
TRANSFORMERS: Robust Spatial Joins on
Non-Uniform Data Distributions

Mirjana Pavlovic†, Thomas Heinis¶∗, Farhan Tauheed§∗, Panagiotis Karras‡, Anastasia Ailamaki†

†École Polytechnique Fédérale de Lausanne, Switzerland
¶Imperial College London, United Kingdom

§Oracle Labs Zurich, Switzerland
‡Skolkovo Institute of Science and Technology, Russia

Abstract—Spatial joins are becoming increasingly ubiquitous
in many applications, particularly in the scientific domain.
While several approaches have been proposed for joining spatial
datasets, each of them has a strength for a particular type of
density ratio among the joined datasets. More generally, no single
proposed method can efficiently join two spatial datasets in a
robust manner with respect to their data distributions. Some
approaches do well for datasets with contrasting densities while
others do better with similar densities. None of them does well
when the datasets have locally divergent data distributions.

In this paper we develop TRANSFORMERS, an efficient
and robust spatial join approach that is indifferent to such
variations of distribution among the joined data. TRANSFORM-
ERS achieves this feat by departing from the state-of-the-art
through adapting the join strategy and data layout to local density
variations among the joined data. It employs a join method based
on data-oriented partitioning when joining areas of substantially
different local densities, whereas it uses big partitions (as in
space-oriented partitioning) when the densities are similar, while
seamlessly switching among these two strategies at runtime. We
experimentally demonstrate that TRANSFORMERS outperforms
state-of-the-art approaches by a factor of between 2 and 8.

I. INTRODUCTION
In many different applications, the efficient execution of

spatial joins becomes increasingly important. In scientific ap-
plications, for example, spatial joins are used to determine the
location of synapses in brain models [1], in medical imaging to
determine proximity of cells and in geographical information
systems spatial joins detect collisions between geographical
features like houses, roads, etc.

Given the importance of the application, several methods
have been developed to perform disk-based spatial joins [2],
[3]. Methods developed in the past can efficiently join two
or more disk-based spatial datasets of uniform distribution of
element locations. They are, however, inadequate when joining
two spatial datasets, each with a skewed distribution of element
location [4]. Doing so, however, is important as the datasets
joined rarely have a similar distribution.

Formally, the goal is to develop a robust and efficient
method to spatially join two disk-based datasets, each with a
non-uniform distribution of element location, i.e., with locally
varying densities. More precisely, each dataset D can have
areas di with a considerable difference in density such that
∀i, j with i 6= j |di| << |dj | or |di| >> |dj | along with areas
of similar density, |di| ≈ |dj |. When joining such datasets A
and B we have to efficiently join areas ai ∈ A and bi ∈ B with
similar spatial extent and location regardless of their density.

∗This work was done while the author was at EPFL.

0.1

1

10

Jo
in

 t
im

e
 (

h
o

u
rs

)
–

lo
g

sc
al

e

#Elements in datasets

PSBM

GIPSY

RTREE

Targeted

200M100M

200K200M 100M

Dataset A

Dataset B
200K

10x

50x
100x

1000x

1x

Fig. 1. Join time for datasets with variable relative density.

As we show with an experiment in Figure 1, no previously
proposed approach achieves to join all combinations of density
ratios of ai and bi, e.g., |ai| ≈ |bi|, |ai| << |bi| or |bi| << |ai|,
in a robust manner. In this experiment we join different
combinations of datasets A and B and measure the join time.
More precisely, we steadily increase the density of dataset
A (starting from 200K spatial elements) and decrease it for
B (starting from 200M) and measure the execution time for
joining each combination. The two datasets represent areas
with different or similar density. The numbers above the curve
indicate the ratio of density between the datasets; a more
detailed explanation is given in Section II-A.

As the experimental results in Figure 1 show, none of
the existing approaches performs best in every situation. Ap-
proaches based on space-oriented partitioning (e.g., PBSM [3])
do well when joining datasets of similar density while data-
oriented partitioning approaches (e.g., based on the R-Tree [2],
[5] and particularly GIPSY [4]) are more efficient when joining
datasets with contrasting density. None of the existing ap-
proaches joins the datasets (or areas) with robust performance
across different density ratios.

