
“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

Java

How
hotisit?

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

Plan:
•Java
•SecurityinJava
•ActiveX
•Javavs.ActiveX
•JavaBeans

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

T
he

design
goalfor

Java
are:

•
Sim

ple,O
b
ject

O
riented

and
Fam

iliar

•
A

rchitecture
N

eutraland
P
ortable

•
H

ight
P
erform

ance

•
Interpreted,

T
hreaded

and
D

ynam
ic

•
R

obust
and

Secure

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

W
hy

is
it

Sim
ple,O

b
ject

O
riented

and
Fam

iliar
?

•
T

he
language

is
very

sim
ple,

and
fundam

entalconcepts
are

grasped
quickly,

and
it’s

very
easy

to
program

m
e

•
T

here
are

a
lot

of
existing

libraries

•
A

lot
of

bad
“stuff

”
has

been
rem

oved
to

m
ake

it
sim

ple

•
Since

ob
ject

orientation
is

a
big

buzz-w
ord

and
m

ajor
program

m
ing

languages
are

ob
ject

oriented
-
java

is
that

too

•
T

he
syntax

is
C

/C
+

+
alike

and
hence

fam
iliar

to
a

lot
of

program
m

ers

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

Java
is

close
to

C
and

C
+

+
,things

that
w

ere
rem

oved
include:

•
N

o
typedefs,

D
efines

or
P

reprocessor;
typedefs

im
plem

ented
as

classes,
defines

as
constants

•
N

o
structures

or
U

nions;classes
capture

this

•
N

o
functions;

m
ethods

instead

•
N

o
goto;

m
ultilevelbreaks

•
N

o
operator

overloading

•
N

o
autom

atic
C

oercions

•
N

o
pointer

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

P
rim

itive
D

ata
types,

are
equal

on
all

platform
s:

T
y
p
e

S
i
z
e
/
F
o
r
m
a
t

D
e
s
c
r
i
p
t
i
o
n

b
y
t
e

8
-
b
i
t

t
w
o
’
s

c
o
m
p
l
e
m
e
n
t

B
y
t
e
-
l
e
n
g
t
h

i
n
t
e
g
e
r

s
h
o
r
t

1
6
-
b
i
t

t
w
o
’
s

c
o
m
p
l
e
m
e
n
t

S
h
o
r
t

i
n
t
e
g
e
r

i
n
t

3
2
-
b
i
t

t
w
o
’
s

c
o
m
p
l
e
m
e
n
t

I
n
t
e
g
e
r

l
o
n
g

6
4
-
b
i
t

t
w
o
’
s

c
o
m
p
l
e
m
e
n
t

L
o
n
g

i
n
t
e
g
e
r

f
l
o
a
t

3
2
-
b
i
t

I
E
E
E

7
5
4

S
i
n
g
l
e
-
p
r
e
c
i
s
i
o
n

f
l
o
a
t

d
o
u
b
l
e

6
4
-
b
i
t

I
E
E
E

7
5
4

D
o
u
b
l
e
-
p
r
e
c
i
s
i
o
n

f
l
o
a
t

c
h
a
r

1
6
-
b
i
t

U
n
i
c
o
d
e

c
h
a
r
a
c
t
e
r

A
s
i
n
g
l
e

c
h
a
r
a
c
t
e
r

b
o
o
l
e
a
n

t
r
u
e

o
r
f
a
l
s
e

A
b
o
o
l
e
a
n

v
a
l
u
e

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

T
he

rest
of

the
language:

•
A

rrays
are

first-class
language

ob
jects

(a
realob

ject),
that

m
eans

they
have

a
runtim

e
presentation

•
Strings

are
also

ob
ject

divided
into

2
kinds:

–
String

class
(read-only

ob
jects)

–
StringB

uffer
(m

utable
string

ob
jects)

