
Composites in a Dexter-Based Hypermedia Framework

Kaj Grrmb~k
Computer Science Department,

Aarhus University,
Ny Mtmke ade 116, Bldg. 540

LDK-8000 hus C, Denmark.

fax: +45 89423255
e-maik kgronbak@daimi.aau.dk

ABSTRACT

This paper discusses the design and use of a generic com-

posite mechanism in the object oriented DEVISE
Hypermedia (DHM) development framework. The DHM
framework is based on the Dexter Hypertext Reference
Model, which introduces a notion of composite to model
editors with complex or multiple types of contents, The
original Dexter notion of composites is, however, insuffi-
cient to cover structural composites including or referenc-
ing other components. Thus the DHNI framework has been
extended with generic composite classes suited to support
structures within the hypermedia network itself. The paper
presents and discusses the design of the generic composite
classes belonging to the STORAGE artd RUNTIME layers
of the framework. A central aspect of the design is that the
structuring mechanism is a true composite with a collection
of components as its contents rather than an atomic compo-
nent with links to other components as in the classical
systems such as NoteCards, Intermedia, and KMS. It is also
shown how the powerful generic classes can be used to
implement a variety of useful hypermedia concepts such aix
hierarchy by inclusion, hierarchy by reference, virtual and
computed browsm, TableTops and GuidedTours.

KEY WORD S: Composites, Structure, Hierarchies,
GuidedTour, Dexter model, Object Oriented Framework.

1 INTRODUCTION

This paper discusses design and uses of composites in a
Dexter based hypermedia development framework, the

Permission to copy without fee all or part of this materiat is

granted provided that the copies are not made or dktributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given that

copyright is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1994 ACM 0-89791 -640-9/94/0009/$3 .50

DEVISE Hypermedia (DHM) framework. The DHM
framework is a generic object oriented framework for
developing hypermedia systems that are compliant to the
Dexter Hypertext Reference Model [9, 10]. Issues in the
design of the DHM framework and applications have been
discussed in earlier papers [5, 8]. Gr@nb=k & Trigg [8]
covers some initial discussion on the notion of composites
in the DHM framework. This paper delves into more details
on the object oriented design of the generic and powerful
composite concept in DHM, it also provides a discussion on
applications of the generic concept. One of the major appli-
cations of the DHM framework is to be part of a CSCW
Open Development Environment (Esprit III project
EuroCODE), hence the paper among other applications dis-
cusses how composite structures can be used to support
communication between hypermedia authors. This involves
a re-implementation of Trigg’s [18] notions of TableTops
and GuidedTours by means of the generic Composite con-
cept of DHM.

The Dexter Model

The Dexter Hypertext Reference Model [9, 10] (called
“Dexter” in the rest of this paper) separates a hypertext
system into three layers. The Storage layer captures the
persistent, storable objects making up a hyper(exr which
consists of a set of components. Component is the basic ob-
ject provided in the Storage layer. The component includes
a contents specification, a general purpose set of attributes,
a presentation specification (“PSpec”), and a set of
anchors. The atomic component is an abstraction replacing
the widely used but weakly defined concept of ‘node’ in a
hypertext. Composite components provide a hierarchical
structuring mechanism. The content of a link component is
a list of specifiers, each including a presentation speci-
fication as well as component and anchor identifiers. The
Within-component layer corresponds to the data objects,
the contents of components, and the individual editors to
handle the data objects. The Runtime layer is responsible
for handling links, anchors, and components at runtime.
Objects in the runtime layer include Session, managing
interaction with a particular hypertex~ and Instantiation,
managing interaction with a particular component. The

ECHT ’94 Proceedings 59 September 1994

runtime layer provides editor independent user interface
facilities.

This paper assumes a basic knowledge of the Dexter model.
Such knowledge can be achieved from [8, 10] appearing in
Communications of the ACM, February 1994, which
includes a special section on Dexter based hypermedia.

Framework and Applications

The DHM framework is developed in the Mj@lner BETA
System (MBS), see [15, 16]. It applies object oriented
database technologies for storing the objects corresponding
to the Dexter Storage layer, see [3, 5, 14], The DHM
framework will work on any hardware platform where the
Mj@lner BETA System is implemented. Currently this in-

cludes a variety of UNIX/X-windows platforms (SUN 0S
4.1.x, SUN Solaris, HP UX7/8), Macintosh OS (System 7),
and by August 1994 the PC/Windows platform. Several
variants of working prototypes (called DEVISE Hyper-
media, or just “DHM”) have been developed for the UNIX
and Macintosh platforms. The variants include single user
and multi-user implementations, and a cross platform ver-
sion is also implemented running an 00DB server on a
UNIX machine and clients running simultaneously on
UNIX hosts and Mats. Finally, an experimental prototype
has been developed embedding a recently developed inter-
preter for the BETA language to obtain a runtime tailorable
hypermedia system, see [6].

Structure of the Paper

The structure of the paper is as follows. Section 2 gives a
brief account of the composite concept in previous litera-
ture. Section 3 discusses the design of the generic compos-
ite classes provided by the DHM framework, and the sub-
sequent sections discuss uses of these classes. Section 4
discusses different kinds of hierarchical structures. Section
5 discusses how to provide virtual computed composites for
browsers and queries. Section 6 discusses how to support
communication of hypermedia structures by means of com-
posites. Section 7 concludes the paper.

2 THE COMPOSITE CONCEPT

Different notions of structure have been implemented in
most hypermedia systems. In many hypermedia systems,
e.g. KMS [2], Intermedia [20], and NoteCards [12] the
implemented link facility is also used to support different
kinds of structures that are not inherently “references” or
“associations” as links originally were aimed at handling.

