
Multicapacity Facility Selection in Networks
Alvis Logins

Aarhus University
Panagiotis Karras
Aarhus University

Christian S. Jensen
Aalborg University

Abstract—Consider the task of selecting a set of facilities, e.g.,
hotspots, shops, or utility stations, each with a capacity to serve a
certain number of customers. Given a set of customer locations,
we have to minimize a cumulative distance between each customer
and the facility earmarked to serve this customer within its
capacity. This problem is known as the Capacitated k-Median
(CKM) problem. In a data-intensive variant, distances are calcu-
lated over a network, while a data set associates each candidate
facility location with a different capacity. In other words, going
beyond positioning facilities in a metric space, the problem is
to select a small subset out of a large data set of candidate
network-based facilities with capacity constraints. We call this
variant the Multicapacity Facility Selection (MCFS) problem.
Linear Programming solutions are unable to contend with the
network sizes and supplies of candidate facilities encountered in
real-world applications; yet the problem may need to be solved
scalably and repeatedly, as in applications requiring the dynamic
reallocation of customers to facilities. We present the first, to
our knowledge, solution to the MCFS problem that achieves
both scalability and high quality, the Wide Matching Algorithm
(WMA). WMA iteratively assigns customers to candidate facilities
and leverages a data-driven heuristic for the SET COVER problem
inherent to the MCFS problem. An extensive experimental study
with real-world and synthetic networks demonstrates that WMA
scales gracefully to million-node networks and large facility and
customer data sets; further, WMA provides a solution quality
superior to scalable baselines (also proposed in the paper) and
competitive vis-á-vis the optimal solution, returned by an off-the-
shelf solver that runs only on small facility databases.

I. INTRODUCTION

A type of problem arising in smart city applications calls
for selecting an attractive subset out of a set of candidate
facility locations (e.g., telecommunications hotspots, meeting
points, bike stations, recycling stations, electric vehicle charg-
ing stations, or waste disposal sites) to provide a service in an
urban network. The fitness of the selected set is measured
by means of total convenience or utility with respect to a
set of geographically located customers. This problem may
need to be solved repeatedly; for example, one may need to
periodically decide on a set of service locations, depending on
which customers declare interest for a certain offering.

The input data typically includes a weighted graph, repre-
senting a road network and associated candidate facility loca-
tions and customer locations. Figure 1 provides two examples,
where we need to select a subset out of a set of eligible
facilities (in blue) so as to serve a predefined set of customers
(in red) in Las Vegas or Copenhagen.

In the Multicapacity Facility Selection (MCFS) problem,
each candidate facility has a capacity, and we need to choose k

Work done primarily while all authors were with Aalborg University.

(a) Las Vegas (b) Copenhagen
Fig. 1: Customers (red), and cafés (blue).

facilities and assign each customer to one of them while
observing the capacity constraints; as the number of served
customers is bounded by capacity constraints, an objective
of maximizing that number does not arise; the objective is
to optimize a notion of customer convenience, defined in
terms of the distances between customer and the facilities
they are assigned to. The MCFS problem amounts to the
hard and nonuniform case of the capacitated k-median (CKM)
problem [1] over a network. Here, hard indicates that only
one facility can be placed at a certain location; the soft
version allows for multiple facilities at the same location.
Next, nonuniform indicates that facility capacities differ; in
the uniform version, all capacities are equal. Last, the network
setting need not yield a metric distance notion.

Unfortunately, the problem is already NP-hard in the soft
and uniform case over a metric space [2]. Small instances can
be solved exactly by Linear Programming (LP) and Mixed
Integer Programming (MIP) solvers [3]. However, such solvers
do not scale beyond networks with a few thousand nodes.
Past research has proposed LP relaxation [4] methods that
provide approximation guarantees while violating constraints
on facility capacity or cardinality. The most recent works in
the area introduce an LP formulation, called rectangle LP,
tailored to the uniform [5] and soft nonuniform [6] capacitated
k-median problems, and develop rounding algorithms that
achieve constant approximation guarantees while violating the
cardinality constraint k. Such solutions remain impractica-
ble in real-world applications due to their high-polynomial
time complexities, while an approximation algorithm for the
nonuniform hard-capacitated case has yet to be developed [7].

Local search techniques exist for the CKM problem and
related facility location problems [2], [8], known as group
nearest group queries in the database community [9]; however,
such solutions solve only the uncapacitated and uniform soft-

capacitated problem cases; they accommodate neither nonuni-
form nor hard capacity constraints. Thus, to our knowledge,
no existing solution achieves both high quality and scalability
to large networks and customer sets in the MCFS problem.

We present an effective and scalable MCFS solution, the
Wide Matching Algorithm (WMA). WMA progressively as-
signs customers to strategically chosen candidate facilities,
translating a bipartite assignment under capacity constraints
to a network setting, and decides on its termination by means
of a SET COVER heuristic. We contribute the following:
• We attempt the first, to our knowledge, solution for

the MCFS problem that achieves high quality and is
applicable to large real-world networks.

• We develop an algorithm, WMA, that combines a data-
driven heuristic for set cover with a principled spatial
assignment subroutine.

• We introduce a reasonable baseline MCFS heuristic that
clusters customers in groups satisfying capacity con-
strains, following a Hilbert space-filling curve.

• We conduct an experimental study with synthetic and real
data, demonstrating that WMA scales to million-node and
million-edge networks with large customer and facility
sets and achieves near-optimal solution quality, as seen
in cases where the exact solution can be computed.

II. PROBLEM STATEMENT

Consider a network represented as a weighted (directed or
undirected) graph G = (V,E,W), where V is a set of
nodes that model urban locations such as intersections and
road ends, E is a set of edges that model road segments, and
W is a mapping from edges to positive integer weights that
model road segment lengths. Further, we are given a set of
m customers S = {si}mi=1 ⊆ V , and a set of ` candidate
facility locations Fp = {fj}lj=1 ⊆ V ; each fj ∈ Fp comes
with a capacity constraint cj . Given a cardinality value k, the
problem is to select k candidate facilities F ⊆ Fp, |F | ≤ k
and assign each customer to exactly one facility in F , so that
each selected facility fj ∈ F is at most cj assigned customers
and the sum of network distances between customers and their
allocated facilities is minimized.

We use two binary variables xj and yij ; xj indicates
whether the candidate facility at node vj is selected, j ∈
{1..`}, while yij indicates whether the customer at node vi
is assigned to the facility at node vj . Also, let dij be the
shortest-path distance between vi and vj . Note that dij values
need not define a metric matrix and need not be given as
input; instead, they may be computed on the fly over the input
network, a feature distinguishing our problem setting. Then,
our minimization objective over xj and yij is:

min
xj ,yij

∑
i

∑
j dijyij (1)

subject to:

yij ≤ xj , xj , yij ∈ {0, 1} (2)∑
j yij = 1,

∑
i yij ≤ cj ,

∑
j xj≤k (3)

Constraint (2) implies that a customer can be assigned to
a node vj where a selected facility is located. The other
constraints stipulate that each customer is assigned to exactly
one facility, a facility vj is matched with at most cj customers,
and k facilities are selected. Table I outlines our notations.