•
W

e
don’t

have
pointers

to
arrays

or
strings

•
M

ulti-L
evel

B
reak

since
there

is
no

goto

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

•
M

em
ory

M
anagem

ent
and

garbage
collection

(autom
atically),

that
m

eans

–
N

o
pointer

arithm
etics

–
N

o
m

alloc
or

free

–
T

he
new

operator
allocates

m
em

ory
for

ob
jects,

but
no

explicit
free

–
M

em
ory

m
anagem

ent
m

odel
based

on:

∗
O

b
jects

∗
R

eferences
to

ob
jects

through
sym

bolic
handles

•
T

he
garbage

collector
is

running
in

the
background,as

a
low

priority
thread

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

H
ellojavaW

orld.java:

i
m
p
o
r
t

j
a
v
a
.
a
p
p
l
e
t
.
A
p
p
l
e
t
;

i
m
p
o
r
t

j
a
v
a
.
a
w
t
.
G
r
a
p
h
i
c
s
;

p
u
b
l
i
c

c
l
a
s
s

H
e
l
l
o
j
a
v
a
W
o
r
l
d

e
x
t
e
n
d
s

A
p
p
l
e
t

{

p
u
b
l
i
c

v
o
i
d

i
n
i
t
(
)

{

r
e
s
i
z
e
(
2
0
0
,
5
0
)
;

}p
u
b
l
i
c

v
o
i
d

p
a
i
n
t
(
G
r
a
p
h
i
c
s

g
)
{

g
.
d
r
a
w
S
t
r
i
n
g
(
"
H
e
l
l
o

J
A
V
A

W
o
r
l
d

!
"
,
5
0
,
2
5
)
;

}

}N
otes:

•
Source

files
m

ust
have

sam
e

nam
e

as
the

class
being

defined
!

•
O

nly
one

public
class

in
each

file

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

H
ellojavaW

orld.htm
l:

<
h
t
m
l
>

<
t
i
t
l
e
>
H
e
l
l
o

J
a
v
a

W
o
r
l
d

:
-
)
<
/
t
i
t
l
e
>

<
/
h
e
a
d
>

<
b
o
d
y
>

<
a
p
p
l
e
t

c
o
d
e
=
H
e
l
l
o
j
a
v
a
W
o
r
l
d
.
c
l
a
s
s

w
i
d
t
h
=
2
0
0

h
e
i
g
h
t
=
5
0
>

<
/
a
p
p
l
e
t
>

<
/
b
o
d
y
>

<
/
h
t
m
l
>

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

G
eneric

applet-tag:

<
A
P
P
L
E
T

C
O
D
E
B
A
S
E

C
D
A
T
A

#
I
M
P
L
I
E
D

-
-
c
o
d
e

b
a
s
e

-
-

C
O
D
E

C
D
A
T
A

#
R
E
Q
U
I
R
E
D

-
-
c
o
d
e

f
i
l
e

-
-

N
A
M
E

C
D
A
T
A

#
I
M
P
L
I
E
D

-
-
a
p
p
l
e
t

n
a
m
e

-
-

W
I
D
T
H

N
U
M
B
E
R

#
R
E
Q
U
I
R
E
D

H
E
I
G
H
T

N
U
M
B
E
R

#
R
E
Q
U
I
R
E
D

A
L
I
G
N

(
l
e
f
t
|
r
i
g
h
t
|
t
o
p
|
t
e
x
t
t
o
p
|
m
i
d
d
l
e
|

a
b
s
m
i
d
d
l
e
|
b
a
s
e
l
i
n
e
|
b
o
t
t
o
m
|
a
b
s
b
o
t
t
o
m
)

b
a
s
e
l
i
n
e

V
S
P
A
C
E

N
U
M
B
E
R

#
I
M
P
L
I
E
D

H
S
P
A
C
E

N
U
M
B
E
R

#
I
M
P
L
I
E
D

<
/
A
P
P
L
E
T
>

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

W
hy

A
rchitecture

N
eutraland

P
ortable

?

•
Java

should
support

developm
ent

of
applications

in
heterogeneous

environm
ents

•
T

he
idea

of
binary

distribution
is

dead
!