Examples of such structures are the frame hierarchies of
KMS, which are built by means of adding link properties to
so-called tree items that are hard to distinguish semantically
from annotation items used for non-hierarchical cross-ref-
erences. Similarly, FileBox cards in NoteCards are aimed at
handling hierarchical structures by providing a special
FiledCard link type to point out the cards contained in a
FileBox. Other examples are collections of “hits” by query

searches. KMS, Intermedia and NoteCards altogether treat
these by making an atomic “result” node with links to all
the “hits”. Finally, TableTops and GuidedTours in
NoteCards are implemented by having special link types
(TableTop Link, GuidedTour Link) pointing from special
atomic nodes (called TableTop Card and GuidedTour Card)
to the nodes being conceptually “contained”. Using links
for such structures typically implies that the hypermedia
network contains many system generated links that users
have to be able to distinguish from the links they created
explicitly. Such solutions for structuring appear to be cum-
bersome and inflexible to handle.

In his “Seven Issues” paper, Halasz [11] criticized purely
link-based structures arguing that they lack a single node

capturing the overall structure. Accordingly he proposed
composites to become first class citizens in hypermedia to-
gether with atomic nodes and links. Composites would
provide. means of capturing non-link based organization of
information, making structuring beyond pure link networks
an explicit part of hypertext functionality.

Halasz also proposed the related notions of computed and
virtual composites. The contents of a computed composite
could be the result of a structural query over the hypertext
returning sets of nodes and links as “hits.” A virtual com-
posite is created on demand at runtime, but not saved in the
database.

The Dexter model’s composite [9, 10] addresses this call
for a non-link based structuring mechanism. As a collection
of base components, it acts both as a full-fledged node in
the network, and as a container for the structured data.

Though Dexter’s notion of composite is a significant step
forward, it is only one point in a spectrum of possible de-
signs, each having certain advantages and meeting certain
needs. Gr@nbzk & Trigg [8] discuss the limitations of the
Dexter model’s Composite and identify several other types
of useful composites. In short, the original Dexter
Composite is only aimed at containing collections of
BaseComponents, which is the concept to represent the ac-
tual data contents of a component. This means that it is well
suited to represent single nodes containing different types
of data contents. However, to handle structures within the
hypermedia network itself, composite types are needed that

can contain or reference other components. Similar needs
are also proposed by Hardman et al. [13], who discusses the
usage of Dexter composites for representing multimedia
data in hypermedia structures.

Composites Representing Hypermedia Sructures

Grtmb8k & Trigg [8] discuss several examples of such
composite types among those are LinkComposites to hold a
collection of LinkComponents and AtomComposites to
hold a collection of AtomComponents. They summarize
their discussion in a table depicting three independent di-
mensions along which a hypermedia designer can choose

when designing composites (and components in general)
using the DHM framework. Having revisited these three

ECHT ’94 Proceedings 60 September 1994

Structure

● Unstructured I● Data objects

I

● Encapsulated in I ● within
collection this composite composite

(inclusion)
● structured

collection
● Components

- sorted list - restricted
● Globally

- keyed table types
visible ● outside

-tlee - unrestricted
composite
(reference)... 1 m I

Table 1: Four aspects of composite contents.

dimensions for the design of new composite types it ap-
pears that the distinction on location of contents also ap-
plies to the component type of contents, hence the choices
are better deseribed as four dimensions. This is to be able to
make distinctions between r~erence relations and incha-ion
relations as proposed by Halasz [11]. The modified table
with four dimensions of choices for composite’s contents is
given in Table 1.

In [8] examples of several composites that span the original

three dimensional space of choices are given. An example
of a composite where the distinction of the fourth Location
dimension applies is the so-called ContainerComposite that
will be discussed further in Section 4.2. It is used to make
structures similar to file system directory trees for organiz-
ing components. Compared to, e.g. the AtomComposite in-
troduced in [8], a ContainerComposite’s content is located
within the composite and is only accessible through the
composite. Note that the Location dimension deseribes op-
tions for instances whereas the Definition dimension
deseribes options for placement of class definitions.

3 COMPOSITE CLASSES IN THE DHM
FRAMEWORK

This section describes and discusses the generic composite
classes in the DHM framework. First, the classes belonging
to the STORAGE layer are discussed. These classes define
the schema for the objects that are stored in the object ori-
ented database[5]. Second, the classes belonging to the
RUNTIME layer are discussed. These classes define the
generic behavior of the composites when users interaet with
them at runtime.

3.1 STORAGE Layer Classes

The main class in the Storage layer is the Hypertext. A hy-
pertext encapsulates the set of components that is stored
and retrieved from the Persistent Store/OODB. The hyper-
text class has the Component class as a main nested class.
The component class has a variety of subclasses including
AtomComponent, LinkComponent and CompositeCoqpon-
ent that corresponds to the similar Dexter model concepts.
In the DHM framework, the AtomComponent and Com-
positcComponent concepts have been classified as sub-
classes of an abstract superclass called NonLinkCom-
ponent. This is convenient in situations where one want to
treat all atomic and composite components as a whole ex-

AtomComponent
I

BCCompodteCamponent
I

GuidedTouKompodte II TableTopComposite
II

LinkCompaitc II NonLlnkComposite
I

I

COntaiaerCOmpOdte II AtomCompaite [

Figure 1: Inheritance
STORAGE Layer.

1 1 1 1

hierarchy for the generic Component classes of the

ECHT ’94 Proceedings 61 September 1994

eluding links. An example of this is given later in Section
5.1. The Component inheritance hierarchy is depicted in
Figure 1.

