‘Java and ActiveX” Hypermedia and Multimedia E96

Eoi»ﬁ

How hot is it 7

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Plan:

o Q@/\@

. m@nci@ in Java

o >oi<®vm
o u ava Vs. >oi<®vm

o M@/\@ wmmcﬁm

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

The design goal for Java are:

e Simple, Object Oriented and Familiar
Architecture Neutral and Portable
Hight Performance
Interpreted, Threaded and Dynamic

Robust and Secure

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Why is it Simple, Object Oriented and Familiar 7

The language is very simple, and fundamental concepts are

grasped quickly, and it’s very easy to programme
There are a lot of existing libraries
A lot of bad “stuft” has been removed to make it simple

Since object orientation is a big buzz-word and major
programming languages are object oriented - java is that too

The syntax is C/C++ alike and hence familiar to a lot of

programmers

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Java is close to C and C++, things that were removed include:

e No typedefs, Defines or Preprocessor; typedefs implemented as

classes, defines as constants

No structures or Unions; classes capture this
No functions; methods instead

No goto; multilevel breaks

No operator overloading

No automatic Coercions

No pointer

"homas Hohn 22 October 1996

‘Java and ActiveX”

Hypermedia and Multimedia E96

Primitive Data types, are equal on all platforms:

Type Size/Format

byte 8-bit two’s complement
short 16-bit two’s complement
int 32-bi1t two’s complement
long 64-bit two’s complement

float 32-bit 1EEE 754
double 64-bit 1EEE 754

char 16-bit Unicode character
boolean true or false

"homas Hohn

Description

Byte-length integer
Short integer
Integer

Long iInteger

Single-precision float
Double-precision float

A single character
A boolean value

22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

The rest of the language:

e Arrays are first-class language objects (a real object), that

means they have a runtime presentation

e Strings are also object divided into 2 kinds:

— String class (read-only objects)

— StringBuffer (mutable string objects)
e We don’t have pointers to arrays or strings

e Multi-Level Break since there is no goto

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

e Memory Management and garbage collection (automatically),

that means

No pointer arithmetics
No malloc or free

The new operator allocates memory for objects, but no
explicit free
Memory management model based on:

x Objects

x References to objects through symbolic handles

e The garbage collector is running in the background, as a low
priority thread

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

HellojavaWorld.java:

import java.applet.Applet;
Iimport java.awt.Graphics;
public class HellojavaWorld extends Applet {
public void nit() {
resize(200,50);

¥
public void paint(Graphics g) {

g.drawString("'Hello JAVA World !",50,25);

k
¥

Notes:
e Source files must have same name as the class being defined !

e Only one public class in each file

"homas Hohn 22 October 1996

‘Java and ActiveX”

HellojavaWorld.html:

<html>
<title>Hello Java World :-)</title>
</head>
<body>

Hypermedia and Multimedia E96

<applet code=HellojavaWorld.class width=200 height=50>

</applet>
</body>

</html>

File Edit Yiew Go Bookmarks Opfions Direclory Window

Gl | B @B 2| S| @ @

Back | Fopwesd) - Home Reload | Images Cpen Pririt Find St

Location: _w._ﬁﬂu . daimi. asa. dkf~thohnHellojavaWorld. html

What's New | What's Cool| Handbaok| NetSearch| MetDirectory| Software

Hello 1AW world !

"homas Hohn

22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Generic applet-tag:

<APPLET
CODEBASE CDATA #IMPLIED -- code base --
CODE CDATA #REQUIRED -- code file --
NAME CDATA #IMPLIED -- applet name --
WIDTH NUMBER #REQUIRED
HEIGHT NUMBER #REQUIRED
ALIGN (left]right]top]texttop|middle]

absmiddle|baseline|bottom]absbottom) baseline
VSPACE NUMBER #IMPLIED
HSPACE NUMBER #IMPLIED
</APPLET>

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Why Architecture Neutral and Portable 7

Java should support development of applications in

heterogeneous environments
The idea of binary distribution is dead !

Java was not original designed for the WWW, but WWW
browsers typically run on different platforms

The java-compiler generates “byte code” - which is architecture

neutral intermediate format - instead of native machine

instruction (machine code)

Since its intermediate code - it’s interpreted in a Virtual
Machine, which is a abstract machine

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

e A true portable system should be

— Architecture neutral

— Have a strict definition of basic data types - that gives no
data incompatibilities across platforms

e Java should be able to run on every architecture, since it
follows the POSIX standard
(POSIX is a standard way for application programs to obtain

basic services from the operating system)

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

What about Performance ?