Notation Description
G A weighted graph (network)
E, V Sets of edges and nodes in G
v.dist Distance from considered customer to node v
v.p Potential of node v
dist(v1, v2) The shortest path distance between nodes v1 and v2 in G
S ⊆ V Locations of customers
n Number of nodes in G, n = |V |
m Number of customers
k Number of selected facilities
` Number of candidate facilities
cj Capacity of facility j
Fp ⊆ V Set of candidate facility locations
F ⊆ Fp Selected facilities, |F | = k
Gb Bipartite directed graph between C and Fp

E′ Set of edges in Gb

dij Distance between i-th customer and j-th candidate facility
xj ∈ {0, 1} Indicator of whether fj is in F
yij ∈ {0, 1} Indicator of whether si is allocated to fj
di Demand of a customer si in bipartite graph Gb

σ Assignment ofcustomers to facilities in Gb

σj(Gb) Set of customers assigned to facility fj ∈ Gb

TABLE I: Notations.

III. RELATED WORK

An array of facility location problem variants have attracted
attention for a long time. Farahani and Hekmatfar [4] provide
a comprehensive overview of state-of-the-art algorithms for
several of those variants. These algorithms are mostly based on
linear programming (LP), using LP-rounding and Lagrangian
relaxation as approximation tools. The problem we study is
a network-based version of the nonuniform hard-capacitated
k-median problem [1], [5], [10].

A. Scalable Facility Location

Some recent works consider a special facility location prob-
lem variant, called Optimal Location Query (OLQ) [8], [11]–
[13], which calls to place a single new facility that attracts
the highest amount of customers (the MaxSum objective), or
minimizes the maximum distance between a customer and its
nearest facility (the MinMax objective). OLQ solutions are
based on a Bichromatic Reverse Nearest Neighbor (BRNN)
technique, where each customer is associated with a Nearest
Location Region (NLR), such that each point therein is closer
than the nearest existing facility. To optimize for MaxSum, we
place a new facility in the region with the highest amount of
overlapping NLRs [12], [13]. To optimize for MinMax, we
sort customers by distance to nearest facility, obtain a set of
top-k customers whose NLRs’ intersection is nonempty, and
find an optimal region therein [8].

As the OLQ bears some resemblance to to the MCFS
problem, we could apply it iteratively, as a heuristic, to obtain
a solution to MCFS. Figure 2 illustrates the result of facility
selection by such an approach, employing the intuitively
reasonable MaxSum objective. We start with no facility placed
and select node 1 for the first facility, as it is the one that
minimizes the aggregate distance to customers a, b, c. Dashed
curves in the figure indicate the resulting NLRs for each

2

customer. Node 2 has the highest number of intersecting NLRs
(i.e., attracted customers), so we select it. Yet the optimal
MCFS solution is to select nodes 4 and 5. Thus, unfortunately,
placing facilities by an iterative BRNN-based approach does
not fare well with our optimization objective.

We implemented a BRNN-based approach that sequentially
selects k nodes as facilities, recalculating a set of NLRs at each
step and breaking ties arbitrarily. We include this approach in
our experimental comparison; as we will see, its results are
significantly worse than those of other approaches.

Fig. 2: BRNN application. Fig. 3: Example network G.
B. Bipartite Matching

The MCFS problem implies a bipartite matching of cus-
tomers with facilities. To address this need, we adapt the
Simplified Incremental Algorithm (SIA) [14], [15] from the
case of Euclidean distances to that of network distances.
SIA adapts the Successive Shortest Path Algorithm (SSPA)
[16] to a bipartite graph, enhancing it with an edge pruning
capability, which allows finding a provably optimal matching
after accessing only a few edges adjacent to each node, using
an edge weight threshold derived from node potentials. In
Section V, we enhance this pruning threshold.

IV. THE WIDE MATCHING ALGORITHM

In a nutshell, the Wide Matching Algorithm progressively
enriches candidate facilities with potential serviced customers
until it finds a set of k facilities that can service the full
customer set within their capacities.

A. Algorithm Overview

Throughout the operation of the algorithm, each customer
si maintains an increasing demand value di, reflecting the
number of candidate facilities in Fp it has to be assigned
to. In each iteration, we increase the demand of a chosen
subset of customers and assign each customer with increased
demand to exactly one new facility; while doing so, we may
rewire previous choices, i.e., reallocate previous customer-
to-facility allocations, if beneficial, while observing capacity
constraints. Thereby, customers explore candidate assigned
facilities, though eventually they are allocated to exactly one
of those. We then select a subset F ⊆ Fp, |F | = k, such
that the elements of F collectively cover (i.e., are allocated
to within their capacities) as many customers as possible, by
means of a SET COVER heuristic; this heuristic iteratively
picks a facility that brings the biggest marginal gain to the
number of covered customers. We resolve ties by selecting
the facility f chosen least recently in previous iterations. This

diversification strategy avoids getting trapped in non-optimal
local minima. An exploration vector specifies the increase of
di values per iteration: ∆di is set to 1 if and only if si has
been left uncovered by the set F selected in the previous
iteration and di < `; this choice lets all customers grow their
demand values evenly. The main phase WMA terminates when
it detects a subset F ⊆ Fp that covers all customers in S, or
all demands reach `; the latter case invokes special measures,
which we discuss in Section IV-C.

B. Example

We illustrate the operation of WMA with an example.
Figure 3 shows a network of 9 nodes, ai for customers and
bj for candidate facilities. For visualization’s sake, we do not
place facilities on the same nodes as customers.

Assume we have to place k = 2 facilities, with uniform
capacity c = 2. Figure 4 shows the bipartite graph Gb from
customers to candidate facilities across iterations. Each edge
is weighted by the distance between its adjacent nodes. Table
II depicts part of the adjacency list of Gb with each node’s
three nearest adjacent nodes in ascending order.

a1 b4(1) b2(4) b5(9)
a2 b5(1) b6(2) b3(9)
a3 b1(1) b2(4) b4(9)
a4 b3(1) b2(5) b6(6)

TABLE II: Sample adjacency list for Gb; weights in brackets.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Fig. 4: Bipartite graph Gb through WMA iterations.

First, each customer is matched to its nearest facility in
Figure 4a. Now each of the four facilities covers one customer.
We resolve ties arbitrarily, selecting two facilities out of four,
b4 and b5, and set the exploration vector to ∆d = {0, 0, 1, 1}.

In effect, a3 and a4 need to explore the network further.
They do so and both acquire a new match, facility b2,
obeying the capacity constraint c = 2. Thus, by the end of
the second iteration, a1 and a2 have been matched to one
facility each, while each of a3 and a4 has been matched to
two facilities. Now b2 is the most popular facility, in the
sense that it is matched to more customers than any other
facility, namely customers a3 and a4. After discounting these
covered customers, the second most popular facility in terms
of marginal gain is either b4 or b5, bringing a gain of one
customer each, i.e., a1 and a2, respectively. We arbitrarily
select one of the two, b5. At this point a1 is the only uncovered
customer. Hence, we set ∆d1 = 1 and ∆di = 0 for the other
three customers, as Figure 4b illustrates.