The AtomComponent class is aimed at handling “simple”
data obiects, such as text, and the LinkComwnent class
represents links in the framework. These cl&ses are not
di&wssed any further in this paper.

CompositeComponent : Class nonLinkComponent

(#
baseComponent Type bind composite;

. . .
(* Determine whether this composite should

be treated as virtual. *)
isVirtual: boolean

(* Add a component to this composite *)

addComponent: . . .

(* Remove a component *)
removeComponent: . . .

(* Clear the contents of this composite *)

clearComponents: . . .

(* Removes pointers to all components
marked as jdeleted’ .*)

cleanup: . . .

(* performs an action for each

component in the composite. *)
scanCompOnents: . . .

. . .

#) ;
— — . . . —
Table2Excerpt oftheintertacefor thegeneric Composite-
Component class, which in turn inherits from thegenenc
ComponentrmdNonLinkComponent classes.

The BCCompositeComponent correspondstothe original
Dexter model composite anditconsistsof asetofBase-
Components,thus theprefix’BC’.The BCCompositeCom-
ponentisaimedatmodelling editorswithmultiple typesof
dataobjects,e.g. aform with fields with different typesof
anchorable contents. ABaseComponent modelsatypeof
data object directly. The BCCompositeComponent has
procedures to add, remove, scan and access the BaseCom-
ponents of its contents.

The CompositeComponent class is aimed at handling col-
lections of other components, and it is a new construction

compared to the original Dexter model. The Composite-
Component also possesses procedures to access the com-
ponents contained in the base (see Table 2). The value of
the isVirtual Boolean attribute determines whether the
composite is virtual or not. The LinkComposite is a spe-
cialized CompositeComponent that is restricted to contain
LinkComponents. Similarly, a NonLinkComposite is a
CompositeComponent restricted to contain only NonLink-
Components, and an AtomComposite is a NonLink-
Composite further restricted to contain only AtomCom-
ponents, Specific uses of these classes are discussed in
Sections 4-6.

Composites Implemented without Links

Classical systems like NoteCards [12], KMS [2] and
Intermedia [20] implement composite-like structures such
as hierarchies, query result nodes, and browsers by means
of creating links between the special atomic node and its re-
lated nodes. For example in the case of computing a query
or a browser, the system implicitly generates many links
that only serve the purpose of implementing the node-
“composite” relation.

In DHM, we have taken another approach and implemented
the relationship between composites and their member
components by means of pointers to objects. This makes
membership of a composite a one-way relation, that is,

components do not know about which and how many com-
posites they are members of. An exception is the Container-
Composite as discussed in Section 4.2. An advantage of this
one-way pointer solution is that removal of a composite can
be done in constant time. This is in contrast to, e.g. the im-
plementation of browsers in NoteCards. In NoteCards,
deletion of a browser requires that all the nodes being a
member of the composite should be visited to delete the
back-link information. Another advantage is that com-
ponents can be added and removed from composites with-
out requiring change of locking on the member components
in a cooperative use setting [5]. Adding links to a compo-
nent requires linking access, to the component, because an
anchor has to be created, to support hi-directionality.

A potential disadvantage with one-way relations is to keep
composites updated when member components are deleted.
By implementing composite-member relationships by
means of bidirectional links, it is easy to update compos-
ites when members are deleted. This is more difficult when
dealing with one-way relations, but in DHM a lazy ap-
proach similar to the handling of links to deleted compo-
nents is chosen. When a component is deleted, it is re-
moved from the hypertext, its data is destroyed, and a

deleted ‘flag’ is set on it. Following a link to such deleted
components results in a dangling link exception, see [8].
Similarly, deleted components that are members of com-
posites are shown with a special ‘deleted icon when the
composite is presented at runtime, and the user can remove
it from the composite manually, or a cleanup operation can
remove all in one operation. When the last pointer to a
deleted component is removed, then the garbage collector
reclaims it. The cleanup operation can be called for all open
composite instantiation when changes occur in an arbitrary
instantiation, this ensures consistent views. Calls to cleanup

can also be performed upon presentation of a composite,
ensuring that no “deleted” components are made visible to
the user. The schema for cleanup should be determined by
preferences set by the user.

ECHT ’94 Proceedings 62 September 1994

3.2 RUNTIME Layer Classes

The main classes of the RUNTIME Layer are Session and
Instantiation. A Session manages and manipulates a single
Hypertext, (A hypertext can have several open sessions
managed by the same or different users.) Runtime man-
agement of components is handled by the Instantiation class
defined within the scope of the session class. (Components
can have multiple open instantiation.) Runtime manage-
ment of anchors is in the case of MarkedAnchors handled
by LinkMarkers. In the case of WholeComponentAnchors
and UnMarkedAnchors. there is no ext’)licit Runtime obiect
representing the anchor-[8]. “

composite Inst: Class Instantiation
(# component Type: bind compositeComponent;

. . .
(* present this instantiation. *)

present: bind . . .

(* Determines whether the composite

should be recomputed when presented. *)

isComputed: boolean;

(* Trash composite’s current contents and

recompute it .*)
RecomputeComponent: bind . . .

(* Calls the Composite’s addComponent *)
addComponent: virtual . . .

(* Calls the Composite’s removeComponent *)
removeComponent: virtual . . .

(* Returns the selected component(s). ‘)

SelectedComp: . . .

Subinst: Class . . . (* See Table #4 *)

newsubInst: virtual . . .

(* Removes subInst for a specified comp *)

removesubInstForComp: . . .

subInstList: . . .

subInstSelectedList: . . .
. . .