It’s well know that interpreted code is slower than compiled
code

No need for type checking at runtime

Automatic garbage collector - prevents memory leaks and

hence starvation

They claim that a Java program in average is 20 times as slow

as a C program (Java in a Nutshell)

The garbage collector is running in the background as a low
priority thread, and does thereby not affect the execution of
the program

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

It’s Interpreted, Threaded and Dynamic.

Since the language is interpreted it can run on any machine on

which the interpreter and run-time system has been ported

It’s ideal for prototyping, since you avoid the heavyweight

compile, link and test-cycle

There is support for concurrent threads of activity, since we
have threads

Classes can be linked at runtime, the classes can be
downloaded at runtime from across networks - the downloaded
code is of course verified, so it can be considered secure

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

It’s Robust and Secure:

Robustness

Java is strongly typed
Hence syntax-related errors will be caught at compile time

Since we have true arrays and strings, it’s possible for the
interpreter to check array and string indexes which eliminates

corruption of data and overwriting of memory

Many compile-time checks are carried over to the run-time

system. This provides greater flexibility but also gives bigger

byte code

The linker understands the type-system

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Security

Based on sandbox approach

The memory layout decisions are not made by the Java
compiler as they are in C/C++

There are no pointer, references to memory are done by
symbolic “handles”, these are resolved to real memory
addresses at run time by the Java interpreter

Programmers can’t forge pointers to memory, since the memory

allocation /referencing model is opaque to the programmer

Late binding of structures to memory

Foreign code (downloaded from the net) is verified by the Byte
Code Verifier

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

The Byte Code Verification process:

e Newer trust downloaded code, you can’t ensure that it was
produced by a hostile Java compiler

e So the runtime system has to verify the byte code, the tests
that are done include:

— Check that the format of the byte code is correct

— A simple theorem prover is applied to the byte code that
ensures:

x It doesn’t forge pointer
* Access restrictions are not violated

« Access object are what they are

e A language that is safe plus run time verification of generated

code is our guarantee of no violation !

"homas Hohn 22 October 1996

‘Java and ActiveX”

Compile Time

Java
Compiler

"homas Hohn

Hypermedia and Multimedia E96

Run Time

Bytecode |
Loader

Byte Code |
Verifier

Interpreter|

Code
Generator

Run time

hardware

22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

After the Byte Code Verifier, we know:

e There are no operand stack overflows or underflows

e Object field accesses are known to be legal - private, public or

protected

e The types of the parameters to all byte code instructions are

known to always be correct

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Security in the Byte Code Loader:
While code is executed in the run time environment it can request

a particular class/classes to be loaded - What happens:

e The classes are verified by the byte code verifier

e (Classes are separate into different name spaces

— Name space for local classes (built-in classes)

— Name space for classes loaded across the network (imported
classes)

When references to classes are made the built-in classes is the
first place to look, thereby built-in classes can’t be spoofed

No cross references between different name spaces

Classes imported from different places are also separated from
each other

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Eoé secure 1S

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Despite that Java was designed to be a robust and secure language
a variety of errors has been spotted - even though.

These include:

Implementation errors
Unintended interactions between browser features

Differences between the Java language and the semantics of the

byte code

Weakness in the design of Java and the byte code format

"homas Hohn 22 October 1996

‘Java and ActiveX”

Implementation errors:

e DNS weakness
e Buffer overflow

e Disclosing Storage Layout

e Inter-Applet security

"homas Hohn

Hypermedia and Multimedia E96

22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

DNS weakness:
The JDK and Netscape implementation of Java only allows the

applet to make a TCP/IP connections back to the server from

where the applet was loaded. The policy was enforced in the

following way, it seems as a sound policy:

e Get all IP-addresses from the host the applet came from (A)

e Get all IP-addresses from the host the applet wants to connect
to (B)

e Allow connection host in A N B
Problem in step 2, the applet can ask to be connected to a

arbitrary host on the Internet including spoofed DNS-servers,

which supplies set B.

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Buffer overflow:
The use of sprint() statements that are unchecked, the execution
stack can be overwritten and hence hostile code could be executed.

Disclosing Storage Layout:

Even thought we don’t have directly access to memory through
pointers, applets can find out where in memory objects are stored.
Since all Java objects have a hashCode() method, and it casts the
address of the objects into an integer and returns it, this could be a

problem.