In this paper we thus develop TRANSFORMERS, a novel
disk-based join approach that handles this robustness problem
with respect to local density variations and targets to achieve
performance as is shown in Figure 1 (Targeted). For all areas
ai ∈ A and bi ∈ B, TRANSFORMERS decides locally which
area is dense and which is sparse and adapts the join strategy
as well as the data layout accordingly. With its adaptive
join strategy, TRANSFORMERS achieves a more robust join
performance across different density ratios and outperforms

978-1-5090-2020-1/16/$31.00 © 2016 IEEE ICDE 2016 Conference673

previous work by a factor of between 2 and 8.
Our contributions are as follows:
• We show that static strategies in the join phase lead

to sub-optimal, non-robust performance when joining
datasets with non-uniform distributions.

• We develop TRANSFORMERS, a novel approach that
detects local variations in distributions and adapts its
strategy and the data layout on the fly accordingly.

• We demonstrate robustness as well as substantial
performance improvements achieved with TRANS-
FORMERS on scientific and synthetic datasets.

The remainder of this paper is organized as follows. In
Section II we motivate TRANSFORMERS with an initial set
of measurements confirming our assumptions. We give an
overview of our approach in Section III and then discuss in
detail the indexing process in Section IV, the join process in
Section V as well as transformations in Section VI. In Section
VII we demonstrate the performance of TRANSFORMERS.
We review related work on disk-based spatial join methods in
Section VIII and draw conclusions in Section IX.

II. MOTIVATION
Spatial joins have become a crucial operation across dif-

ferent scientific and business applications. Frequently the two
datasets to be joined have a considerably different density and
data distribution. For example, while dataset A has a uniform
distribution and density, the join performance may be affected
by the local variation in distribution and density of dataset B.

In Figure 2 we illustrate several examples of local varia-
tions in distribution and density. Uniform (left) illustrates two
datasets with similar distribution and density throughout the
area they cover. In case of contrasting density (middle) both
datasets have similar distribution, however, skew is introduced
through the different number of elements in the datasets. The
datasets in contrasting distribution (right), on the other hand,
have a similar number of elements but a different distribution.
In the latter two cases, contrasting density and contrasting
distribution, a join between two datasets will join areas with
considerably different densities. As we illustrate with the
following experiments, skew due to these variations in density
leads to significant overhead, i.e., unnecessary processing.

contrasting densityuniform contrasting distribution

Fig. 2. Illustration of variations in distribution and density. Each figure shows
two datasets, one with grey elements and the other with black ones.

A. Motivating Experiment
We illustrate the shortcoming of the state of the art with

experiments where we join datasets with contrasting densities.
To achieve an approximation of joining two disk-based datasets
that differ significantly in local densities, we join nine pairs
of datasets with uniform data distribution whose density ratio
(|a|/|b|) varies between 10−3 and 1000 (numbers shown above
the curves in Figure 1). To obtain nine pairs of datasets with

contrasting densities, we increase the density of one dataset
(starting from 200K elements) and decrease it for the other
(starting from 200M) in consecutive steps.

We measure the execution time (without taking into ac-
count the indexing phase) for the join for the fastest and most
broadly used disk-based spatial join methods, i.e., PBSM [3],
the Synchronized R-Tree (R-Tree [2]) and GIPSY [4]. We use
the best configuration for each approach, e.g., the number of
partitions/tiles for PBSM, page size and fanout for the R-Tree.
The results are shown in Figure 1.

When joining a sparse area ai ∈ A with a dense area
bi ∈ B, only a very small subset needs to be retrieved from
bi (and tested against ai). Approaches based on space-oriented
partitioning like PBSM [3], however, read considerably more
data than is required from bi and thus also require more
comparisons. Due to coarse-grained partitioning inherent in
these methods, almost all of bi is read for the join, leading to
excessive disk accesses and comparisons (points 1000x, 100x,
50x). Space-oriented partitioning methods, on the other hand,
are efficient when joining areas of similar density (point 1x).