•
Java

w
as

not
originaldesigned

for
the

W
W

W
,
but

W
W

W
brow

sers
typically

run
on

different
platform

s

•
T

he
java-com

piler
generates

“byte
code”

-
w

hich
is

architecture
neutral

interm
ediate

form
at

-
instead

of
native

m
achine

instruction
(m

achine
code)

•
Since

its
interm

ediate
code

-
it’s

interpreted
in

a
V

irtual
M

achine,w
hich

is
a

abstract
m

achine

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

•
A

true
portable

system
should

be

–
A

rchitecture
neutral

–
H

ave
a

strict
definition

of
basic

data
types

-
that

gives
no

data
incom

patibilities
across

platform
s

•
Java

should
be

able
to

run
on

every
architecture,

since
it

follow
s

the
P

O
SIX

standard
(P

O
SIX

is
a

standard
w

ay
for

application
program

s
to

obtain
basic

services
from

the
operating

system
)

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

W
hat

about
P
erform

ance
?

•
It’s

w
ell

know
that

interpreted
code

is
slow

er
than

com
piled

code

•
N

o
need

for
type

checking
at

runtim
e

•
A

utom
atic

garbage
collector

-
prevents

m
em

ory
leaks

and
hence

starvation

•
T

hey
claim

that
a

Java
program

in
average

is
20

tim
es

as
slow

as
a

C
program

(Java
in

a
N

utshell)

•
T

he
garbage

collector
is

running
in

the
background

as
a

low
priority

thread,
and

does
thereby

not
affect

the
execution

of
the

program

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

It’s
Interpreted,

T
hreaded

and
D

ynam
ic.

•
Since

the
language

is
interpreted

it
can

run
on

any
m

achine
on

w
hich

the
interpreter

and
run-tim

e
system

has
been

ported

•
It’s

ideal
for

prototyping,since
you

avoid
the

heavyw
eight

com
pile,

link
and

test-cycle

•
T

here
is

support
for

concurrent
threads

of
activity,

since
w

e
have

threads

•
C

lasses
can

be
linked

at
runtim

e,the
classes

can
be

dow
nloaded

at
runtim

e
from

across
netw

orks
-

the
dow

nloaded
code

is
of

course
verified,so

it
can

be
considered

secure

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

It’s
R

obust
and

Secure:
R

obustness

•
Java

is
strongly

typed

•
H

ence
syntax-related

errors
w

illbe
caught

at
com

pile
tim

e

•
Since

w
e

have
true

arrays
and

strings,it’s
possible

for
the

interpreter
to

check
array

and
string

indexes
w

hich
elim

inates
corruption

of
data

and
overw

riting
of

m
em

ory

•
M

any
com

pile-tim
e

checks
are

carried
over

to
the

run-tim
e

system
.

T
his

provides
greater

flexibility
but

also
gives

bigger
byte

code

•
T

he
linker

understands
the

type-system

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

Security

•
B

ased
on

sandbox
approach

•
T

he
m

em
ory

layout
decisions

are
not

m
ade

by
the

Java
com

piler
as

they
are

in
C

/C
+

+

•
T

here
are

no
pointer,

references
to

m
em

ory
are

done
by

sym
bolic

“handles”,these
are

resolved
to

real
m

em
ory

addresses
at

run
tim

e
by

the
Java

interpreter

•
P

rogram
m

ers
can’t

forge
pointers

to
m

em
ory,since

the
m

em
ory

allocation/referencing
m

odel
is

opaque
to

the
program

m
er

•
L
ate

binding
of

structures
to

m
em

ory

•
Foreign

code
(dow

nloaded
from

the
net)

is
verified

by
the

B
yte

C
ode

V
erifier

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

T
he

B
yte

C
ode

V
erification

process:

•
N

ew
er

trust
dow

nloaded
code,

you
can’t

ensure
that

it
w

as
produced

by
a

hostile
Java

com
piler

•
So

the
runtim

e
system

has
to

verify
the

byte
code,

the
tests

that
are

done
include:

–
C

heck
that

the
form

at
of

the
byte

code
is

correct

–
A

sim
ple

theorem
prover

is
applied

to
the

byte
code

that
ensures:

∗
It

doesn’t
forge

pointer
∗

A
ccess

restrictions
are

not
violated

∗
A

ccess
ob

ject
are

w
hat

they
are

•
A

language
that

is
safe

plus
run

tim
e

verification
of

generated
code

is
our

guarantee
of

no
violation

!