The third iteration (Figure 4c) demonstrates the benefit of
using an assignment algorithm. Now a1 has a demand to

3

be matched with two facilities, yet its next nearest facility,
b2, has reached its capacity; a greedy approach would then
match a1 to b5, the next nearest available facility. Rather than
doing so, our matching algorithm rewires previous choices,
i.e., reconsiders previous allocations and substitutes them with
new ones, if beneficial: in particular, it reassigns a4 to b6 so
that it can assign a1 to b2. The newly used b6 along with b2
collectively cover a1, a3, and a4. Now a2 is uncovered, and
hence ∆d2 = 1. Eventually, the fourth iteration matches a2 to
b6. Now two facilities, namely b2 and b6, cover all customers,
as Figure 4d shows, with objective value 16.

C. Algorithm Outline

WMA operates on a complete directed bipartite graph
between customers and candidate facilities, and progressively
satisfies demand and capacity constraints by bipartite match-
ing. This operation can be time consuming on a complete
graph, while previous work has not considered bipartite
matchings among nodes anchored in a network. Still, we
effectively transfer a pruning technique for bipartite matching
with Euclidean distances [14], [15] to a network setting.

The core idea is this: if we can ascertain that there is no
possible beneficial reassignment that would match node ai to
bj , we can eschew bj from consideration. To ascertain that,
we do not need to know the exact weight of edge (ai, bj); it
suffices to know that bj is farther than another possible match,
bk. We can expand knowledge of such weights incrementally
on demand, running an instance of Dijkstra’s algorithm on G
per customer in each iteration.

Algorithm 1 outlines WMA. In each iteration, we first try
matching with current customer demands (Lines 4–5); then
we check whether we can select a set of facilities F that
cover all customers (Line 6); if we cannot, we raise demands
appropriately (Lines 7–8). Lines 10–11 cover the special case
where there exists a set F such that |F | < k and F already
covers all customers. In that case, we locate the remaining
k − |F | facilities in the vicinity of customers with the most
unsuccessful assignments; this measure retains coverage and
improves the cost objective. Algorithm 4 in Section IV-G illus-
trates this process. In case the k selected facilities fail to cover
some customers even after their demands reach `, Lines 12–13
revise F ensuring it suffices to cover all customers, i.e., all dis-
connected network components. Algorithm 5 in Section IV-G
provides the details. Eventually, Lines 14–15 call the same
process recursively, setting the demand of each customer to
1, so as to build a single optimal-cost assignment, σ(Gb), of
customers to the k selected facilities in F ; the edges in σ(Gb)
outgoing from a selected facility fj define the set of customers
σj(Gb) matched to fj .

WMA maintains two graphs throughout its operation: first,
the input network G that contains locations of customers and
candidate facilities; second, the bipartite graph Gb, used for
extracting assignments among those entities. Edge weights
in Gb reflect shortest-path distances between customers and
facilities in G. We assume that a single facility can be located
on any network node; the algorithm can be straightforwardly

extended to any restrictions on such placements by tuning the
candidate facility nodes in Gb.

Algorithm 1 Wide Matching Algorithm

1: function LOCATEFACILITIES(G,S, Fp, k)
2: Gb ← Bipartite empty graph based on G
3: di = 1 ∀i
4: repeat
5: for all si ∈ S : di > |{fj |si ∈ σj(Gb)}| do
6: Gb ← FINDPAIR(Gb, si)

7: {F,∆d, covered} ← CHECKCOVER(Gb, k)
8: d← d+ ∆d
9: until ∀i ∆di = 0

10: if |F | < k then
11: SELECTGREEDY(F,G)

12: if not covered then
13: F ← COVERCOMPONENTS(S, F,G)

14: if |Fp| > k then
15: return LOCATEFACILITIES(G,S, F, k)
16: else
17: return F, σ(Gp)

D. Matching Function

Let us discuss the matching function that iteratively assigns
new customers to facilities in Gb and reassigns previously
matched pairs. The complete bipartite graph Gb has `·m edges,
where each edge requires an execution of Dijkstra’s algorithm
for its weight calculation. For large problem instances, that
would cause excessive computation. Therefore, we add edges
to Gb only on demand.

We initialize Gb with two sets of nodes: customers and fa-
cilities, without edges. We add edges progressively, running a
variant of the Successive Shortest Path Algorithm (SSPA) [16]
with node potentials; such potentials encapsulate the goodness
of the current arrangement for a node in question, so that we
can calculate the benefit of updates involving that node. The
process terminates when we can guarantee that the running
matching is optimal in the complete Gb. The SSPA solves the
Minimum-Cost Flow problem (to which bipartite matching is
reduced) using iterative Dijkstra executions from a source to
a sink, and flow augmentation. In our problem, the source is a
customer s, the sink is the closest non-fully occupied facility
in Gb; flow augmentation amounts to substituting an edge with
one of opposite weight (given that a customer can be matched
to each facility only once). SSPA guarantees optimality by
adding new edges in an order sorted by weight: it maintains
the running weight of the next candidate edge to be taken
into consideration, and derives a threshold indicating whether
that weight can affect the current solution. We discuss this
threshold in Section V. We achieve this order by one Dijkstra
execution per customer, yielding distances to candidate facil-
ities in non-decreasing order; such distance values give the
weights of new edges in Gb.

Algorithm 2 presents the pseudocode for matching a cus-
tomer in Gb and updating the running assignment by rewiring

4

as necessary. The loop of Lines 4–12 adds edges to Gb until
it can accept a new match for the given customer. In each
iteration, we run a Dijkstra instance on Gb (Line 8), to find a
shortest path in Gb from the given customer s to the nearest
usable (i.e., not fully occupied) facility; this Dijkstra instance
works with weights reduced by potential values v.p, and it
returns the found path and the set of visited nodes. We add
each visited node v to a heap with a threshold value that we
justify in Theorem 1 (Section V). This threshold depends on
the distance from v to its next nearest neighbor in the network
graph G (nnDist), the distance from customer to v in Gb
(v.dist), and a potential value v.p (Lines 9–11). When the
condition in Line 12 is satisfied, we can proceed to update the
running bipartite assignment.

Algorithm 2 Matching Function

1: function FINDPAIR(Gb, s)
2: heap← empty heap
3: heap.add(〈s, 0〉)
4: repeat
5: x← heap.topKey
6: nn← node in Gb for next NN of x in G
7: add edge (x, nn) to Gb
8: {path, visited} ← DIJKSTRA(s)
9: for all v ∈ visited ∩ S do

10: nnDist ← distance to next NN of v in G
11: heap.add(〈v, v.dist + nnDist − v.p〉)
12: until path.length < heap.topValue
13: for all e ∈ path do
14: e← −e . Reverse edge
15: w(e)← −w(e) . Reverse edge weight
16: for all v ∈ visited do
17: v.p← v.p+ path.length − v.dist
18: return Gb

WMA runs two independent Dijsktra instances: one on the
bipartite graph Gb (Line 8) for the sake of updating its running
assignment and another on the network graph G (Line 10) for
the sake of incrementally calculating edge weights on Gb. As
both operate over graphs, they require no spatial index. The
path found in Line 8 contains a new match, while observing
capacity constraints. Then, the loop of Lines 13–15 performs
flow augmentation: it increases the flow value by 1 along this
path and performs necessary assignment and reassignment
actions. Line 17 adjusts potential values.

One execution of the Matching Function assigns exactly one
facility to one customer. The flow augmentation in SSPA is
constrained only by the target’s capacity and edge capacities;
therefore, it is possible to augment flow by more than one in
some cases. However, we do not need to do so, as we need not
ever match the same customer with the same facility again. As
we want many customers to be assigned to each facility, we
set the capacities of edges in Gb to 1; thus, whenever time a
customer is assigned to a candidate facility by FINDPAIR, the
flow is increased by 1.