Data-oriented partitioning approaches (based on the R-
Tree [6] or others, e.g., the synchronized R-Tree [2]) use a
very fine-grained partitioning that enables them to retrieve data
very selectively. As Figure 1 shows, doing so proves efficient
on contrasting densities but their inherent problem of structural
overlap leads them to read and test more data than neces-
sary, making them comparatively slow when joining similar
densities. GIPSY [4] is based on fine-grained, data-oriented
partitioning and on neighborhood information. It minimizes
the impact of overlap by using the sparse dataset to selectively
retrieve the data needed from the dense dataset, relying on
connectivity information instead of a hierarchical tree traversal.
By doing so, GIPSY efficiently executes a join between a
sparse and a dense dataset; however, it is inefficient when
joining datasets of similar density. The problem of GIPSY is
that it, like other approaches, uses a static strategy and does
not consider the characteristics of the datasets.

B. Motivating Application
To better understand the brain and develop new drugs

for brain related diseases, the scientists in the Human Brain
Project [1] build small-scale spatial models of the rat brain for
brain simulations. The spatial models they design are based on
millions of three-dimensional cylinders where several thousand
cylinders together reconstruct the spatial shape of one neuron.
To determine the locations of synapses they perform a disk-
based spatial join between two types of neurons (or their
corresponding cylinders), axons and dendrites. Wherever an
axon intersects with a dendrite, a synapse is placed [7]. The
amounts of data involved in the join make it necessary for the
join to be based on disk.

Figure 3 shows the two datasets the scientists join. Axon
cylinders represent 60% and dendrites 40% of the combined
dataset of 250 million cylinders that model the neurons. As
the illustration shows, the datasets differ significantly in data
distribution: they have similar spatial extent but the axons are
predominantly located at the top of the dataset. When joining
theses datasets, areas of contrasting as well as similar density
need to be joined efficiently, making an adaptive strategy key.

III. TRANSFORMERS OVERVIEW
As we demonstrate with the motivation experiment, each

existing approach is efficient in joining a particular combina-
tion of dataset densities but none can join all combinations

674

Fig. 3. Neurocience data: axons (left) and dendrites (right).

of data densities efficiently. The reason lies in their design:
current approaches either use data-oriented partitioning (ef-
ficient for contrasting densities) or space-oriented partitioning
(efficient for similar densities) but cannot take into account the
variations of distributions and cannot adapt their join strategy.

We consequently design and use at the core of TRANS-
FORMERS adaptive exploration that robustly adapts the join
strategy as well as the data layout at runtime. The join strategy
is adapted by using the locally sparser data to guide the
join, i.e., TRANSFORMERS uses the locally sparser data
to selectively retrieve from the locally denser data only the
elements needed, thereby ensuring that as little data as possible
is retrieved and that as few elements as possible are tested for
intersection. In case dataset A is locally sparser than dataset
B, TRANSFORMERS will use the area in A to guide the join.
If the roles are switched, i.e., the area in B is locally sparser,
it uses B as a guide. Additionally, if the contrast in density
is substantial, TRANSFORMERS splits a locally sparse area
in A into finer-grained units so that each unit only needs to
be joined with a small, fine-grained subset of the area in the
locally denser dataset. Adapting the join strategy to the local
characteristics of both datasets ensures a robust performance.

More precisely, to perform a join given two indexed
datasets, TRANSFORMERS randomly picks one dataset A
and uses it as the guide while the other is used as the follower.
The areas a ∈ A of the guide are visited one after the other
while the connectivity information in the follower is used to
navigate through it and to move to the corresponding location
in the follower. The area a used for navigation is called pivot.
Once TRANSFORMERS arrives at the location of a pivot a,
it uses crawling based on the connectivity information [8], [9]
to detect all spatial elements of the follower that intersect with
pivot a, and then continues exploration towards a neighboring
area in the guide dataset.

TRANSFORMERS adapts its strategy at runtime by
switching the guide and follower: if a very sparse area is joined
with a dense one, it uses the sparse area as a guide and the
dense dataset as follower. Switching the roles of the datasets
at runtime ensures that we can always use the locally sparser
dataset to retrieve as little data as possible from the locally
denser dataset, thereby robustly curbing the amount of data
read and the number of comparisons.

Crucially, TRANSFORMERS also adapts the data layout
on the fly: if the areas compared from both datasets have a
very different number of elements, it adapts the data structure
and splits the sparse pivot area into finer-grained units and
joins them individually with the dense follower, retrieving only
exactly the data needed. If, on the other hand, the two datasets’
density is locally similar, it groups spatial elements into larger
groups and joins them as a batch, thereby curbing the overhead
that would result from very fine-grained partitioning, i.e.,
repetitive reads and comparisons. Adapting the data layout

reduces the data read (and unnecessary comparisons) and
thereby levels fluctuations in the join time resulting in a more
robust execution time of the join.