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

A
fter

the
B

yte
C

ode
V

erifier,w
e

know
:

•
T

here
are

no
operand

stack
overflow

s
or

underflow
s

•
O

b
ject

field
accesses

are
know

n
to

be
legal-

private,
public

or
protected

•
T

he
types

of
the

param
eters

to
all

byte
code

instructions
are

know
n

to
alw

ays
be

correct

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

Security
in

the
B

yte
C

ode
L
oader:

W
hile

code
is

executed
in

the
run

tim
e

environm
ent

it
can

request
a

particular
class/classes

to
be

loaded
-
W

hat
happens:

•
T

he
classes

are
verified

by
the

byte
code

verifier

•
C

lasses
are

separate
into

different
nam

e
spaces

–
N

am
e

space
for

local
classes

(built-in
classes)

–
N

am
e

space
for

classes
loaded

across
the

netw
ork

(im
ported

classes)

•
W

hen
references

to
classes

are
m

ade
the

built-in
classes

is
the

first
place

to
look,

thereby
built-in

classes
can’t

be
spoofed

•
N

o
cross

references
betw

een
different

nam
e

spaces

•
C

lasses
im

ported
from

different
places

are
also

separated
from

each
other

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

How
secureis

Java?
T

hom
as

H
ohn

22
O

ctob
er

1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

D
espite

that
Java

w
as

designed
to

be
a

robust
and

secure
language

a
variety

of
errors

has
been

spotted
-
even

though.
T

hese
include:

•
Im

plem
entation

errors

•
U

nintended
interactions

betw
een

brow
ser

features

•
D

ifferences
betw

een
the

Java
language

and
the

sem
antics

of
the

byte
code

•
W

eakness
in

the
design

of
Java

and
the

byte
code

form
at

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

Im
plem

entation
errors:

•
D

N
S

w
eakness

•
B

uffer
overflow

•
D

isclosing
Storage

L
ayout

•
Inter-A

pplet
security

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

D
N

S
w

eakness:
T

he
JD

K
and

N
etscape

im
plem

entation
of

Java
only

allow
s

the
applet

to
m

ake
a

T
C

P
/IP

connections
back

to
the

server
from

w
here

the
applet

w
as

loaded.
T

he
policy

w
as

enforced
in

the
follow

ing
w

ay,it
seem

s
as

a
sound

policy:

•
G

et
all

IP
-addresses

from
the

host
the

applet
cam

e
from

(A
)

•
G

et
all

IP
-addresses

from
the

host
the

applet
w

ants
to

connect
to

(B
)

•
A

llow
connection

host
in

A
∩

B

P
roblem

in
step

2,
the

applet
can

ask
to

be
connected

to
a

arbitrary
host

on
the

Internet
including

spoofed
D

N
S-servers,

w
hich

supplies
set

B
.

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

B
uffer

overflow
:

T
he

use
of

sprint()
statem

ents
that

are
unchecked,the

execution
stack

can
be

overw
ritten

and
hence

hostile
code

could
be

executed.

D
isclosing

Storage
L
ayout:

E
ven

thought
w

e
don’t

have
directly

access
to

m
em

ory
through

pointers,
applets

can
find

out
w

here
in

m
em

ory
ob

jects
are

stored.
Since

allJava
ob

jects
have

a
hashC

ode()
m

ethod,
and

it
casts

the
address

of
the

ob
jects

into
an

integer
and

returns
it,

this
could

be
a

problem
.

