:
Firstly, the pole locations are projected into 3-D using the pole
distances and the cameras intrinsic data. Secondly, a scaled
gravity vector is added to these 3-D points, and the new 3-D
points are projected back to 2-D. Lastly, a perspective warp is
applied to the image to transform the four 2-D points from a
distorted quad into a rectangular shape.

Fig. 2 (b) demonstrates the effects of this transformation,
which we achieve through features of LineSmarts.

B. Image filtering

Some image filtering is required before the Hough transform
or line tracing algorithms can be used to detect power lines.
All three of the algorithms tested require a binary input image
where edge pixels are black, and non-edge pixels are white.



The image filtering used consisted of the following steps:
1) Gaussian blur
2) Gradient filter
3) Denoising based on non-local means [9]
4) Binary threshold
5) Edge thinning

This method is similar to that used in [3]. The main differences
are in the Gaussian blur, denoising, and edge thinning.

The Gaussian blur is used with a 5×3 kernel, with a smaller
σ value in the Y-dimension. The result is a stronger blur across
vertical edges, while maintaining sharp gradients above and
below the power lines.

The denoising step using non-local means removes more
noise before the final thresholding step. This step is especially
useful in reducing noise from objects such as trees which are
a common obstruction in our power line images.

Edge thinning is employed to improve the efficiency of the
Hough transform approaches, and simplify the peak selection
stage. Power lines with a thickness greater than 1 pixel
often produce multiple similar outputs which are difficult to
distinguish and extract reliably.

Fig. 2 (c) shows an example of the filtering output.

IV. HOUGH TRANSFORM FOR CURVE DETECTION

The Hough transform [10] is a commonly used method for
detecting curves in images. The first step for applying a Hough
transform to an image is usually a type of edge detection
filtering that produces a binary image. The Hough transform
algorithm for detecting parabolas defined by Equation (1) is
shown in Algorithm 1.

1: procedure HT(image matrix I)
2: allocate a 3-D accumulator with i× j × k cells
3: to represent a, b, and c parameter values
4: for edge pixel P in I do
5: compute all parabolas that pass through P
6: for each candidate parabola C do
7: increment accumulator cell for C
8: end for
9: end for

10: end procedure

Algorithm 1: Algorithm for computing a Hough accumulator
for detecting parabolic curves.

The result is a 3-dimensional accumulator with i × j ×
k cells, where cells with many votes represent the equations
of the dominant parabolas in the input image. Searching this
accumulator for local maxima is a simple but expensive way
of finding the parabolas in the image.

A. Randomized Hough transform

The randomized Hough transform [11] is a common variant
of the Hough transform that takes a randomized rather than a
brute-force approach for sampling the edge pixels. This allows
it to have more control over the computation time, and makes
it more robust to noise in the image.

The randomized Hough transform algorithm also works to
solve the problem of searching for curves in the accumulator.
The image is sampled randomly for n iterations, and votes
for the best matching parabolas are accumulated based on a
similarity threshold t. Next, the parabola with the most votes
is saved and its associated pixels are cleared from the image,
then the process repeats.

This algorithm eliminates the requirement of a peak selec-
tion step, and as long as n is large enough, the image will
be sampled fairly and the correct parabolas will be output.
Algorithm 2 shows the process for detecting parabolas using
a randomized Hough transform.

1: procedure RHT(image matrix I)
2: for e epochs do
3: for n iterations do
4: select 3 random pixels from I and fit a parabola
5: if accumulator contains a similar parabola then
6: increment the vote count for that cell
7: set the cell to the average parabola
8: else
9: create a new cell with the new equation

10: set its vote count to 1
11: end if
12: end for
13: output the accumulator cell with the best score
14: zero pixels in I associated with the best parabola
15: reset the accumulator
16: end for
17: end procedure

Algorithm 2: Finding parabolic curves with the randomized
Hough Transform.

B. Limitations of Hough transform techniques

When using a Hough transform to detect curves, the final
stage involves searching the accumulator for peaks or clusters
that represent the dominant curves in the image. An important
drawback of Hough transform techniques is the grouping
of similar curves. Choosing the parameters for the standard
Hough transform involves fairly descretizing the parameter
space into i × j × k dimensions. If i, j and k are too small,
two similar curves in an image may be grouped together, and
stored as one large peak in the accumulator.