E. Set Cover Routine

The need check whether we can select a subset F that
covers all customers raises a SET COVER problem. As this
problem is NP-hard, we employ a heuristic solution. After each
iteration, we rank all candidate facilities by their (dynamically
updated) marginal gains and greedily select the top-k. If our
selection covers all customers, WMA terminates. Algorithm 3
illustrates this approach. We place all candidate facilities in a
heap, organized on the number of customers they cover, and
extract facilities from the heap one by one, checking whether
all customers served by the last extracted facility f remain
uncovered. If so, we include the facility in our selection.
Otherwise, we recalculate that facility’s marginal gain and put
it back in the heap. If we reach k facilities without achieving
full coverage, we have not yet reached termination.

Algorithm 3 Checking top-k facilities

1: function CHECKCOVER(Gb, k)
2: heap ← empty heap
3: for all fj ∈ Fp do
4: fj .m← |σj(Gb)|
5: heap.add(〈fj , fj .m〉)
6: F ← ∅, ∀i ∆di ← 1
7: for γ ∈ {1..k} do
8: fj ← heap.top
9: m′ ← |σj(Gb)|

10: if fj .m 6= m′ then
11: fj .m← m′

12: heap.add(〈fj , fj .m〉)
13: else
14: F ← F ∪ fj
15: for all {si|si ∈ σj(Gb) ∨ di = `} do
16: ∆di ← 0

17: if ∀i∆di = 0 then
18: return F , ∆d, true
19: return F , ∆d, false

F. Updating Demands

A crucial operation in WMA is the update of customer
demands. A simple approach would increase the demand of
all customers by 1 in each iteration. We have found that it
is much more effective to increase the demand by 1 only for
those customers that were not covered in the last iteration.
This selective increase introduces those uncovered customers
to more facilities, increasing the chances that they get covered
sooner rather than later. Further, we keep track of how recently
a facility has been used in a previous iteration to break ties
between facilities that incur equal marginal gains.

G. Special Provisions

We have noted that Algorithm 1 (Section IV-C) makes
provisions for two special cases: the case in which fewer than
k facilities already cover all customers, and the one in which k
facilities fail to cover some customers even after their demands
reach `. Here we describe these provisions.

5

Algorithm 4, called in Line 11 of Algorithm 1, provides the
former special provision: it selects additional facilities until
|F | = k. Each iteration of the main loop adds to F a new
facility f∗ ∈ Fp\F that is nearest to the customer s having the
highest current distance to the nearest facility in F . Thereafter,
Lines 14–15 in Algorithm 1 build an assignment using the
enlarged F , yielding improved cost.

Algorithm 4 Greedy addition of facilities

1: function SELECTGREEDY(F,Gb)
2: while |F | < k do
3: s∗ ← arg maxs{minf∈F dist(s, f)|s ∈ S}
4: f∗ ← arg minf{dist(s∗, f)|f ∈Fp \ F}
5: F ← F ∪ f∗

Algorithm 5 provides the latter special provision: it receives
a set of selected facilities F as input and replaces facilities
therein to ensure that each connected component of G is
allocated sufficient capacity to cover all its customers. Line 3
calculates the difference g.p between the collective capacity
of selected facilities that are within connected component g,
which we denoted as the set Fg , and the number of customers
in g, |Sg|. A positive value of g.p indicates that the facilities
allocated to g by F suffice to cover the customers therein,
with some possible reallocation. A negative g.p means that
component g should be offered more facilities or facilities
with higher capacities. The loop in Lines 4–9 runs as long as
a component with negative g.p exists, substituting the lowest-
capacity selected facility f in the highest-g.p component gM
with the highest-capacity unselected facility in the lowest-g.p
component gm. Theorem 3 proves that, if a solution exists,
this loop terminates.

Algorithm 5 Selecting facilities that cover all customers

1: function COVERCOMPONENTS(S, F,G)
2: for all g – connected components of G do
3: g.p←

∑
fj∈Fg

cj − |Sg|
4: while ∃g : g.p < 0 do
5: gm ← arg ming{g.p}
6: gM ← arg maxg{g.p}
7: f ← arg minfj{cj |fj ∈ gM}
8: F ← (F \ {f})∪ arg maxfj{cj |fj ∈ gm, fj /∈ F}
9: Update g.p, g′.p

10: return F

V. MATCHING OPTIMALITY

Here, we prove that the FINDPAIR routine of Section IV-D
yields an optimal assignment, even while using a simpler
pruning criterion than the one in [15].

The sets of customers S = {si} and facilities Fp = {fj}
form the two sets of nodes in bipartite graph Gb. E′f is the
complete set of all possible edges of Gb, while E′ is the set of
edges that we are choosing to add to Gb. Also, dist(si, fj) is
the weight of edge (si, fj) ∈ E′f ; by the definition of Gb,

dist(si, fj) is the shortest-path distance between customer
si and facility fj in graph G; v.dist denotes the length of
the shortest path sp from customer to node v found by
Dijkstra on Gb, and v.p the potential of v; there is one Dijkstra
execution for each FINDPAIR call.

An assignment is optimal if @{si, fj} ∈ E′f \E′, such that
adding (si, fj) to E′ would yield a better assignment. Notably,
each call of FINDPAIR(Gb, s) updates the running assignment
as soon as it finds in E′ a shortest path sp from customer s to a
non-fully occupied facility. Then the assignment is optimal iff
E′f contains no other path sp′, from s to a non-fully occupied
facility, such that sp′.length < sp.length [15].

Line 12 of Algorithm 2 verifies this optimality condition.
Once the condition is satisfied and the loop is over, the assign-
ment is defined for a current E′, and the flow augmentation
phase follows.

Theorem 1: Let sp be the shortest path from customer to
a non-fully occupied facility in E′ and

sp.length ≤ min
i,j
{si.dist+ dist(si, fj)− si.p}. (4)

Then sp is the shortest path from customer to a non-fully
occupied facility in E′f .

Proof: The Dijkstra’s algorithm call in Line 8 of Algo-
rithm 2 adjusts edge weights by node potentials to remove
any negative cycles created by flow augmentation. The original
weight of an edge (v1, v2) is w(v1, v2) = dist(v1, v2), while
its reduced weight is

wr(v1, v2) = dist(v1, v2)− v1.p+ v2.p, (5)
where dist(v1, v2) is the distance between v1 and v2 on G.
The length of any path in Gb found by Dijkstra is calculated
as the sum of reduced weights. Since ∀v v.p ≥ 0, Equation
(4) implies that

sp.length ≤ min
i,j
{si.dist+ dist(si, fj)− si.p+ fj .p}. (6)

Due to Equation (5), Equation (6) means that
sp.length ≤ min

i,j
{si.dist+ wr(si, fj)} (7)

Now, assume another path sp′ from customer to a non-fully
occupied facility exists that is shorter than sp and includes
at least one edge (s′, f ′) ∈ E′f\E′. Then the length of sp′

includes the reduced weight of the edge (s′, f ′):
sp′.length ≥ s′.dist+ wr(s

′, f ′) (8)
Yet after edge (s′, f ′) is included in Gb, tautologically,

s′.dist+ wr(s
′, f ′) ≥ min

i,j
{si.dist+ wr(si, fj)} (9)

By Equations (8), (9), and (7), we get a contradiction:
sp′.length ≥ min

i,j
{si.dist+ wr(si, fj)} ≥ sp.length (10)

In contrast, the threshold used by U et al. [15] is:
sp.length ≤ min

i,j
{si.dist+ dist(si, fj)} − τ ′max (11)

τ ′max = max{s.p|f.dist ≤ min
i,j
{si.dist+dist(si, fj)}} (12)

The bound we employ is tighter in case the minimizing
s in Equation (4) has s.dist > min

i,j
{si.dist + dist(si, fj)}

and s.p > τmax. Besides, this τmax-based threshold burdens
Algorithm 2 with the overhead of maintaining τmax.