#);
.-.. —

Table 3: ExceqW of theinterface forthegeneric Combos-
iteInstclassthat inheritsffomthe Instantiationclass.

Figure2depicts the generic subclasses ofthe Instantiation
class which are provided to handle different component
types of the Storage Layer. Instantiations handlingAtom-
Components and LinkComponents are not discussed any
furtherin this paper. The CompositeComponents have
genericInstantiation subclassestohandle thematruntime.

TheBCCompositeInst classhasprocedures forhandlingthe
BaseCotnponentscontained inthecorresponding BCCom-
positecomponent. Similarly, the CompositeInst (see Table

1 Among the things omitted here are attributes and
procedures to handle multi-user behavior.

3) has a number of procedures for manipulating the set of
components contained in the base to the corresponding
CompositeComponent. Finally, it introduces a nested
SubInst class for handting the contained components at
Runtime without making real instantiation for them.

Light Weight Instantiation

To manage control of individual components in a com-
posite without making a full-fledged Instantiation, a light
weight instantiation class called SubInst (see Table 4) is in-
troduced.

subInst: Class

(#
component Type: bind thehypertext. component;

theComponent: component Type;

my Inst: . . .
. . .
(* Called when a new subInst is created.*)
init: virtual . . .

(* present this subInst according to

the display info.*)
present: virtual . . .

(* Close down and remove the subInst. *)

unpresent: virtual . . .

(* Save the display attributes associated
this subinst. *)

save: virtual . . .

(* Save and unpresent this subInst. *)

close: virtual . . .

(* Hit, Selected and Deleted are virtuals
being called whenever a corresponding
event happens to the corresponding icon
in the browser application.*)

hit: virtual . . .

selected: virtual . . .

deleted: virtual . . .

#); (* End of subInst Class *)

Table4:Excaptfrom thegenericSubInst class.l%isclass

is encapsulated in the CompositeInst class, described in

Table 3.

Themaindifference toarealInstantiation isthataSubInst
doesnotprovidean application tohandle therepresented
component and its data contents. It only provides an inter-
facetoaccasthecomponent attributesandtoinvoke areal
Instantiation for it. A SubInst typically appears in the user
interfiwe as an icon in a composite’s editor window, e.g. the
icon for ‘Overview’ in Figure 3.

ECHT ’94 Proceedings 63 September 1994

I
Linkhst

I

NonLinkCompositeInst II Guided TourInst II TableTodnst II LinkCOmpOsiteInat I

I ‘ “m
COntainerCOmpOsiteInst

&&
. Figure 2 Inheritance hierarchy for the generic Instantiation classes of the RUNTIME Layer.

3.3 Virtual and Computed properties

Any composite can be made virtual by setting a flag. Such
composites resemble normal composites, but they are usu-
ally not saved in the database. If however, a link or another
composite reference a virtual composite, then it is indeed
saved. Virtual composites resemble objects in a dynamic
programming environmen~ if they are not referenced, then
garbage collection reclaims them.

Similarly, any composite can be the result of a computation
or it can be manually created by the user. A typical example
of a computed composite is a composite created from exe-
cuting a query. An attribute contains the information used
to perform the computation. The composite’s contents can
later be re-computed, either on demand or automatically.

In [8] it was proposed to have virtualness and computed-
ness as static properties of components. Hence special

STORAGE layer classes like VirtualAtomComposite and
VirtualLinkComposite were introduced, and objects instan-
tiated from these classes remained virtual (and computed)
forever. The virwalness of the VirtualAtomComposite
means that it is not added to the hypertext’s component list,
i.e. it is only stored persistently if a link to it is created. The
computedness implies that the query specification is stored
in an attribute on the composite and if it is presented later it
will recompute its contents from the query specification.
However, this turned out to be inflexible for some use sit-
uations, Say a user has started making a collection of mate-
rial by performing a query resulting in a VirtualAtomCom-
posite referencing the set of AtomComponents matching
the query. This is, however, inconvenient for our user who
would like to continue picking some additional material
“manually” and add it to the composite at hand finally
making it into a static collection which is stored through the

hypertext’s component list as usual. Having faced this
inconvenience, the DHM composite classes have been
changed to have virtualness and computedness as dynamic
properties not requiring subclassing. This means that our
user can start from a query which by default produces a
computed and virtual composite, which can dynamically be
changed into an ordinary static and non-virtual user created
composite.

3.4 Editing Composite Contents

Besides having composites with computed contents it is
possible to manually edit the contents of a composite as
mentioned above (see examples of composite user interface
in Figure 3). Editing operations include: renaming compo-
nents, repositioning icons, removing components, moving
or copying references to components between composites,
and “physical” moving of components between Container-
Composites, see Section 4.2 for more details about
ContainerComposites. Copying and moving components
between composites are in the user interface done in the
Cut, Copy, and Paste paradigm. In the future Drag and
Drop moving and copying between composites may be
supported.

3.5 General Support for Partial Interchange

The generic Non-Link composite class of the DHM frame-

work has been extended with a procedure to export an in-
terchange format for the subset of a hypermedia network
defined by the composite’s contents. This means that a
tagged ASCII text file following the SGML-like syntax
proposed by the Dexter model is produced for the contained
non-link components and the LinkComponents having end-
points in these components. Issues in managing partial in-
terchange are discussed in a forthcoming paper [7].