Another challenge with Hough transform is the false detec-
tion of curves. Fig. 3 demonstrates an example of this. The
input image contains two parabolas, which will produce two
large peaks in the Hough space. However, a third peak will
also be present which corresponds to the parabola drawn in
red. This third peak can overshadow any smaller parabolas that
may be present in the image, and cause them to go undetected.

Another challenge lies in selecting appropriate accumulator
dimensions and parameter ranges to achieve the required
precision. For our standard Hough transform experiments,
these values were selected empirically based on the observed
usual curvature of power lines.



Fig. 3. An example of the types of curves that can be falsely identified by
the standard Hough transform. The real curve at the top-left will produce a
smaller peak than the spurious curve shown in red.

Slow computation time is another drawback of Hough trans-
form techniques. Since our curve equation has three parame-
ters a, b and c, the process of computing all possible parabolas
through a point is much more computationally expensive
than the equivalent algorithm for straight lines. Furthermore,
finding local maxima in a 3-dimensional accumulator is also
costly, especially if our accumulator dimensions i, j and k
are large. For these reasons we only consider the randomized
Hough transform in our evaluation.

The randomized Hough transform can also suffer from these
drawbacks, based mainly on the values set for t and n. Large
values for n will improve sampling fairness at the cost of more
computation, and large values of t can cause more peaks to
group together but will keep the accumulator small.

V. LINE TRACING ALGORITHM

For our application, a high performance solution is required.
For this reason, the standard Hough transform algorithm was
not appropriate. Even with relatively small values of i, j and k,
execution can take minutes to generate an accumulator. Even
then, the results were not accurate with our peak selection
algorithm.

We also propose an alternative method that requires an extra
amount of user input but provides much more accurate, and
faster results than the standard Hough transform. Based on
an initial region indicated by the user, we use a line tracing
algorithm similar to [5], but with some modifications. Wan et
al. produce lines one pixel at a time, using three directional
gradient values to determine the line direction. Our method
builds a parabolic equation at each iteration, and projects short
line segments of a predetermined width, W , to build a curve.

The difficulty of both of these line tracing algorithms is
determining an initial point for the line tracer to start from.
Wan et al. use prior knowledge about the 3-D coordinates of
the poles and the focal length of the camera to determine these.
For our application, we receive these starting points as input
from the user.

The line tracing algorithm requires that the user swipes over
a group of power lines. Since this algorithm is designed to be
used on smartphones, we decided that a swiping gesture could
provide the required starting pixels with only a small amount
of extra effort from the user. This swipe gesture is combined
with the filtered image to provide a number of starting pixels,
from which the power lines are traced outwards toward the

1: procedure LINETRACE(image matrix I , Starting pixel P )
2: let CL = CR = P
3: define a default parabolic curve C
4: use C to generate points L and R,
5: −W and W pixels away from P in x-axis
6: while CL and CR are within the image do
7: for h in range −H to H do
8: generate line from CL to L with y-offset h
9: generate line from CR to R with y-offset h

10: compute scores for these segments based on
11: number of pixels that match I
12: end for
13: break if no score is good enough
14: save the segments with the best score
15: set CL and CR to the ends of the best segments
16: approximate new parabola C through CL, P , CR
17: update L and R as in line 4
18: end while
19: end procedure

Algorithm 3: Tracing parabolic curves in a binary image from
a starting pixel. Parameters W and H are predefined, and rep-
resent the line segment width and search height respectively.

poles in short segments. Each time a segment is added, the
power line equation is recomputed to improve the accuracy of
the following segment predictions. Algorithm 3 describes the
line tracing algorithm in detail, and Fig. 4 demonstrates one
iteration of the line tracing algorithm.

Fig. 4. One iteration of the line tracing algorithm. The green pixels represent
pixels traced in previous iterations. The red lines indicate the candidate
segments. The blue pixel is the predicted end-point.

VI. EXPERIMENTAL RESULTS

Our implementations of three parabola detection algorithms
were tested on two image sets, with 17 images total. The first
set contains synthetic images of between 4 and 5 complete
parabolas with no noise. The second set contains real images
of power lines taken from various angles, with between 3 and
8 visible conductors, and mostly clear sky backgrounds behind
the conductors. Each visible conductor was hand labelled to
establish the ground-truth pixels in the image. This ground-
truth data was used as a basis for measuring the detection
accuracy of our algorithms.