6

VI. ANALYSIS OF WMA

Theorem 2: The worst-case complexity of WMA is:

O(m|E| log n+m2`2(log(`+m) + k log `)) (13)

Proof: The matching function of WMA finds a usable
facility by iteratively adding new edges to Gb. To that end, it
maintains a heap of at most m candidate edges. In the worst
case, the heap has to be fully rebuilt at each iteration. If the
candidate facility reached by the Dijkstra call on Gb does not
satisfy the optimality criterion in Line 12 of Algorithm 2, the
loop reiterates. This condition can be violated only if there
exists an edge that should be added to E′. As Gb has at most
m` edges, the Dijkstra result can be invalidated at most m`
times. Thus, Dijkstra’s algorithm is called at most m` times.
With a heap-based implementation of Dijkstra applied on a
sparse connected graph, the complexity is O(|E′| log(m+`)),
where |E′| grows iteratively from 0 to m`. While Dijkstra’s
algorithm runs on Gb with every FINDPAIR() call, we also run
another Dijkstra instance on the graph G for each customer.
New edges in E′ result from successful executions of that
instance, while the heaps for these executions per customer
persist across FINDPAIR() calls. This gives an additional
O(m|E| log n) complexity. The combined complexity is:

O(m|E| log n+m2`2 log(m+ `))

CHECKPOPULAR() builds a heap of all reached candidate
facilities in O(` log `). At each greedy iteration, we check
the top value of the heap and update it if needed. In the
worst case, we may update the whole heap. In total, we do k
greedy steps and return false if no set cover is found within
the top-k facilities. Then the complexity of the set cover
routine per iteration is O(k`(log `+m)), where m stands for
checking whether all customers are covered. The total number
of iterations is m · `, since, in the worst case, we increase the
demand of only one customer by 1 in each iteration. Putting
it all together, the total worst-case time complexity is:

O(m|E| log n+m2`2(log(`+m) + k log `))

As our experiments document, WMA performs far below
this worst-case complexity thanks to its pruning ability.

Theorem 3: WMA provides a correct solution if one exists.
Proof: The main loop in Algorithm 1 terminates when

no ∆di is increased, i.e., when a set cover is found or all
uncovered customers reach demand di = `. In both cases,
it selects a set of facilities F with cardinality |F | ≤ k; if
|F | < k, Algorithm 4 amends it so that |F | = k. Algorithm 5
revises F to ensure that all disconnected components of G
are allocated sufficient capacity. Let kg be the minimum
number of facilities required to cover all customers Sg within
component g, kg = minF ′{|F ′| :

∑
fj∈F ′ cj ≥ |Sg|, F ′ ∈ g}.

A solution to MCFS is feasible if and only if the budget k
suffices to allocate to each component g at least kg facilities,
i.e., iff

∑
g kg ≥ k. Algorithm 5 proceeds towards a state

where each component g is allocated a set of top-kg facilities
in terms of capacity values. Therefore, if a solution is feasible,
it eventually terminates. Last, the recursive call in Algorihtm 1

produces an optimal bipartite assignment from customers to
facilities that does not violate any capacity constraint.

Fig. 5: Randomly scattered points used to generate networks.

VII. EXPERIMENTS

Given the impracticality of approximation algorithms [5],
we compare WMA vs. an optimization solver, the Gurobi Opti-
mizer [3], and three simple baselines. Our implementations are
in C++. We run all experiments on a 2.2 GHz AMD Opteron
6376 machine with 512GB RAM running Ubuntu 14.04.

A. Baselines

The first baseline follows an approach as in [17]: it divides
the input customer set into k buckets and assigns each bucket
to the candidate facility node closest to the bucket’s centroid.
We form buckets containing dm/ke consecutive customers
using the spatial order defined by a Hilbert space-filling
curve [18]. We denote this baseline as Hilbert. The second
baseline is a BRNN-based method that iteratively selects
k nodes, calculating NLRs at each step; it then runs SIA
to produce a final assignment from customers to selected
facilities and obtain the objective value. The third baseline is a
simplified version of WMA, WMA Naı̈ve. Instead of using an
exact bipartite matching, WMA Naı̈ve uses a greedy procedure
to satisfy customer demands: in each iteration, it processes
customers in a randomly generated order and assigns each
customer to its closest di candidate facilities that have not yet
reached their capacities.

B. Datasets

We use synthetic and real-world networks. Our real-world
data are road networks in Aalborg, Riga, Copenhagen, and
Las Vegas, obtained from OpenStreetMap1. Table III provides
statistics. We report objective values and distances in meters.

Aalborg Riga New Copenhagen Las Vegas
Nodes 50,961 287,927 282,826 425,759
Edges 55,748 322,109 322,349 508,522

Avg degree 2.2 2.2 2.2 2.4
Max degree 7 29 10 21

Avg edge length 30.2 28.7 32.6 50.4

TABLE III: Real-world data sets.

We create synthetic graphs by placing points on a 103×103

square. We use two distributions, uniform and clustered. In the
clustered case, we place cluster centers uniformly at random.
We then assign an equal number of points to each cluster,
and form a Gaussian distribution for each cluster with the
center as mean and σ2 = 1

number of clusters . We connect pairs of
points with an edge if they are closer than α 1√

n
, where α is a

1 https://www.openstreetmap.org/

7

https://www.openstreetmap.org/

(a) m -0.1n, k -0.1m, c -20, α -2 (b) m -0.2n, k -0.5m, c -4, α -2 (c) m -0.1n, k -0.5m, c -10, α -1.2 (d) Multicapacities, c ∈ [1..10]

Fig. 6: Results on uniform distribution, variable graph size.

tunable density parameter and n is the network size in nodes.
We connect cluster centers to each other in a clique and assign
edge weights equal to Euclidean distances. Figure 5 presents
examples of such distributions for 104 points given 40, 20, and
5 clusters, and a uniform distribution. On synthetic networks,
we select customer locations uniformly at random. A solution
is feasible only if there is enough total capacity to serve all
customers, i.e.,

∑k
j=1 cj ≥ m; in the uniform case, c ≥ dmk e,

while an occupancy value, defined as o= m
c·k ≤ 1, indicates

how close we are to full capacity.

C. Experiments with Uniform Synthetic Data

We first evaluate performance on uniform data when varying
the graph size. We set Fp = V , meaning that a facility can be
placed on any node in a graph. We present results for Gurobi
for instances where it completed within 24 hours. When it
does not complete in 24 hours, we say that it fails.