While TRANSFORMERS borrows elements from previous
approaches, i.e., data-oriented partitioning from the R-Tree,
crawling from GIPSY and joining big partitions from space-
oriented partitioning approaches, the departure from the state
of the art lies in its ability to adapt (a) its strategy (the roles of
the datasets can switch between guide and follower), and (b)
the data layout on the fly thereby accomplishing robustness as
well as substantially improved performance.

Transform 1:
Role

Transform 2:
Data layout

Transform 3:
Role and Data layout

Transform 4:
Data layout

Dataset A Dataset B

Fig. 4. TRANSFORMERS adapts to dataset characteristics.

Figure 4 illustrates how TRANSFORMERS adapts strategy
and data structures to the characteristics of the datasets while
performing the join; it starts with one of the datasets and uses
the connectivity information to move through the dataset. Once
it arrives at the position of a pivot where the follower is sparser
than the guide, it switches their roles, so it joins the locally
sparse with the dense area (Transform 1 in Figure 4). When it
detects areas of similar local density in guide and follower it
uses a coarse-grained layout (Transform 2 in Figure 4).

Clearly, instead of adapting the join strategy at runtime,
we could also adapt the partitioning of datasets A as well as
B and use a static join strategy. The partitioning of dataset
A, however, depends on the partitioning of dataset B (and
vice versa) and so the adapted partitioning can only be used
to join two specific, predetermined datasets. Adapting the join
strategy, on the other hand, does not depend on a particular
combination and therefore enables TRANSFORMERS to reuse
partitioned datasets, amortizing the overhead over several joins.

IV. TRANSFORMERS INDEXING
To enable the adaptive exploration TRANSFORMERS

requires (a) both datasets to be partitioned and (b) connectivity
information between partitions. To overcome the issues of
space-oriented partitioning, TRANSFORMERS first uses fine
grained data-oriented partitioning on both datasets. To enable
the adaptive exploration, TRANSFORMERS further computes
connectivity information between partitions, i.e., it stores for
each partition a list of adjacent partitions.
Partitioning: TRANSFORMERS uses a data-oriented parti-
tioning approach similar to STR [10] to partition the datasets.
It first sorts the dataset on the x-dimension of the element
center and partitions the elements along this dimension. All
resulting partitions are then sorted on the y-dimension and
partitioned again. The resulting partitions are sorted on the
z-axis, partitioned and each partition is stored on a disk page.

The aforementioned approach for data-oriented partitioning

675

preserves spatial locality, i.e., spatially close elements are
stored on the same disk page. Likewise, by choosing the size
of the partitions at every step of the partitioning process, we
can precisely determine the size of the final partitions. This
(a) ensures that a partition can fit on a disk page (4K or a
multiple thereof) and (b) gives us a parameter to control the
granularity of the partitioning.
Data Organization: TRANSFORMERS produces two types
of partitions; it first applies the partitioning algorithm on spatial
elements producing space units and second, it groups the space
units into space nodes using the same partitioning algorithm.
The indexing phase thus produces a three-level hierarchical
organization where level zero consists of space nodes, level one
corresponds to the space units and level two to the individual
spatial elements as illustrated in Figure 5 (left).

TRANSFORMERS stores the spatial elements on disk as
space units: elements that belong to the same space unit are
stored on the same disk page. It also stores meta information
about each space unit in a space descriptor. A space descriptor
summarizes a space unit su, i.e., it stores a pointer to the
corresponding disk page, su’s partition MBB and su’s page
MBB. The page MBB is the minimum bounding box con-
taining all elements in a space unit (and thus on a disk page),
whereas the partition MBB encloses the partition. Storing both,
the page and the partition MBB, is necessary to ensure the
correctness of the join process. Without the partition MBB
there may be gaps between two neighboring pages MBBs (and
thus the space units) in one dataset and TRANSFORMERS
cannot navigate between them to explore and join the pages
with the pages of the second dataset.