A. Possibility of power line detection

The first experiment was to test the possibility to detect
power lines using Hough transform, randomized Hough trans-
form, and line tracing. Large parameters were set for both



TABLE I
SYNTHETIC AND REAL IMAGES

Synthetic images

Algorithm Detection rate (%) Detection accuracy (px) Time (s)

HT 9.30 4.12 1033
RHT 88.37 3.88 416.5
LT 90.70 0.96 1.11

Real images

Algorithm Detection rate (%) Detection accuracy (px) Time (s)

HT 17.14 9.86 1554
RHT 94.29 2.07 652.6
LT 85.71 3.11 5.55

Hough transform algorithms to observe the upper limits of
detection accuracy. The three algorithms were run with each
of our test images, and the detection results were compared
to the ground-truth data. The input images were taken from
a smartphone camera with a resolution of 5312× 2988. This
resolution defines the scale of our accuracy metric.

In our results, we define detection accuracy to be the average
pixel deviation of the detected line from the best matching
ground-truth line. Detection rate is the percentage of power
lines that were detected with an accuracy of less than 10 pixels.
Lines with larger pixel deviations were discarded, and the line
is treated as unidentified. Execution time is the average time
taken per image, excluding user input time for the line tracer.
The results of our first experiment are shown in Table I.

The results show that the standard Hough transform has
a low detection rate, poor detection accuracy, and a slow
execution time. The randomized Hough transform algorithm
performed much better with almost all power lines detected,
higher accuracy, but still with a slow execution time. The
line tracer performed much faster than both Hough transform
approaches, with good detection rate and accuracy. Fig. 5 (b)
is an example of a power line detected with high accuracy
using the line tracer.

B. Constraints on execution time

Our main aim is to automatically detect power lines in
images in order to make measurements of conductor properties
from smartphone images. For our application, the detection
algorithm must perform faster than a user manually identifying
the wires. Our line tracer takes approximately 1 second to
execute per line in the image, which we consider reasonably
fast for a convenient user experience.

For the next experiment, we reduced the iteration count for
the randomized Hough transform such that its execution time
is comparable to the line tracer, while maintaining consistent
results over multiple runs. The results are shown in Table II.

The results from this experiment suggest that the random-
ized Hough transform with a lower iteration count can detect
power lines with a similar rate and accuracy as the line tracer,
but at approximately four times the execution time.

TABLE II
SYNTHETIC AND REAL IMAGES, FEWER ITERATIONS

Synthetic images

Algorithm Detection rate (%) Detection accuracy (px) Time (s)

RHT 88.37 2.87 10.73
LT 90.70 0.96 1.11

Real images

Algorithm Detection rate (%) Detection accuracy (px) Time (s)

RHT 88.57 2.91 13.08
LT 85.71 3.11 5.55

C. Discussion

Fig. 5 outlines some interesting cases where we can com-
pare the line tracer to the randomized Hough transform.

The first row shows a case where both algorithms detected 7
out of the 8 visible power lines with good accuracy. However,
the undetected power line is different in both images. The
randomized Hough transform failed to detect a very thin wire.
This wire was so thin that only approximately half of it was
visible after the image was filtered, so the additional noise in
the image prevented this from being detected. The line tracer
was able to detect this since most of the visible pixels were
traced with good precision and an accurate curve was fit to
fill in the missing pixels.

The second row demonstrates a case with large amounts of
perspective distortion on the power lines, caused by a steep
photographed angle. Both algorithms managed to detect the
lines with good precision, but the line tracer fails on one of
the wires as the predicted segments jumped to an adjacent
wire, producing an incorrect result. The randomized Hough
transform is much less likely to output non-existent curves
such as this one.

The third row is an example where the randomized Hough
transform beats the line tracer significantly. The noise from
the tree in the background distracted the line tracer and as a
result, only 1 of 5 wires were detected accurately. However,
the randomized Hough transform manages to detect 4 out of
5 wires accurately.