ECHT ’94 Proceedings 64 September 1994

4 COMPOSITES FOR HIERARCHICAL
STRUCTURING

As mentioned in the introduction, many hypertext systems
provide means for handling tree like hierarchical structur-
ing. In DHM, such structuring is provided by means of dif-
ferent types of composite components. Halasz [11]
proposes that when introducing composites to handle
hierarchical structures, it should be possible to make
distinctions between reference relation and inclusion
relation. A reference relation between a composite and
another component in our context means that the composite
references the component that is physically located outside
the composite itself. In cent.mst, an inclusion relation means
that the composite con[ains the component such that, e.g.
deletion of the composite implies deletion of the included
component. Composites supporting inclusion relations can
maintain hierarchies resembling a physical directory or
folder structure. This distinction is expressed in the fourth
column of Table 1 labelled ‘Location’. Below examples of
composites implementing hierarchy by references and
hierarchy by inclusion are given.

4.1 Hierarchy by Reference

KMS [2] and NoteCards [12] provide hierarchical struc-
tures where each frame or card maybe part of many hierar-
chies. In KMS, any frame can be referenced by an unlim-
ited number of tree item link properties. In NoteCards, any
card can be linked to by an unlimited number of FileBoxes.
There is, however, also a weak notion of physical contain-
ment in NoteCards, a card must be referenced by at least
one FileBox, i.e. there is an “O~hans” FileBox where cards
that have been removed from all their FileBoxes go. In
DHM, the generic composite classes CompositeCompon-
ent, NonLinkComposite, AtomComposite and LinkCom-
posite provide such means of structuring. A component of a
certain type can be referenced by any number of
composites suited to reference the specific type of com-
ponent. For example, an atomic TextComponent may be re-
ferenced by a CompositeComponent and an AtomCompos-
ite at the same time. Hence, these generic DHM composites

can be used to create hierarchies similar to NoteCards File-
Box and KMS TreeItem hierarchies. The generic classes
can also be further specialized and for instance be restricted

to only contain a certain type of components as leaves, e.g.
in a document structuring context, a ChapterComposite
could be restricted to contain or reference Section-
Composites only, and in turn SectionComposites could be
restricted to contain or reference AtomComponents.

Various CompositeInst class specializations can be
developed to handle the behaviour for composites. Figure 2
depicts such generic classes, e.g. NonLinkCompositeInst
and AtomCompositeInst. Several of the CompositeInst
subclasses use the same CompositeComponent class.

4.2 Hierarchy by Inclusion

An object instantiated from the Hypertext class is in the
original Dexter Model context a flat collection of compo-

nents. Similar to Halasz’ call for composites to handle in-
clusion, we have experienced that hypermedia network
structures need a concept similar to directories in a file sys-
tem. In DHM, we have introduced a composite type, the
ContainerComposite, that behaves much like directories.
The ContainerComposite is a specialization of the Non-
LinkComposite class, i.e. it can hold a mixed set of Atom-
Components and other CompositeComponents and thereby
other ContainerComposites. By means of ContainerCom-
posites it is possible to maintain a directory tree like
organization of a hypertext, where the hypertext itself
becomes the root directory. For example, the SEPIA [17]
hypermedia system also introduces a composite node to
represent sub graphs in the network and folders in the
various activity spaces.

The ContainerCompositeInst class handles the behaviour of

ContainerComposites at runtime. Among other things, it
implements “physical” movement of components between
containers. As mentioned in Section 3.4 movement is
performed by Cut and Paste procedures.

5 VIRTUAL AND COMPUTED COMPOSITES FOR
BROWSERS AND QUERIES

The classical systems NoteCards [12] and Intermedia [20]
provide browsers that are first class nodes in the systems.
These browsers are typically implemented by means of
common atomic nodes that maintain a set of links to the
nodes represented in the browser. Similarly, results from
query searches are represented as an atomic node having a
set of system generated links to the “hits” of the query.
Halasz[11] criticizes this approach and argues for introduc-
ing virtual composites which are transient structures that
are dynamically computed at runtime. He also requires that
such composites should behave as first class nodes in the
network, i.e. they should be linkable and browseable as are
any other nodes.

The DHM framework provides support for such virtual and
computed composites at a general level. The
CompositeComponent interface shown in Table 2 shows
that an ‘isVirtual’ flag can be set on a composite (usually at
creation time) to determine that this composite should not
be stored persistently, i.e. it is not inserted in the
hypertext’s component list. Similarly, the general compos-
ite instantiation which interface is shown in Table 3 has a
flag ‘isComputed’ to determine whether the composite’s
contents should be (recomputed at presentation. Moreover,
the CompositeInst has a virtual procedure ‘Recompute-
Component’ that can be further bound in specializations to
determine how the composite’s contents should be com-
puted. This procedure is invoked automatically by the
framework when a composite is presented, but it may also
be invoked on user request from the user interface, cf. the
‘Recompute’ button in Figure 3. All composites appear as
first class linkable components independent of the setting of
the ‘isVirtual’ and ‘isComputed’ flags. In addition, the

status of a composite may be changed dynamically. If a
user at some point decides that a given browser which was

ECHT ’94 Proceedings 65 September 1994

. .
File Edit HuDerteKts Links ftnchors Components Composites

Dp
Ovwviw

~~ ‘ewLinkfrOmJ[‘ddasendpoin’J[FOIIOUJ from 1

Delete component] [Browse Links Recompute

------ ------

c1
p

m I m

(~, ~=.
n
b+

htro PMU2000 Tour ~PCU2000 deswif...j WE Folder. --

@ ~ Grundfos: Component links 233 pj:

mIll Links for component: PCU 2000 description

PSUTablcToP

Tools:

Link 15% (PCU2000 description(S), PCU2000 dimensions IP42(D), . . .
Link 160 (PCU2000 description(S), PCU2000 dimensions IP42(D))