Inter-Applet Security:
Applets can get informations on other applets running on the

system and invoke one of the methods stop() or setPriority()

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Differences between the Java language and the semantics of the

byte code:

e Illegal package names

— Punctation in package names (java.io) are replaced by a ’/’

and ’/’ is illegal as the first char in package names

— Even thought if the first char is a ’/’, the runtime system
will try to load the package from a absolute path

— The problem is even bigger with data cached from the local

file system

e Superclass constructors
Java requires that all constructors call either another
constructor of the same class or a superclass constructors as
their first action. The system classes ClassLoader,
SecurityManager and FileInputStream all rely on this

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

behaviour for their security.
Java prohibits the following code, the byte code verifier doesn’t

class CL extends ClasslLoader {

CLO {
try { super(); }
catch (Exception e) {}

ky

k

This allows us to

Build partially initialised ClassLoader or system classes

Any code loaded asks the ClassLoader to load additional

classes
Hence the System name space is NOT searched first

The applet can construct a customised name space

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Unintended interactions between browser features:

e Denial of Service attacks

— Attacks like busy-waiting

— Locking critical pieces of the browser

— Degeneration of service
e Two or Three Part Attacks

— Two party attacks requires a Web server; on which the
applets resides, to participate in the attack

— Three party attacks can originate from anywhere on the
Internet and are thus more dangerous

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Web
requests

e Covert Channels
Make it possible to establish a two-way communication with

arbitrary third parties on the Internet, the problems arises

because of:

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

— A weakness in the accept() system call

— If the WWW server runs a SMTP-daemon
— Redirect through the URL-redirect feature

e Information available to applets

— System.getenv() has no security checks !
— Access to system clock

— A applet can consume all free space on clients file system

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Java Language and Byte code weakness:
The definition of the Java language and the byte code are to week,

seen from a security viewpoint. Why is this the case ?

e Java has no formal semantics or description of the type system

— Hence it’s impossible to make any formal reasoning about

Java

— The security in Java relies on the soundness of the type

system
e Information hiding

— The byte code verifier doesn’t enforce the semantics of the

private modifier for local loaded code

— This implies that local code has access to other applets

variables

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

— Hence the definition of Java could be altered not to leak

information like this

e The generated byte code is weak since

"homas Hohn

Byte code is in a linear form. Type checking requires global
data flow analysis

Analysis is complicated through exceptions and exception

handlers
Traditional type checking is compositional

The type verifier can not be proven correct since the lack of

a formal description of the type system

Object oriented type systems is a current research field

22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

COM (Component Object Model) is a foundation for interaction
between software libraries, applications, system software etc.

ActiveX is based on COM, but what is COM really, Let’s first try
to figure out how software can access software services provided by

another piece of software:

e Application could use functions in a library
e Through Inter-process communication, via a protocol
e System calls to the OS

e Network service, like RPC

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

MNetwork
communication

-~
#
4

L communication |
R .

The mechanism for getting these services are different depending

on the type of service.

COM defines a way to access software services. A COM object has

a number of interfaces that each includes a number of methods that

44

can be invoked, the object is implemented on a “server”, which can

be a DLL or a separate process.

"homas Hohn 22 October 1996

Java and ActiveX” Hypermedia and Multimedia E96

Methods are invoked through pointer to the interface.

With the COM model it’s transparent to the programmer /user how
the service is actually achieved, it’s always the same abstraction
that is used.

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

The Component principle
Software is build from components, But at least 3 problems arise:

e No standard for linked library code, source code must be
distributed along with the library

e Reuse of objects in different languages is often impossible

e Relinking/recompiling an entire application, if one object is

changed, this problem could maybe be solved by “incremental

compiling”

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

The COM model solves these problems, since:

e COM objects can be packed into libraries/EXE files, without
distributing the source code

e Standard way to access binary objects

e Objects are instantiated at need, the objects are always the
newest version of the object

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

The benefits of COM are:

You get all benefits from object orientation
Provides a system for consistency
Language independent

Versioning through interfaces

Available on many OS; currently Windows, NT and Mac

There is as form of distributed COM (DCOM), relies on RPC

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

ActiveX is a computing technology composed of different

components each doing a specific task. The components are:

e ActiveX controls
e ActiveX scripting
e ActiveX documents

e ActiveX ISAPI

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

The capabilities of ActiveX controls are:

e Compute and Manipulate data

— Controls can be used in both WWW pages and as
stand-alone applications

— Controls can be written in any language which could/should
yield faster applications

e Communicate

— Controls can share data or give instructions to other
OLE-capable objects

— Controls can read /write files on any file system !

— Controls can be TCP/IP enabled, which means a great

power

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

— Its actually possible to do workgroup computing including
the whole Internet

e Saving programming effort

— Controls can “easily” be created from scratch
— Controls can be written in any language including Java !

— Controls are modular objects, and hence functionality can

be specialised depending on the context (Web/Application)

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

ActiveX scripting:

If you don’t want to create ActiveX controls, you can still make
fancy things with the help of VBScript.