Finally, we group the neighboring space unit descriptors
into space nodes that consequently store metadata information
about the groups of partitions. A space node is also described
with a space descriptor, i.e., the node’s MBB that covers all
its partitions and the neighbors of a space node. Figure 5
illustrates the data structures.

…

…

ID, Page MBB, Partition MBB

ID, Page MBB, Partition MBB

ID, Page MBB, Partition MBB

ID, Space Node MBB, Neighbors

Space unit

Space
node

Spatial
element

Fig. 5. The data structures: space node, space descriptor and space unit.

Connectivity: TRANSFORMERS computes the connectivity
information by performing a spatial self-join on the space node
MBBs, resulting in a list of all overlapping or adjacent nodes
per space node. Any spatial join approach can be used for the
self join. We use PBSM primarily because of its efficiency
in the building phase. To decrease the amount of metadata
necessary to be stored, a space unit inherits this neighborhood
information from its parent space node.

V. TRANSFORMERS JOIN
Given two indexed datasets, TRANSFORMERS starts an

adaptive exploration to detect intersecting pairs of spatial
elements. It visits the elements of the locally sparser guide

dataset, one after the other, navigating or walking between
them using the connectivity information in the locally denser
follower dataset. Once it arrives at the location of a particular
guide element p, it crawls the neighborhood area to detect
all elements of the follower that intersect with p using a in-
memory join. Depending on the data layout used at this stage,
an element p can represent either a space node, a space unit or
a spatial element. TRANSFORMERS adjusts the data layout
and the roles, if necessary, before the crawling step, to zoom
into the area of interest.
Adaptive Walk: TRANSFORMERS first randomly assigns the
roles of guide and follower to the datasets and then chooses a
first pivot element, p, in the guide dataset. To determine what
elements of the follower intersect with p, it needs to find a start
space descriptor of the follower dataset as close as possible to
p. It then uses the connectivity information to explore, i.e.,
recursively read all neighboring space descriptors and pick the
one closest to p (smallest distance of the partition MBB to p).
Exploration is repeated until a space descriptor intersecting
with p is found. If no neighbor descriptor closer to p can
be found (the adaptive walk is moving away from p) and the
partition MBB of the closest descriptors still does not intersect
with p, then p does not intersect with any element of follower.
The process is illustrated in Algorithm 1.

To initially find a start space descriptor as close as possible
to p (to reduce the exploration overhead), we index the Hilbert
value of the center point of all space nodes in a dataset with
a B+-Tree. We use B+-Trees instead of an R-Tree (or similar
indexes) to avoid the issue of overlap and also to speed up
building the index. To find the descriptor, TRANSFORMERS
formulates a range query based on the Hilbert values of the
centers of two neighboring space nodes; it only uses the B+-
Tree to find the starting point of the exploration. Alternatively,
the first space node of the follower dataset can be used.

Dataset B

A B

Dataset A

Space unit/Spatial element

Space node/Space unit
a1

b1

b2

Fig. 6. Joining datasets A and B using adaptive exploration.

Adaptive Crawling: The crawl phase starts once an in-
tersection record is found, i.e., a follower space descriptor
whose partition MBB intersects with p. The goal of the
crawl phase is to provide a candidate set for the final phase
of the adaptive exploration process, that is, retrieving and
testing actual spatial elements for intersection. Starting with
the intersection record, similarly to the previous walk phase,
the crawl phase recursively visits all neighbors until no more

676

Algorithm 1: Adaptive Walk Algorithm
Input: startFr: start descriptor in follower dataset

pivot: space node/unit/element
Output: clFr: closest space descriptor to pivot

clFr = startFr
enqueue startFr into fqueue

while fqueue 6= ∅ do
dequeue follower record fr from fqueue
dist = distance(fr.partitionMBB, pivot)