In Figure 6a, we use density α=2, which corresponds to an
average of two adjacent edges per node. We randomly assign
customers to 10% of all nodes and set k= 0.1m; hence, we
need to place facilities at 1% of all nodes; we set capacities to
c=20, yielding o=0.5, i.e., capacities are twice the minimum
required size. BRNN performs significantly worse than others,
so we eliminate it from further consideration. The objective
values attained by Hilbert, WMA, and Gurobi do not differ
significantly, with WMA performing almost as well as Gurobi.
This is because this dataset has a simple uniform structure;
Hilbert handles it well, even without taking network distances
in consideration. However, Hilbert deviates from WMA as
data size grows. WMA exhibits a far more scalable runtime
trend than Gurobi, which failed on network sizes beyond 8,192
nodes; WMA scales no less gracefully than Hilbert as the data
size grows. WMA Naı̈ve has similar runtime to WMA, yet its
objective value is more than double that of WMA across the
parameter range.

Figure 6b shows results for a similar configuration, but with
higher customer and facility density. Here, we set capacities
to c = 4 and again obtain an occupancy of o = 0.5. Results
are similar to the previous ones, though the divergence of
objectives between Hilbert, WMA, and WMA Naı̈ve is more

pronounced. Further, the achieved objective values are smaller
for all algorithms due to higher density (the y-axis range has
changed). Gurobi’s runtime overhead has increased, as the
runtime of LP is highly dependent on the number of variables
and constraints; the other algorithms are less sensitive to those
parameters. Now the runtime of WMA eventually matches that
of Hilbert, even while delivering significantly better quality.
WMA Naı̈ve is faster than Hilbert on larger networks with
higher customer and facilitiy densities, as it eliminates the
time-consuming bipartite matching step of WMA.

Figure 6c presents a case with a sparser and less connected
network, with α = 1.2, more similar to real road networks.
Customer and facility densities lie between those of the pre-
vious two cases, with customers as in Figure 6a and facilities
as in Figure 6b. We set c= 10, resulting in an occupancy of
o = 0.2; this makes the problem relatively easier, balancing
out the effect of network sparsity. Even so, the disconnected
network structure makes an optimal solution hard to find.
Thus, Gurobi’s runtime is significantly higher than in the
previous case, although the number of decision variables is
smaller and the occupancy is looser. WMA also has a higher
runtime, and its objective value is closer to that of Hilbert, and
similar to that in Figure 6a, where we have half the customers
with half the facilities, meaning that the cumulative distances
remain relatively stable. Hilbert also has almost the same
objective as before, as it considers each component separately,
calculating required facilities per component proportionally to
the number of customers in the component. On a graph with
many small components, this approach quickly leads to good
results. As in previous experiments, as the scale increases,
WMA Naı̈ve becomes faster than Hilbert.

We also experiment with nonuniform capacities. Figure 6d
shows the results with settings like those for Figure 6c, except
that now each node is assigned a uniformly random capacity
in the range 1 to 10. Hilbert selects locations first, as if ca-
pacities were uniform, and then assigns customers to facilities
according to nonuniform capacities using bipartite matching.
We observe a similar trend: WMA steadily outperforms Hilbert
and WMA Naı̈ve, while Gurobi struggles in terms of runtime.

8

(a) m -0.05n, k -0.1m, c -20 (b) m -0.01n, k -0.8m, c -5 (c) m -0.05n, k -0.2m, c -20 (d) m -0.1n, k -0.1m, c -20

Fig. 7: Results on Clustered Distribution vs. size, α = 2, 20 clusters in (a,b,c), 5 in (d)

(a) n -104, m -103, k -103, c -15, α -2 (b) c -10, n -104, k -200, α -1.5 (c) n -104, k -128, o -0.1, α -1.5 (d) n -104, m -103, α -1.5

Fig. 8: Results on Clustered Distribution, 20 clusters. Variable `, m, and k.

As the problem becomes harder, the gap between the optimal
solution provided by Gurobi, and that provided by our heuristic
slightly increases in comparison to Figure 6c. The runtime of
WMA Naı̈ve is now higher than those of Hilbert and WMA,
as it becomes harder for its greedy heuristic to find a set cover
when facilities have irregular tight capacities.

D. Experiments with Clustered Synthetic Data

We now turn to clustered synthetic data. Here, the α
parameter no longer corresponds to the average number of
adjacent edges per node, as distances between nodes depend
on the standard deviations of Gaussian distributions. We tune
this deviation so that clusters cover the plane.

Figure 7 shows results for variable network size settings.
These results highlight the advantage of WMA further, as the
differences between network and geometric distances become
more pronounced with clustered data. Hilbert fails to spot good
facility locations, as those depend on the network structure.
WMA Naı̈ve stands as an outlier with significantly worse
results. In terms of runtime, WMA exhibits similar trends as
with uniform distributions.

Figures 7a, 7b, and 7c present experiments with highly
clustered points. Figure 7a has more customers and relaxed
capacity constraints. WMA provides a good tradeoff between
effectiveness and efficiency, with both objective and runtime
in-between Hilbert and Gurobi. In this experiment we include

BRNN, observing that it also underperforms with clustered
data; thus, we again omit it from subsequent figures. Figure
7b depicts results for a smaller occupancy and a smaller
capacity. WMA performs more similar to Hilbert, though still
outperforming it. Figure 7c shows a different low-occupancy
setting. WMA and Hilbert yield smoother curves, showing a
clear trend. Yet, the problem becomes more challenging for
WMA as size grows.

Figure 7d shows results for a case with 5 clusters, coming
closer to a uniform distribution, and occupancy o = 0.5. Here
the clustering-based approaches perform well, with Hilbert
becoming almost as good as WMA.

Now we consider the effects of varying the major problem
parameters other than network size with clustered data.

1) Variable number of candidate facility locations: On a
clustered graph of size n = 104, we randomly pick Fp,
varying its size from 40% to 100% of all nodes. Figure 8a
presents our results, using dense customer distribution and
high capacity. Gurobi failed for Fp sizes above 60% of all
nodes. Hilbert is sensitive to the size of Fp due to its clustering
nature. In contrast, both WMA variants show stable runtime
and objective, with the regular WMA achieving objective
values very close to those of Gurobi. This indicates that WMA
finds good alternatives in case some nodes are not candidate
facilities, while Hilbert falters.

9

2) Tuning Customers and Facilities: Figures 8b and 8d
present our results when varying the numbers of customers and
facilities, respectively. The objective increases as the number
of customers grows, but drops as the number of facilities
grows, other parameters being equal. Remarkably, the runtimes
of the WMA variants drop with increasing facilities as well,
as they perform fewer iterations. Figure 8c scales up the
amount of customers, also allowing for multiple customers per
node, with occupancy of o = 0.1. WMA slightly outperforms
Hilbert, and both are very close to Gurobi in terms of objective.
WMA Naı̈ve shows worse results. Gurobi fails for large
numbers of customers.

3) Effect of Graph Density α: We now study the effect
of graph density α with 5-cluster data. Figure 9a shows the
results. As α affects the average degree, the x-axis shows
the measured average degree instead of α, resulting in non-
equal parameter gaps. The objective improves for WMA with
larger degree, coming closer to the optimal solution by Gurobi
and outperforming Hilbert and WMA Naı̈ve. WMA finds
better locations as optimal facilities become available within
fewer hops, thereby simplifying the set cover sub-problem.
Gurobi is surprisingly stable, showing that a network with no
throughput constraints on edges is resistant to intermediate
density increase.