Link 161: (PCU2000 description(s), PCU2000 dimensions IPOO(D))
Link 164 (PCU2000 description(S), PCU2000 weight W shipping(Dl)

Link 165: (PCU 2000 genera, PCU 2000 des .ription(D))
5Link 181: (PCU2000 description(S), PCU2000 Technics Data(D))

[Recompute 1

t
Edit link

(Set current 1

[Present link 1

[Delete link)

(Present comDonenfi

gure 3: User interface examples from a pump documentation application, The “Hypertext Components 231”

ndow represents a browser of all Atomic and Composite components (using a NonLinkComposite). Folder

icons with symbols are used to represent different types of composite components. The “Component links

233” window represents a computed browser (using a LinkComposite) of all the links to and from the text

component “PCU 2000 description”.

created as a virtual computed composite should become a
static structure to be saved persistently, procedures are
available for changing the status. Finally, when a link is
established to a virtual composite or when a virtual
composite is being added to another composite, it is auto-
matically stored by the 00DB that traverses transitive clo-
sures of object references at save time.

The usage of this generic composite for browsers and
queries is discussed by means of some examples. DHM
provides a number of different browsers that are distin-
guished by which filtering of components they apply for
their computation. Examples of non-link component brow-
sers2 and link browsers are given below. It should be noted
here that DHM currently does not provide a user interface
presentation for generating global graphical maps of com-

ponents and links3. It is, however, possible to get a local
list of links for each component in a browser, see Figure 3.

2 Traditionally called node browsers.

30ne of the reasons for not providing global graphical
maps is that is a potentially hard problem to design
automatic layout algorithms for displaying multi-headed
links.

5.1 Non-Link Component Browsers

In the component inheritance hierarchy (STORAGE layer)
depicted in Figure 1, CompositeComponent has a branch of
subclasses including a ‘NonLinkComposite’ and an ‘Atom-
Composite’. These are composites that maintain a reference
relation (see Section 4) and which are restricted to refer-
ence NonLinkComponents and AtomComponents respec-
tively. These composites can as all other composites be as-
signed a virtual status and be used by several runtime com-
posite instantiations that determine a computation
procedure.

In the Instantiation inheritance hierarchy (RUNTIME layer)
depicted in Figure 2, there are four subclasses of the
NonLinkCompositeInst class: SearchNonLinksInst, Search-
AtomsInst, HypertextNonLinksInst, and Hypertext-
AtomsInst that uses the above mentioned composites for

computing browsers. This in turn gives four different
browsers, see Table 5, Figure 3 shows an example of an
icon based presentation for a HypertextNonLinksInst.
The SearchNonLinksInst and the SearchAtomsInst use an
attribute on their corresponding composite to store the
query for later recomputation.

ECHT ’94 Proceedings 66 September 1994

SearchNonLinksInst

IPerforms a search given some
query over the entire set of
atomic and composite

1 components
SearchAtomsInst I Performs a similar search. but

restricted to the set of atomic
components by using the
AtomComposite component.

HypertextNonLinksInst Collects all atomic and compos-
ite components in a hypertext

HypertextAtomsInst Collects only the atomic compo-
nents in a hypertext by using the
AtomComposite component.

Table 5: Examples of browser instantiations.

Subclasses vs. Parameters

In the examples described above a “subClassing” approach
has been taken to specify a restriction from non-link com-
ponents to atomic components. This could also have been
done by designing, e.g. the SearchNonLinksInst to take a
parameter that tells it to restrict its computation to only col-
lect atomic components and stuff those into the more gen-
eral NonLinkComposite. This will in most cases be the
simplest solution. However, if we want to utilize the
knowledge that our composite only contains atomic
components, the subclass approach is needed. This is the
case if we want to scan the composite contents and perform
procedures specific to each atomic component. Our
strongly typed language [16] supports this conveniently by
making a composite subclass with its contents restricted to

atomic components.

The subclassing approach is disadvantageous when users
want to take a composite and modify it themselves, e.g. by
adding other types of components to it. In such cases
parametrized composites are more well suited. The choice
between subclassing and use of parameters is open to the
user of the DHM framework.

5.2 Link Browsers

The DHM framework also provides a ‘LinkComposite’ that
supports reference relations and is restricted to reference
LinkComponents, see Figure 1. This composite subclass is
intended to be used for various browsers and queries that
collect links from the network.

To handle the behaviour for LinkComposites at runtime, a
general LinkCompositeInst and three subclasses are pro-
vided. The HypertextLinksInst subclass can be used for a
browser that collects all links in a given hypertext. The
ComponentLinksInst subclass can be used for a browser
that collects all links for a given “root” component, see
Figure 3. The root component is represented as an attribute
in the LinkComposite, hence the composite can recompute
itself again. The AnchorLinksInst subclass can be used for
a browser that collects all links for a given anchor in a
component, Similarly in this case, the root anchor is repre-
sented in an attribute to allow for recomputation. The thrm

LinkCompositeInst subclasses all uses the LinkComposite,
i.e. this is an example of different Instantiation types using
the same component type. This makes sense because the
storage model for all three is the same.