if dist == intersection then
return fr

end
if dist < distance(clFr.partitionMBB, pivot)
then

clFr = fr
end
if fqueue == ∅ AND !isMovingAway(clFr) then

enqueue clFr’s neighbors that have not been
checked in fqueue

end
end
return noIntersection

elements intersecting with p can be found. More precisely,
it starts with the intersection record and recursively retrieves
all linked neighbor records. If a space descriptor’s page MBB
intersects with p, then its space unit page is included in the
candidate set. On the other hand, the neighbors of a space
descriptor are visited, if and only if, not only its page MBB,
but also its partition MBB intersects with p. The crawl phase
thus ends when no more crawl records with a partition MBB
intersecting with p can be found. Then TRANSFORMERS
moves to the next element in the guide dataset.
In-memory Join: Once TRANSFORMERS processes an en-
tire space node, it joins the detected follower’s candidate set
with the pivots that belong to the processed space node. It
partitions space in a uniform grid and assigns the elements,
belonging to the pivots, to the cells they overlap with. Finally, it
probes the grid with the elements from the candidate set to find
pairs of intersecting elements [11]. When TRANSFORMERS
uses the node level as data layout it additionally filters elements
before the in-memory join. It joins the page MBBs from the
guide’s and follower’s candidate set to filter out space units
that do not intersect with each other, thereby reducing the data
read and compared.

The pseudocode of the adaptive exploration is shown in
Algorithm 2. TRANSFORMERS is finished only once all the
elements from one dataset are checked for intersection. The
condition isChecked varies depending on the current level,
i.e., for the node level we check if one dataset is fully traversed
and for the unit/object level if all the elements belonging to
the enclosing node/unit are checked for intersection. If at the
end of the initial pass both datasets have unexamined elements
the adaptive exploration process restarts taking as a guide
the dataset with fewer unexamined elements. The process
continues until one dataset is fully traversed, guaranteeing that
all intersections are found. TRANSFORMERS collects infor-
mation about all elements in the dataset during the indexing
phase (space node ids). It reuses this information as a to-do list
during the join process to track checked elements. Depending

Algorithm 2: Adaptive Exploration Algorithm
Input: level: current data layout
Output: intersections: result pairs

or candidateSet: input for the batch join
Data: p: space node/unit/element

while !isChecked() do
p = loadCurrentP ivot()
intersect = adaptiveWalk(p, startRecord)
if intersect == noIntersection then

continue
end
switch applyTransformation(p) do

case NoTransformation
adaptiveCrawling(intersect, candidateSet)

case RoleTransformation
switchGuideFollower() & continue

case LayoutTransformation
switchLayout()
adaptiveExploration(level++)

endsw
if level == Node then

join(p, candidateSet, intersections)
removeFromToDoList(p)

end
end
return intersections/candidateSet

on the current layout, we mark a space node as checked if
the node itself is checked for intersection or all elements that
constitute the node are checked.

Figure 6 illustrates how TRANSFORMERS uses the ele-
ments of the guide dataset to direct walking in the follower
(for simplicity only space nodes and units are used). In
this example, both datasets are grouped into partitions of
three elements. TRANSFORMERS initially uses a coarse-
grained layout (space nodes) and randomly chooses guide and
follower dataset, e.g., A and B respectively. In adaptiveWalk
it immediately detects an intersection between a1 and b1 and
thus, before checking the actual elements for intersection and
performing unnecessary reads and comparisons, it checks if it
is necessary to applyTransformation. Considering that area b1
is significantly sparser compared to the same area in dataset A,
TRANSFORMERS switches roles and adjusts the data layout:
dataset B becomes the guide and space node b1 is split into
space units, filtering out six partitions from dataset A. Once
adaptiveCrawling and join are done, TRANSFORMERS resets
the data layout to space node, keeps the dataset B as guide and
uses b2 as next pivot, leading to additional transformations.

VI. TRANSFORMATIONS
Crucially, when TRANSFORMERS moves to a new pivot

p in the guide dataset, it adapts its strategy by adjusting the
roles of guide and follower and adapts the layout.

A. Role Transformation
When joining two datasets with skewed distribution the join

approach needs to adapt to the data. The roles of pivot, guide
and follower define the configuration of TRANSFORMERS;
a proper combination of roles accelerates the join and makes
its performance more robust compared to static approaches.