Inter-A
pplet

Security:
A

pplets
can

get
inform

ations
on

other
applets

running
on

the
system

and
invoke

one
of

the
m

ethods
stop()

or
setP

riority()

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

D
ifferences

betw
een

the
Java

language
and

the
sem

antics
of

the
byte

code:

•
Illegal

package
nam

es

–
P

unctation
in

package
nam

es
(java.io)

are
replaced

by
a

’/’
and

’/’is
illegal

as
the

first
char

in
package

nam
es

–
E

ven
thought

if
the

first
char

is
a

’/’,
the

runtim
e

system
w

ill
try

to
load

the
package

from
a

absolute
path

–
T

he
problem

is
even

bigger
w

ith
data

cached
from

the
local

file
system

•
Superclass

constructors
Java

requires
that

allconstructors
call

either
another

constructor
of

the
sam

e
class

or
a

superclass
constructors

as
their

first
action.

T
he

system
classes

C
lassL

oader,
SecurityM

anager
and

F
ileInputStream

all
rely

on
this

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

behaviour
for

their
security.

Java
prohibits

the
follow

ing
code,

the
byte

code
verifier

doesn’t

c
l
a
s
s

C
L

e
x
t
e
n
d
s

C
l
a
s
s
L
o
a
d
e
r

{

C
L
(
)

{t
r
y

{
s
u
p
e
r
(
)
;

}

c
a
t
c
h

(
E
x
c
e
p
t
i
o
n

e
)
{
}

}

}T
his

allow
s

us
to

–
B

uild
partially

initialised
C

lassL
oader

or
system

classes

–
A

ny
code

loaded
asks

the
C

lassL
oader

to
load

additional
classes

–
H

ence
the

System
nam

e
space

is
N

O
T

searched
first

–
T

he
applet

can
construct

a
custom

ised
nam

e
space

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

U
nintended

interactions
betw

een
brow

ser
features:

•
D

enialof
Service

attacks

–
A

ttacks
like

busy-w
aiting

–
L
ocking

critical
pieces

of
the

brow
ser

–
D

egeneration
of

service

•
T

w
o

or
T

hree
P
art

A
ttacks

–
T

w
o

party
attacks

requires
a

W
eb

server;on
w

hich
the

applets
resides,to

participate
in

the
attack

–
T

hree
party

attacks
can

originate
from

anyw
here

on
the

Internet
and

are
thus

m
ore

dangerous

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

•
C

overt
C

hannels
M

ake
it

possible
to

establish
a

tw
o-w

ay
com

m
unication

w
ith

arbitrary
third

parties
on

the
Internet,

the
problem

s
arises

because
of:

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

–
A

w
eakness

in
the

accept()
system

call

–
If

the
W

W
W

server
runs

a
SM

T
P

-daem
on

–
R

edirect
through

the
U

R
L
-redirect

feature

•
Inform

ation
available

to
applets

–
System

.getenv()
has

no
security

checks
!

–
A

ccess
to

system
clock

–
A

applet
can

consum
e

all
free

space
on

clients
file

system

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

Java
L
anguage

and
B

yte
code

w
eakness:

T
he

definition
of

the
Java

language
and

the
byte

code
are

to
w

eek,
seen

from
a

security
view

point.
W

hy
is

this
the

case
?

•
Java

has
no

form
al

sem
antics

or
description

of
the

type
system

–
H

ence
it’s

im
possible

to
m

ake
any

form
al

reasoning
about

Java

–
T

he
security

in
Java

relies
on

the
soundness

of
the

type
system

•
Inform

ation
hiding

–
T

he
byte

code
verifier

doesn’t
enforce

the
sem

antics
of

the
private

m
odifier

for
local

loaded
code

–
T

his
im

plies
that

local
code

has
access

to
other

applets
variables

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

–
H

ence
the

definition
of

Java
could

be
altered

not
to

leak
inform

ation
like

this

•
T

he
generated

byte
code

is
w

eak
since

–
B

yte
code

is
in

a
linear

form
.