(a) n -104, m -1000, k -300 (b) n -104, m -1000, k -100

Fig. 9: Effect of Density (c=10), Capacity c (α = 1.5).

4) Effect of Capacity c: Last, we vary capacity values as
Figure 9b shows. The capacity has little effect on the result
quality, except in the challenging case of very small capacity,
where the occupancy is high. This is reasonable: once a good
matching is achieved for some capacity, letting capacity grow
further does not improve the solution. Remarkably, While
other algorithm have stable runtime, Gurobi gains in efficiency
as capacity grows, rendering the optimization easier.

E. Experiments with Real Data, Uniform Capacities

Now we turn our attention to the performance of WMA
on real-world data, using four urban road network data sets of
different size. We first examine the uniform capacity case with
Fp = V . We distributed 512 customers randomly in each city
network, and tasked the algorithms with placing 51 facilities.

We could only obtain results for WMA and Hilbert, as Gurobi
did not terminate on such data within one week due to the large
number of candidate facility locations.

Table IV presents quality and runtime results. WMA
achieves a solution that is around 30% better than the most
competitive Hilbert basline on all cities except Las Vegas.
Las Vegas has a regular grid-like road network structure (see
Figure 1a), rendering clustering approaches more effective;
thus, we obtain only a 9% improvement.

BRNN Hilbert WMA Naı̈ve WMA
Aalborg 3.51 / 1 min 0.59 / 10 s 0.83 / 5 min 0.41 / 5 min

Riga 6.02 / 6 min 1.30 / 5 min 1.86 / 3.0 h 0.90 / 3.3 h
Copenhagen 4.20 / 6 min 0.93 / 5 min 1.29 / 3.7 h 0.66 / 5.9 h
Las Vegas 3.67 / 6 min 1.16 / 13 min 1.63 / 12.4 h 1.06 / 7.5 h

TABLE IV: Objective [·106] / Runtime, m - 512, k - 51, c - 20, l -n

Further, we test the scalability of WMA on the Aalborg
network, for growing number of both customers and facilities,
with fixed occupancy o = 0.5, c = 20, and setting k = 0.1m.
Figure 10 shows that the advantage of WMA manifests itself
as the numbers of facilities and customers grow: its runtime
is aligned with that of Hilbert, and it scales well with the
problem size, while the quality improves continuously over
that of Hilbert. WMA Naı̈ve achieves a worse objective
than WMA, although it is competitive in terms of runtime.
Interestingly, as both WMA variants struggle to find a feasible
set cover with sparse customers and facilities, their runtimes
are at their lowest in middle problem sizes. Further, we ran
BRNN on this real-world data set in order to reexamine the
conclusions reached on synthetic data. The objective of BRNN
grows rapidly, indicating its instability on real-world tasks. In
addition, BRNN presents the worst runtime behavior, as it has
to repeatedly calculate NLR intersections. Last, Gurobi failed
in these experiments.

Fig. 10: Aalborg experiment, o = 0.5, ` = n = 50961

F. Experiments with Real Data, Nonuniform Capacities

We now consider real-world data with nonuniform capaci-
ties and ` < n, which corresponds to the most general case of
the MCFS problem. The problem is to select a set of facilities
among diverse options, each associated with a capacity derived
from real-world constraints. We study two applications: (i) the
selection of meeting places for coworkers, and (ii) the selection
of bike docking stations.

1) Coworking: this trend allows independent professionals
to share a working environment [19], saving expenses for
office rental while enjoying the advantages of the structure

10

and community of working with others [20]. In addition,
coworking spaces enable group meet-ups and other temporary
activities. Cafés and restaurants provide affordable coworking
options, offering part of their spaces during non-rush hours.
We let city amenities serve as facilities, while their daily op-
erational hours define their nonuniform capacities. Assuming
uniform utilization during these working hours, a number of
coworkers need to select coworking facilities out of potential
options. We consider this problem on data from two cities:
Las Vegas and Copenhagen.

a) Las Vegas case: We use Yelp2 data
to generate a distribution of customers from
known facility occupancy, using an existing
technique [13]; we divide space to Voronoi
cells, and each cell to triangles, as illustrated
on the figure to the right. The number of customers in a
triangle is:

m∆ = Oi ·
(
ω · Oj∑

j Oj
+ (1− ω) · Area∆

Area∪∆

)
,where Oi is the occupancy of the central node, Oj is the
occupancy of a neighbor node, Area∆ is the area of a
triangle, Area∪∆ is the area of the Voronoi cell, and ω is
a parameter set to 0.5 by default [13]. We use user check-ins
available from Yelp, considering all restaurants as candidate
facility locations, and derive a customer distribution. Instead
of using Euclidean Voronoi cells, we adapt the approach to
road networks via network distance calculations. We then
generate customer numbers proportional to derived values.
We place 1,000 customers at appropriate road network nodes
using this method. We downloaded the road map data from
OpenStreetMap, and we identified 4089 venues with available
operational hours in the Yelp dataset. Figure 1a shows the
distribution of customers and facilities in the city center.

b) Copenhagen case: We use data from the “Open Data
København” portal3. We generate a customer distribution
proportional to that of district populations in Copenhagen,
and randomly place 200 customers at road network nodes.
We obtained information about cafés and restaurants from
OpenStreetMap; 164 venues have operational hours available
(the average is 9 hours in both cities), which we use as a
proxy for a venue’s capacity. Figure 1b shows the distribution
of customers and facilities in the city center.

We solve the problem in two ways: (i) the Direct solution,
whereby WMA accommodates the given nonuniform capaci-
ties and proceeds as usual; and (ii) the Uniform First (UF)
solution, where we first solve the problem as if capacities
were uniform using the average capacity, and then reassign
customers to facilities using the real nonuniform capacities in a
single bipartite matching step. This alternative might represent
a better heuristic, in case it detects better locations under
uniform capacities, before specializing to the nonuniform ones;
this is a conjecture worth investigating.

Figures 12a and 13a show our results on the Direct and UF
versions of WMA, the optimal solution provided by Gurobi,

2 https://www.yelp.com/dataset/ 3 http://data.kk.dk/

and the three baselines — Hilbert, BRNN, and WMA Naı̈ve.
Since WMA Naı̈ve yields poor quality vs. WMA, we do not
include results for its UF variant for the sake of readability. As
more facilities can be used to satisfy the given demand, the
problem becomes easier. Since we use a small Fp, Gurobi
solves the problem in reasonable runtime; that would not
be so if we had more candidate facilities or a country-scale
network. For both cities, WMA outperforms Gurobi’s runtime
by several order of magnitude and matches its quality. UF
WMA meets the optimal solution as well in most cases.
The accuracy of Hilbert improves with increasing number of
facilities, replicating the trend observed with synthetic data
(Figure 8d). WMA Naı̈ve shows a better objective than Hilbert,
as also witnessed in Figure 8a: Hilbert cannot adapt to a small
Fp, leading to objectives as bad as BRNN; BRNN has even
worse runtime than Gurobi in the Copenhagen case.

(a) Selection of meeting places (b) WMA Profiling

Fig. 12: Las Vegas experiments.

(a) Selection of meeting places (b) Bike docking case study

Fig. 13: Copenhagen experiments.