6 COMPOSITES FOR COMMUNICATING
HYPERMEDIA STRUCTURES

Previous research in hypermedia has identified a need for
communicating trails [4], paths [19], or guided tours [18]
between hypermedia users. The analysis work carried out in
a branch of our EuroCODE project [1], identified similar
needs when designing hypermedia support for a hospital
setting. Doctors and radiologists in some situations need
means to asynchronously communicate so-called
“demonstrations” to each other. A demonstration consists
of a sequence of bundles of pictures (X-ray, CT scans, MR
scans, etc.), pages from a case record, and Dictaphone mes-
sages. This hospital scenario calls for supporting the ad-
vanced kind of trails provided by Trigg’s [18] GuidedTours

and TableTops. A TableTop in this use setting should act as
a so-called “snapshot composer”: a configuration of pre-
sented picture components, text components, and a Dicta-
phone (sound) component are positioned on the screen,
then a snapshot of this configuration is stored in a
TableTop. In this scenario, a GuidedTour constructed as a
linear (non-branching) ordering of snapshots is sufficient.

Having identified the above requirements for communicat-
ing hypermedia structures we designed and implemented a
notion of GuidedTours and TableTops in the DHM frame-
work. In contrast to Trigg’s NoteCards implementation
using links to couple cards to TableTops and TableTops to
GuidedTours, specializations of the generic composite
classes were used for the implementation.

A TableTopComposite is introduced as a non-virtual com-
posite with no restriction on contents, i.e. it may contain
any object being an instance of the component class and its
subclasses, see Figure 1.

A TableTopInst class is provided to handle the behaviour of
TableTopComposite objects. The ‘isComputed’ flag is not
set for the TableTopInst. The RecomputeComponent virtual
is, however, further bound to implement the snapshot
mechanism to be invoked “manually” by the user. When
invoked, the RecomputeComponent procedure visits all

open instantiations and calls AddComponent with the
corresponding component reference as a parameter.
Moreover, the TableTopInst supports presenting and
unpresenting the components referenced by the TableTop-
Composite in unit operations. An example user interface is
shown in Figure 4.

A GuidedTourComposite is implemented as a non-virtual
composite with its contents restricted to contain a structured
collection of components of type TableTopComposite (see
Figure 1). It maintains a reference relation to the
TableTopComposites. Its contents consist of a structured

ECHT ’94 Proceedings 67 September 1994

..

set of TableTopComposites that can be presented and
closed one at a time.

A GuidedTourInst class is provided to handle the behaviour
of GuidedTourComposites (see Figure 2). It provides sup-
port for stepping through an ordered collection of
TableTopComposites and presenting them one at a time
similar to NoteCards GuidedTour cards. Thus the
GuidedTourInst class adds procedures such as ‘Start’,
‘Next, ‘Previous’, ‘Jump’, and ‘Reset’ to the generic
CompositeInst class. An example of a preliminary user in-
terface is depicted in Figure 4.

Communicating GuidedTourComposites in DHM

In a shared hypermedia network [5], a GuidedTourCom-
posite can be communicated by telling other users how to
find it, e.g. by making a link between it and a common
“bulletin board” component or by adding it to a shared
composite acting as an “in box” for a receiving user. A
GuidedTourComposite and its transitive closure may, how-
ever, also be sent to a remote user. This can be done by
means of the general partial interchange mechanism for
composites, mentioned in Section 3.5.

New Role for Presentatwn Speciflcatwns

When using composites to implement TableTops, it appears
that the Dexter notion of presentation specifications
(“PSpecs” in short) should also be made applicable to com-
posite “pointers”. DHM applies PSpecs to capture presenta-

File Edit Huoertexts Links 13nchors

tion information such as window position and size. The
Dexter model provides a PSpec for each component, more-
over each specifier (link end-point) has a PSpec that can be
applied in conjunction with the PSpec of the component
referenced by the specifier. Taking window position as an
example, a component may store a default window position
in its PSpec to be used for presentation, but this position
specitlcation can be overruled or combined by the specifier
PSpec when the component is presented through following
the link. For TableTops a similar mechanism is desirable,
since position and size of presentation windows are crucial
when preparing a comprehensible TableTop for a
GuidedTour. Thus the DHM composite class is extended to
optionally hold PSpecs for each component in its contents.
This feature is particularly useful for the TableTop-
Composite subclass, implying that a component being
referenced by several TableTops may be presented in
windows at a different position for each TableTop.

7 CONCLUSION

This paper discussed different notions of composites in a
Dexter-based hypermedia development framework. The
original Dexter notion of composite is primarily aimed at
handling nodes with structured data objects, and it comes
short in handling structures in the hypermedia network it-
self. Thus a new notion of composite was introduced in the
DHM framework. This extended composite concept was
presented in terms of generic CompositeComponent and
CompositeInst classes. The power of these generic classes

Components Composites

[
s
n

WE hi--------

[
s
n

WE 65

==?=[““t“ Previous 1

------------.. -->

01 m m m -

D D:

Show comoonent n(ODen TableTon lr Close TableTon 1(Rt?COIS’IDUte 1

iikn ~ UPE32-120 scree... UPE40-120 scrw... UPE50-60 screen,--------- 11

Grundfos: UPE intro Screen 5

. . JJ, –r–..——– —.–. J L - J L .-— —)

El.== El,==~~ ZZ c1~ c1
UPE2000 dwwip... UPE2000 general WE 2000 positio... video installati...

Figure 4: Example from a pump documentation application. The window “UPE 2000 tour”

represents a non-branching GuidedTour (using a GuidedTourComposite) of a specific class of

pumps. The sequence of the guided tour is currently given by the left-to-right sequence of icons

in the tour window – a graph interface is currently under development. The “UPE Intro screen”

window represents the first TableTop (a TableTopComposite) in the “UPE 2000 tour”.