VII. CONCLUSION

In this paper, three different algorithms were tested on
their ability to detect power lines in mid-range terrestrial
photographs. This type of power line detection is useful for
safe inspection and measurement of power lines. Most of the
previous work in power line detection focused on straight line
detection techniques which cannot be applied to images of
power lines with large amounts of curvature.

The results show that Hough transform and line tracing are
both good solutions for detecting power lines in transformed
images, but with different strengths and weaknesses.

The standard Hough transform approach produces many
challenges such as the detection of spurious curves, slow
execution time, and difficulty of searching for peaks in the
Hough space. Randomized Hough transform improves upon



Fig. 5. Comparing the line tracer to the randomized Hough transform in three cases. From left to right: input image, line tracer output, randomized Hough
transform output.

this, and eliminates the peak searching step altogether, im-
proving performance and accuracy drastically.

Though a large improvement, the randomized Hough trans-
form can still perform slowly. Line tracing algorithms can
provide a high performance solution to power line detection,
but require extra user input to select the starting points.

Our solutions have shown that detecting power lines in
ground-based images is feasible. The line tracer provides fast
detection, whereas the randomized Hough transform provides
accurate and automatic, but slower detection. Both solutions
can be useful depending on the user’s requirements. If respon-
siveness is a priority, the line tracer should be implemented.
If high accuracy is required, the randomized Hough transform
could be implemented as a background process.

There are plenty of paths for future work in this area. For
example, a better filtering algorithm could improve results on
noisy images. Also, more work could be done optimizing the
line tracing algorithm, which often performs poorly on images
where power lines cross, or parts of the line are not visible.

ACKNOWLEDGMENT

The authors would like to thank the University of Otago for
supporting this project through the Priming Partnerships fund.
All figures are licensed by the authors for use under the Cre-
ative Commons Attribution-ShareAlike 3.0 Unported License
(CC-BY-SA, https://creativecommons.org/licenses/by-sa/3.0/).
If reusing these figures please make reference to this article.

REFERENCES

[1] “Home | LineSmarts.” LineSmarts Ltd. 2016 [Online]. Available:
http://www.linesmarts.com/. [Accessed: 12-Sep-2016].

[2] G. Yan, C. Li, G. Zhou, W. Zhang, and X. Li, “Automatic Extraction
of Power Lines From Aerial Images,” IEEE Geoscience and Remote
Sensing Letters, vol. 4, pp. 387–391, July 2007.

[3] J. Zhang, L. Liu, B. Wang, X. Chen, Q. Wang, and T. Zheng, “High
Speed Automatic Power Line Detection and Tracking for a UAV-
Based Inspection,” in Industrial Control and Electronics Engineering
(ICICEE), 2012 International Conference on, pp. 266–269, Aug. 2012.

[4] Y. Chen, Y. Li, H. Zhang, L. Tong, Y. Cao, and Z. Xue, “Automatic
power line extraction from high resolution remote sensing imagery based
on an improved Radon transform,” Pattern Recognition, vol. 49, pp. 174–
186, Jan. 2016.

[5] X. Wan, X. Qu, L. Wang, B. Wu, J. Zhang, and S. Zheng, “Photogram-
metric techniques for power line ranging,” Pattern Recognition Letters,
2010.

[6] Z. Yue, A. Goshtasby, and L. V. Ackerman, “Automatic detection of rib
borders in chest radiographs,” IEEE Transactions on Medical Imaging,
vol. 14, pp. 525–536, Sept. 1995.

[7] T.-H. Min and R.-H. Park, “Eyelid and eyelash detection method in
the normalized iris image using the parabolic Hough model and Otsus
thresholding method,” Pattern Recognition Letters, vol. 30, pp. 1138–
1143, Sept. 2009.

[8] R. O. Duda and P. E. Hart, “Use of the Hough Transformation to Detect
Lines and Curves in Pictures,” Commun. ACM, vol. 15, pp. 11–15, Jan.
1972.

[9] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image
denoising,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60–65 vol. 2,
June 2005.

[10] P. V. C. Hough, “Method and means for recognizing complex patterns.”
US Patent Number 3069654, Dec. 1962.

[11] L. Xu, E. Oja, and P. Kultanen, “A new curve detection method:
Randomized Hough transform (RHT),” Pattern Recognition Letters,
vol. 11, pp. 331–338, May 1990.