T
ype

checking
requires

global
data

flow
analysis

–
A

nalysis
is

com
plicated

through
exceptions

and
exception

handlers

–
T
raditional

type
checking

is
com

positional

–
T

he
type

verifier
can

not
be

proven
correct

since
the

lack
of

a
form

al
description

of
the

type
system

–
O

b
ject

oriented
type

system
s

is
a

current
research

field

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

C
O

M
(C

om
ponent

O
b
ject

M
odel)

is
a

foundation
for

interaction
betw

een
softw

are
libraries,applications,

system
softw

are
etc.

A
ctiveX

is
based

on
C

O
M

,but
w

hat
is

C
O

M
really,L

et’s
first

try
to

figure
out

how
softw

are
can

access
softw

are
services

provided
by

another
piece

of
softw

are:

•
A

pplication
could

use
functions

in
a

library

•
T

hrough
Inter-process

com
m

unication,via
a

protocol

•
System

calls
to

the
O

S

•
N

etw
ork

service,
like

R
P

C

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

T
he

m
echanism

for
getting

these
services

are
different

depending
on

the
type

of
service.

C
O

M
defines

a
w

ay
to

access
softw

are
services.

A
C

O
M

ob
ject

has
a

num
ber

of
interfaces

that
each

includes
a

num
ber

of
m

ethods
that

can
be

invoked,the
ob

ject
is

im
plem

ented
on

a
“server”,

w
hich

can
be

a
D

L
L

or
a

separate
process.

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

M
ethods

are
invoked

through
pointer

to
the

interface.
W

ith
the

C
O

M
m

odelit’s
transparent

to
the

program
m

er/user
how

the
service

is
actually

achieved,
it’s

alw
ays

the
sam

e
abstraction

that
is

used.

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

T
he

C
om

ponent
principle

Softw
are

is
build

from
com

ponents,
B

ut
at

least
3

problem
s

arise:

•
N

o
standard

for
linked

library
code,

source
code

m
ust

be
distributed

along
w

ith
the

library

•
R

euse
of

ob
jects

in
different

languages
is

often
im

possible

•
R

elinking/recom
piling

an
entire

application,
if

one
ob

ject
is

changed,this
problem

could
m

aybe
be

solved
by

“increm
ental

com
piling”

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

T
he

C
O

M
m

odel
solves

these
problem

s,since:

•
C

O
M

ob
jects

can
be

packed
into

libraries/E
X

E
files,

w
ithout

distributing
the

source
code

•
Standard

w
ay

to
access

binary
ob

jects

•
O

b
jects

are
instantiated

at
need,

the
ob

jects
are

alw
ays

the
new

est
version

of
the

ob
ject

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

T
he

benefits
of

C
O

M
are:

•
Y

ou
get

all
benefits

from
ob

ject
orientation

•
P

rovides
a

system
for

consistency

•
L
anguage

independent

•
V

ersioning
through

interfaces

•
A

vailable
on

m
any

O
S;currently

W
indow

s,N
T

and
M

ac

•
T

here
is

as
form

of
distributed

C
O

M
(D

C
O

M
),

relies
on

R
P

C

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

A
ctiveX

is
a

com
puting

technology
com

posed
of

different
com

ponents
each

doing
a

specific
task.

T
he

com
ponents

are:

•
A

ctiveX
controls

•
A

ctiveX
scripting

•
A

ctiveX
docum

ents

•
A

ctiveX
ISA

P
I

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

T
he

capabilities
of

A
ctiveX

controls
are:

•
C

om
pute

and
M

anipulate
data

–
C

ontrols
can

be
used

in
both

W
W

W
pages

and
as

stand-alone
applications

–
C

ontrols
can

be
w

ritten
in

any
language

w
hich

could/should
yield

faster
applications

•
C

om
m

unicate

–
C

ontrols
can

share
data

or
give

instructions
to

other
O

L
E

-capable
ob

jects

–
C

ontrols
can

read/w
rite

files
on

any
file

system
!