We also report statistics on the operation of WMA for
selection of meeting places in the Las Vegas network with
k = 600. Figure 12b shows 3 quantities: covered customers
at the end of each iteration, time for matching, and time for
the set-cover operation. The set-cover time is lower than the
matching time except for later iterations where reassignment

11

is minimal. Most customers get covered within the first few
iterations. The matching time in the first iteration, where
WMA performs a matching of all nodes, is one order of
magnitude larger than in subsequent ones, where it just updates
nodes affected by increased demands. The growing number of
covered nodes shows how WMA explores the network.

2) Dockless Bike Sharing: In our second use case, a
customer can leave a bike at any place after using it, in-
stead of placing it at predefined docking stations. The rapid
growth of companies such as Mobike4, oBike5, and Ofo6

illustrates the popularity of this business model. Still, these
companies suggest using “preferable” bike docking stations.
Periodically, a service gathers dispersed bikes and distributes
them to such stations to enhance the ease of access to bikes.
We study the case of dockless
bike sharing in Copenhagen, us-
ing data from the “Open Data
København” portal again. We de-
termine the locations of 6,000
bike docking stations and their
capacities (shown in the figure to
the right). We assume that a new
bike sharing company may be licensed a subset of available
stations. Our task is to select an appropriate set of k bike
docking stations (i.e., facilities), observing capacities.

Fig. 15: Copenhagen bike traffic
We generate a distribution of scattered bikes (i.e., cus-

tomers) using aggregate daily bike traffic counter data. A bike
traffic counter is a point with known coordinates that records
the number of bikes passing by in each street direction per
hour. Given this information and the default street directions
provided by OpenStreetMap, we derive a vector function of
bike flow per hour, ~g. Figure 15 shows the color-encoded mag-
nitude and sign of ~g, where the sign indicates the direction of
the flow with respect to default street directions. We calculate
the divergence ∇~g = ∂gx

∂x +
∂gy
∂y at each network node, which

expresses the number of bikes that get parked at that node
during an hour. We repeat this operation for each hour in
a day and obtain the variance of ∇~g across hours at each
node, which is a proxy for bike docking demand at that node.
Normalizing these variance values, we obtain a probabilistic
distribution of bike docking demand across nodes. We place
1000 bikes in the city following this distribution.

Figure 13b presents the results on bike docking station
selection. UF WMA fares slightly worse than WMA, while
both outperform the baselines and almost match Gurobi.

4 https://mobike.com/ 5 https://www.o.bike/ 6 http://www.ofo.so/

VIII. CONCLUSION

We introduced the problem of Multicapacity Facility Selec-
tion in a network and presented the first, to our knowledge,
algorithm that offers solutions of high quality and scales
to large problem instances, the Wide Matching Algorithm
(WMA). WMA iteratively builds careful, expanding alloca-
tions of customers to usable candidate facilities and terminates
when it detects a feasible solution within those allocations. As
it can handle both uniform and nonuniform capacities, WMA
provides a viable solution for selecting facilities under any
capacity constraints. Experiments on synthetic and real-world
data demonstrate that WMA is able to solve realistic problem
instances; scales gracefully with network size, supply, and
demand; outperforms simple baselines in solution quality; and
offers competitive quality with respect to the optimal solution.

REFERENCES

[1] L. A. Lorena and E. L. Senne, “A column generation approach to
capacitated p-median problems,” Computers & Operations Research,
vol. 31, no. 6, pp. 863–876, 2004.

[2] M. R. Korupolu, C. Plaxton, and R. Rajaraman, “Analysis of a local
search heuristic for facility location problems,” J. Algorithms, vol. 37,
no. 1, pp. 146–188, 2000.

[3] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2016.
[Online]. Available: http://www.gurobi.com

[4] R. Farahani and M. Hekmatfar, “Facility location: Concepts,” Models,
Algorithms and Case Studies, Heidelberg: Physica-Verlag Heidelberg,
2009.

[5] S. Li, “On uniform capacitated k-median beyond the natural LP relax-
ation,” in SODA, 2015, pp. 696–707.

[6] ——, “Approximating capacitated k-median with (1 + ε)k open facili-
ties,” in SODA, 2016, pp. 786–796.

[7] ——, Private Communication, 2018.
[8] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, G. Mai, and C. Long,

“Optimal location queries in road networks,” ACM Trans. Database
Syst., vol. 40, no. 3, pp. 17:1–17:41, 2015.

[9] K. Deng, S. W. Sadiq, X. Zhou, H. Xu, G. P. C. Fung, and Y. Lu, “On
group nearest group query processing,” IEEE Trans. Knowl. Data Eng.,
vol. 24, no. 2, pp. 295–308, 2012.

[10] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey, “The Uncapacitated
Facility Location Problem,” Discrete Location Theory, pp. 119–171,
1990.

[11] B. Yao, X. Xiao, F. Li, and Y. Wu, “Dynamic monitoring of optimal
locations in road network databases,” The VLDB Journal, vol. 23, no. 5,
pp. 697–720, 2014.

[12] F. Chen, H. Lin, Y. Gao, and D. Lu, “Capacity constrained maximizing
bichromatic reverse nearest neighbor search,” Expert Systems with
Applications, vol. 43, pp. 93–108, 2016.

[13] E. Yilmaz, S. Elbasi, and H. Ferhatosmanoglu, “Predicting optimal
facility location without customer locations,” in KDD, 2017, pp. 2121–
2130.

[14] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis, “Capacity
constrained assignment in spatial databases,” in SIGMOD, 2008, pp.
15–28.

[15] L. H. U, K. Mouratidis, M. L. Yiu, and N. Mamoulis, “Optimal
matching between spatial datasets under capacity constraints,” ACM
Trans. Database Syst., vol. 35, no. 2, pp. 9:1–9:44, 2010.

[16] U. Derigs, “A shortest augmenting path method for solving minimal
perfect matching problems,” Networks, vol. 11, no. 4, pp. 379–390, 1981.

[17] S. Mitra, “Identifying top-k optimal locations for placement of large-
scale trajectory-aware services,” VLDB 2016 PhD Workshop, 2016.

[18] I. Kamel and C. Faloutsos, “Hilbert R-tree: An improved R-tree using
fractals,” in VLDB, 1994, pp. 500–509.

[19] A. Gandini, “The rise of coworking spaces: A literature review,”
Ephemera : Theory and Politics in Organization, vol. 15, no. 1, pp.
193–205, 2015.

[20] B. Neuberg, 2017. [Online]. Available: http://coworking.com

12

http://www.gurobi.com
http://coworking.com

	Introduction
	Problem Statement
	Related Work
	Scalable Facility Location
	Bipartite Matching

	The Wide Matching Algorithm
	Algorithm Overview
	Example
	Algorithm Outline
	Matching Function
	Set Cover Routine
	Updating Demands
	Special Provisions

	Matching optimality
	Analysis of WMA
	Experiments
	Baselines
	Datasets
	Experiments with Uniform Synthetic Data
	Experiments with Clustered Synthetic Data
	Variable number of candidate facility locations
	Tuning Customers and Facilities
	Effect of Graph Density
	Effect of Capacity c

	Experiments with Real Data, Uniform Capacities
	Experiments with Real Data, Nonuniform Capacities
	Coworking
	Dockless Bike Sharing

	Conclusion
	References