Why VBScript ?

e Web masters are anxious about custom created ActiveX

controls

e It’s really easy to learn (subset of Visual Basic)

e VBScript can communicate via OLE to other OLE applications

e [t's embedded in the HI'ML-document

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

ActiveX docs:

e The HTML file-format is too “simple”, even though it became

popular because of it’s simplicity

e Some programs produce output that is well suited for the
Internet, but the output can’t be represented in HTML. There
are at least two possible solutions:

— Make your program a helper application
— Use ActiveX documents
e Your output can be displayed inside the browser in a

“container”. Virtual Reality could for example be seen on the
Internet as a ActiveX document

e OLE links will be extended across the whole Internet and not
just on a local hard drive

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

e Programs can be used as ordinary Windows programs or inside
ActiveX documents

Generc ActiveX Spreadshestike Control

AJB|C|DJE

v

Embedded in Embedded in a
a Wab Page Standalene Program

' _ N

Y¥eb Browser Custom-Built, Standalane Program

H ! @ D _H_ _H_ File Edit View .

Haading 1
Inventory Control

e
L

Customer Lista

Invaicing

Haading 2

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

How to access Active Documents:

e Controls are accessed via the HTLM tag < OBJECT >

e When the < OBJECT > is met, 3 things are done:

— If the controls aren’t present, download them from a code

"homas Hohn

Server

x The code is downloaded by the URL moniker
asynchronously, the location is determined by the
Internet search patch mechanism. It’s also possible to

prevent code from being downloaded from the net

22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

— Check that the code is “safe” to install

x The Windows Trust Verification service is used to verity
that the code is safe

— Install the code

* Code is installed into a download cache

x DLL or EXE programs register themselves

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Security in ActiveX:

We need to know that the code, we will execute, is safe in some

SEILSE

The sandbox approach significantly limits the kind of things

you can do
The code should indicate that it’s safe to run
The code has attached a digital signature

Signatures are validated through the Windows Trust

Verification service

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Windows Trust Verification service:

e Search for a signature block (digital signature). It contains:

— The author of the file
— A public key
— Encrypted digest of the file’s contents

e Validate the certificate, if not indicate it

e Decrypt digest with public key and regenerate digest to ensure
that the files has not been tampered

e Install the component

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

u avVd,

VERSUS

ActiveX

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Java pursuits:

e Java is a programming language
It’s easy to use and “clean”

Java is nothing special without standard classes and Internet

support

Java is the first truly cross-platform programming language

Java has a lot of security stuft

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

ActiveX pursuits:

ActiveX is a technology, closely related to OLE

The technology can integrate existing product on the WWW
All code base on OLE is ActiveX enabled

ActiveX controls may be written in any language, that
supports COM

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Web Browser

Control
Interaction

Web
Page
Interaction

2| A [xﬂﬁ A

VN |2

Java applet can interact
with itself only

¥ OLE
Link

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

It’s amazing how different Java and ActiveX are in their

implementation, since they have the same goal - to add
“Interactivity” to the WWW.

Lets look at some common issues:

e Security
e Practical usage
e Development strategy

e The Crossroads

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Security:

Security in Java is based on verification of the produced byte

code, cost of performance

The Byte code is interpreted and no I/O access, which limits

the use of Java
ActiveX uses digital signatures
Verification through Windows Trust Verification service

Microsoft learned from the problems with Java security

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Practical usage:

e No real applications have been build with Java

e In ActiveX; applications can be build as they are and as
WWW applications

e ActiveX has inherited a lot of practical applications and

controls since it’s based on OLE

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Development strategy:

e Java is powerful with respect to network application
development

e Unfortunately there has been a lack of development tools

e These problems are not present when you make ActiveX

applications
The Crossroads:

e Its not necessary to know both ActiveX and Java, since Java

applets can be integrated with ActiveX controls

e ActiveX controls can be accessed from Java applets

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

Sun strikes back

with
Java Beans |

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

What are the goals of Java Beans 7

To define a software component model for Java, that enables
third party members to create and ship Java components,
which can be composed into applications by the end user

To provide API’s that support ActiveX/OLE/COM, Opendoc
and LiveConnect

To be able to create large scale application in Java
To enable dynamic integration. This means components can:

— Become interactive
— Be able to capture events

— (Call methods in other components

e To be a platform neutral component architecture

"homas Hohn 22 October 1996

‘Java and ActiveX” Hypermedia and Multimedia E96

e Be reasonable simple, like Java

e Use the standard security model that is also used by Java

Java Beans Specification 1.0 just released.

"homas Hohn 22 October 1996