ECHT ’94 Proceedings 68 September 1994

has been demonstrated by showing how they can easily be
specialized to support a rich variety of structuring mech-
anisms: hierarchy by reference, hierarchy by inclusion,
virtual computed composites for browsers and queries, and
static composites implementing GuidedTours and Table-
Tops. The composites treated in this paper are only
examples, many other hypermedia structures such as book-
marks, hotlist.s, recent lists, etc. may also be implemented
by means of the generic composite classes of DHM.

The status of development of composites in the DHM
framework is that the STORAGE and RUNTIME layer

classes presented in Figure 1 and 2 are implemented. The
presentation user interface is still under development, and it
may vary depending on the application domain. Most of the
composites discussed in this paper will be further devel-
oped and used in our ongoing EuroCODE project.

Topics for further research include graph based browsers,
and user interfaces to deal with virtual and computed
properties of composites, such that users can distinguish
type and status of composites easily.

ACKNOWLEDGEMENTS

Thanks to Randy Trigg for his inspiration and comments on
an earlier version of the paper. Thanks to the anonymous
reviewers for helpful comments. The work is supported by
the Danish Research Programme for Informatics, grant
number 5.26.18.19, and the ESPRIT projects EuroCoOp
and EuroCODE.

REFERENCES

1.

2.

3.

4.

5.

6.

Aas, G,, Holmes, P., Lovett, H., S@rgaard, P.,
Madsen, K.H., and Sandvad, E., Deliverable D-5.2:
Design of the Middle Road Demonstrator. 1993,
Norwegian Computing Center, Oslo, Norway.:
Akscyn, R.M., McCracken, D.L., and Yoder, E.A.,
KMS: A Distributed Hypermedia System for Manag-
ing Knowledge in Organizations. Communications
of the ACM, 1988. 31(7): p. 820-835.
Andersen, P., Brandt, S., Hem, J.A., Madsen, O.L.,
M@ller, KJ., and Sloth, L., Workpackage WP5 Task
T5.4, Deliverable D5.4: Distributed Object- Ori-
ented Database Interface. 1992, Jutland Telephone
and Aarhus University:
Bush, V., As We May Think. The Atlantic Monthly,
1945, August.
Gr@b&k, K., Hem, J.A., Madsen, O.L., and Sloth,
L., Cooperative Hypermedia Systems: A Dexter-
Based Architecture. Communications of the ACM,
1994. 37(2): p. 64-75.
Gr@nb=k, K. and Malhotra, J. Building Tailorable

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Gr@nb=k, K. and Sloth, L., Hypermedia interchange
issues beyond the choice of tagging language. 1994,
Computer Science Department, Aarhus University
Gr@b=k, K. and Trigg, R,H., Design issues for a
Dexter-based hypermedia system. Communications
of the ACM, 1994, 37(2): p. 40-49.
Halasz, F. and Schwartz, M. The Dexter Hypertext
Reference Model. in NIST Hypertext Standardiza-
tion Workshop. 1990. Gaithersburg, Md.:
Halasz, F. and Schwartz, M., The Dexter Hypertext
Reference Model. Communications of the ACM,
1994. 37(2): p. 30-39.
Halasz, F. G., Reflections on NoteCards: Seven is-
sues for the next generation of hypermedia systems.
Communications of the ACM, 1988. 31(7): p. 836
-852.
Halasz, F.G., Moran, T.P., and Trigg, R.H., Note-
Cards in a Nutshell, in Proceedings of ACM
CHI+GI’87 Conference on Human Factors in Com-
puting Systems and Graphics Interface. 1987, p. 45-
52.
Hardman, L., Bukerman, D. C.A., and van Rossum,
G., The Amsterdam Hypermedia Model: Adding
Time and Context to the Dexter Model. Communi-
cations of the ACM, 1994. 37(2): p. 50-63.
Hem, J.A., Madsen, O.L., M@ller, K.J., N@rgaard,
C., and Sloth, L., Workpackage WP5 Task T5.2, De-
liverable D5.2: Object-Oriented Database InterJace.
1991, Jutland Telephone and Aarhus University,:
Knudsen, J.L., LOfgren, M., Madsen, O.L., and
Magnusson, B., Object-Oriented Software Devel-
opment Environments - The Mj@lner Approach.
1993, Englewood Cliffs, NJ: Prentice Hall.
Madsen, O.L., M@ller-Pedersen, B., and Nygaard,
K., Object-Oriented Programming in the Beta Pro-
gramming Language. 1993, Reading, MA Addison-
Wesley.
Streitz, N., Haake, J., Hannemann, J., Lemke, A.,
Schuler, W., Schiitt, H., and Thiiring, M. SEPIA a
Cooperative Hypermedia Authoring Environment. in
European Conference on Hypertext (ECHT ‘92).
1992. Milano, Italy: ACM.
Trigg, R.H., Guided Tours and Tabletops: Tools for
Communicating in a Hypertext Environment, in
Proceedings of ACM CSCW’88 Conference on
Computer-Supported Cooperative Work. 1988, p.
216-226.
Trigg, R.H. and Weiser, M., TEXTNET: A network-
based approach to text handling. ACM Transactions
of Office Information Systems, 1986. 4(l): p. 1-23.
Yankelovich, N., Haan, B.J,, Meyrowitz, N.K., and
Drucker, S.M., Intermedia: The Concept and Con-
struction of a Seamless Information Environment.
IEEE Computer, 1988. 21(1): p. 81-96.

Hypermedia Systems: the ernbedded-interpreter ap-
proach. in ACM conference on Object Oriented
Programwdng Systems, Languages and Applications
(OOPSLA ‘94). 1994. Portland, Oregon, US, 23-27
October, 1994: ACM.

ECHT ’94 Proceedings 69 September 1994