–
C

ontrols
can

be
T

C
P

/IP
enabled,

w
hich

m
eans

a
great

pow
er

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

–
Its

actually
possible

to
do

w
orkgroup

com
puting

including
the

w
hole

Internet

•
Saving

program
m

ing
effort

–
C

ontrols
can

“easily”
be

created
from

scratch

–
C

ontrols
can

be
w

ritten
in

any
language

including
Java

!

–
C

ontrols
are

m
odular

ob
jects,

and
hence

functionality
can

be
specialised

depending
on

the
context

(W
eb/A

pplication)

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

A
ctiveX

scripting:
If

you
don’t

w
ant

to
create

A
ctiveX

controls,you
can

still
m

ake
fancy

things
w

ith
the

help
of

V
B

Script.
W

hy
V

B
Script

?

•
W

eb
m

asters
are

anxious
about

custom
created

A
ctiveX

controls

•
It’s

really
easy

to
learn

(subset
of

V
isualB

asic)

•
V

B
Script

can
com

m
unicate

via
O

L
E

to
other

O
L
E

applications

•
It’s

em
bedded

in
the

H
T

M
L
-docum

ent

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

A
ctiveX

docs:

•
T

he
H

T
M

L
file-form

at
is

too
“sim

ple”,even
though

it
becam

e
popular

because
of

it’s
sim

plicity

•
Som

e
program

s
produce

output
that

is
w

ellsuited
for

the
Internet,

but
the

output
can’t

be
represented

in
H

T
M

L
.T

here
are

at
least

tw
o

possible
solutions:

–
M

ake
your

program
a

helper
application

–
U

se
A

ctiveX
docum

ents

•
Y

our
output

can
be

displayed
inside

the
brow

ser
in

a
“container”.

V
irtualR

eality
could

for
exam

ple
be

seen
on

the
Internet

as
a

A
ctiveX

docum
ent

•
O

L
E

links
w

illbe
extended

across
the

w
hole

Internet
and

not
just

on
a

local
hard

drive

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

•
P

rogram
s

can
be

used
as

ordinary
W

indow
s

program
s

or
inside

A
ctiveX

docum
ents

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

H
ow

to
access

A
ctive

D
ocum

ents:

•
C

ontrols
are

accessed
via

the
H

T
L
M

tag
<
O
B
J
E
C
T
>

•
W

hen
the

<
O
B
J
E
C
T
>

is
m

et,
3

things
are

done:

–
If

the
controls

aren’t
present,

dow
nload

them
from

a
code

server

∗
T

he
code

is
dow

nloaded
by

the
U

R
L

m
oniker

asynchronously,the
location

is
determ

ined
by

the
Internet

search
patch

m
echanism

.
It’s

also
possible

to
prevent

code
from

being
dow

nloaded
from

the
net

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

–
C

heck
that

the
code

is
“safe”

to
install

∗
T

he
W

indow
s

T
rust

V
erification

service
is

used
to

verify
that

the
code

is
safe

–
Install

the
code

∗
C

ode
is

installed
into

a
dow

nload
cache

∗
D

L
L

or
E

X
E

program
s

register
them

selves

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

Security
in

A
ctiveX

:

•
W

e
need

to
know

that
the

code,
w

e
w

illexecute,
is

safe
in

som
e

sense

•
T

he
sandbox

approach
significantly

lim
its

the
kind

of
things

you
can

do

•
T

he
code

should
indicate

that
it’s

safe
to

run

•
T

he
code

has
attached

a
digital

signature

•
Signatures

are
validated

through
the

W
indow

s
T
rust

V
erification

service

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

W
indow

s
T
rust

V
erification

service:

•
Search

for
a

signature
block

(digital
signature).

It
contains:

–
T

he
author

of
the

file

–
A

public
key

–
E

ncrypted
digest

of
the

file’s
contents

•
V

alidate
the

certificate,
if

not
indicate

it

•
D

ecrypt
digest

w
ith

public
key

and
regenerate

digest
to

ensure
that

the
files

has
not

been
tam

pered

•
Install

the
com

ponent

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

Java
VERSUS

ActiveX

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

Java
pursuits:

•
Java

is
a

program
m

ing
language

•
It’s

easy
to

use
and

“clean”

•
Java

is
nothing

special
w

ithout
standard

classes
and

Internet
support

•
Java

is
the

first
truly

cross-platform
program

m
ing

language

•
Java

has
a

lot
of

security
stuff

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

A
ctiveX

pursuits:

•
A

ctiveX
is

a
technology,

closely
related

to
O

L
E

•
T

he
technology

can
integrate

existing
product

on
the

W
W

W

•
A

llcode
base

on
O

L
E

is
A

ctiveX
enabled

•
A

ctiveX
controls

m
ay

be
w

ritten
in

any
language,that

supports
C

O
M

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

It’s
am

azing
how

different
Java

and
A

ctiveX
are

in
their

im
plem

entation,
since

they
have

the
sam

e
goal-

to
add

“interactivity”
to

the
W

W
W

.
L
ets

look
at

som
e

com
m

on
issues:

•
Security

•
P

ractical
usage

•
D

evelopm
ent

strategy

•
T

he
C

rossroads

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

Security:

•
Security

in
Java

is
based

on
verification

of
the

produced
byte

code,
cost

of
perform

ance

•
T

he
B

yte
code

is
interpreted

and
no

I/O
access,

w
hich

lim
its

the
use

of
Java

•
A

ctiveX
uses

digital
signatures

•
V

erification
through

W
indow

s
T
rust

V
erification

service

•
M

icrosoft
learned

from
the

problem
s

w
ith

Java
security

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

P
ractical

usage:

•
N

o
real

applications
have

been
build

w
ith

Java

•
In

A
ctiveX

;applications
can

be
build

as
they

are
and

as
W

W
W

applications

•
A

ctiveX
has

inherited
a

lot
of

practical
applications

and
controls

since
it’s

based
on

O
L
E

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

D
evelopm

ent
strategy:

•
Java

is
pow

erfulw
ith

respect
to

netw
ork

application
developm

ent

•
U

nfortunately
there

has
been

a
lack

of
developm

ent
tools

•
T

hese
problem

s
are

not
present

w
hen

you
m

ake
A

ctiveX
applications

T
he

C
rossroads:

•
Its

not
necessary

to
know

both
A

ctiveX
and

Java,
since

Java
applets

can
be

integrated
w

ith
A

ctiveX
controls

•
A

ctiveX
controls

can
be

accessed
from

Java
applets

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

Sunstrikesback
with

JavaBeans!

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

W
hat

are
the

goals
of

Java
B

eans
?

•
T
o

define
a

softw
are

com
ponent

m
odel

for
Java,

that
enables

third
party

m
em

bers
to

create
and

ship
Java

com
ponents,

w
hich

can
be

com
posed

into
applications

by
the

end
user

•
T
o

provide
A

P
I’s

that
support

A
ctiveX

/O
L
E

/C
O

M
,O

pendoc
and

L
iveC

onnect

•
T
o

be
able

to
create

large
scale

application
in

Java

•
T
o

enable
dynam

ic
integration.

T
his

m
eans

com
ponents

can:

–
B

ecom
e

interactive

–
B

e
able

to
capture

events

–
C

all
m

ethods
in

other
com

ponents

•
T
o

be
a

platform
neutral

com
ponent

architecture

T
hom

as
H

ohn
22

O
ctob

er
1996

“Java
and

A
ctiveX

”
H

yp
erm

edia
and

M
ultim

edia
E

96

•
B

e
reasonable

sim
ple,like

Java

•
U

se
the

standard
security

m
odel

that
is

also
used

by
Java

Java
B

eans
Specification

1.0
just

released.

T
hom

as
H

ohn
22

O
ctob

er
1996