677

TRANSFORMERS thus adapts the roles of pivot, guide
and follower at runtime based on the two datasets’ density
ratio. Considering that both datasets rely on the same indexing
strategy and thus have the same number of elements in the
corresponding space units/nodes, a significant difference in
volume of space units/nodes indicates that one area is sparser
than the other. TRANSFORMERS thus uses the volumes
enclosed by the elements (space node/unit) of the guide Vg
and follower Vf datasets, at the location of the pivot in both
datasets, to compute the ratio Vg/Vf . If the ratio is smaller than
a threshold t it first switches the roles, i.e., the guide becomes
the follower and the follower the guide, and then also changes
the pivot (picks the element in the new guide closest to the
old pivot). By adapting the roles, TRANSFORMERS ensures
that it can always use the sparser dataset as guide and thus
only retrieves the data needed from the denser dataset. This
decision is followed by data layout transformation.

B. Data Layout Transformation
TRANSFORMERS also adapts the data layout at runtime

to further reduce data read and comparisons performed. It
initially designates a space node as the first pivot, i.e., it
uses a coarse-grained data layout in both datasets. During
the join process it may split the space node into finer-grained
data structures, as a coarse-grained data layout is not a good
strategy for adaptive exploration when joining areas of diver-
gent densities. That is, in case the pivot is sparser than the
corresponding area in the follower, it moves the pivot down
to a level of granularity which allows for better filtering in
both datasets. At runtime, TRANSFORMERS tests the ratio
Vg/Vf between the datasets and changes the data layout if it
is above threshold t. This decision is potentially preceded by a
role switch between a guide and follower dataset if we detect
a locally sparser area in the follower.

TRANSFORMERS moves seamlessly between three data
layouts, predefined/produced during the indexing phase, that
correspond to different levels of hierarchy as shown in Figure
7. It initially uses a coarse-grained data layout in both datasets
and therefore performs adaptive exploration on level 0. In case
of local density difference, it moves to a finer granularity
by splitting space nodes into space units and thus performs
adaptive exploration on level 1, in both datasets. Furthermore,
if it detects substantial local density difference on a space unit
level, it switches to the finest-grained data layout: it splits
a space unit into its spatial elements, thus using a spatial
element as pivot (level 2) while using the space unit as a level
of granularity for the follower (level 1). TRANSFORMERS
does not split the follower to object granularity as keeping
track of connectivity information at this level causes significant
overhead. Crucial for the data layout transformation is to
transform pivot to finer granularity. We also transform the
follower, when possible, to allow for better data filtering
and skew detection. TRANSFORMERS decides what the data
structure element e is, i.e., space node, space unit or element,
based on the pivot. The same data structure is used until the
end of the exploration phase, i.e., until a new pivot is chosen.

The number of levels TRANSFORMERS uses and their
granularity is primarily driven by its design for use on disk.
To optimize access on disk, we align data structures for disk
and ensure they are page-aligned. Two levels are given: Level
2 is given by the single elements which cannot be further split
as they are the smallest spatial primitive used. A second level
is defined by the actual storage structure on disk: to optimize

…

…
Level 2

Level 0

Level 1

neighborhood links adaptive exploration

…

…

Fig. 7. The hierarchical organization of TRANSFORMERS.
access to disk, we pack as many elements into a space unit as
can fit on a disk page giving us level 1. Finally, we add a third
level (level 0) that summarizes several space units on level 1
into space nodes. Level 0 is again designed page aligned, i.e.,
as many level 1 space units as can be summarized and stored
on a disk page are combined into level 0 nodes.

TRANSFORMERS can introduce more levels between the
existing ones or use more levels to recursively summarize
level 0 (e.g., level -1 etc.). The former, introducing levels
between existing ones, however, is inefficient as the resulting
data structures would no longer be page-aligned, therefore
retrieving unnecessary data (or half empty pages). Recursively
summarizing level 0 leads to space nodes on higher levels
which have a considerable spatial extent that soon makes the
spatial extent of higher levels nodes indistinguishable from
space-oriented partitioning (thereby also inheriting the same
performance issues).

B: 1 space nodeA: 12 space nodes

Guide Follower GuideFollower

Transform

GuideFollower

a1

a12

b1

space unit

Transform

Fig. 8. Role and Data layout transformation.

Figure 8 illustrates the result of the partitioning where
all space nodes contain two space units. For the sake of
simplicity we do not illustrate spatial elements. Dataset A
represents a densely populated area that fits 12 space nodes
in the same space while B is sparsely populated containing
one space node. According to the default adaptive exploration
strategy, the space node a1 will be used as a pivot to check the
corresponding area (space node b1) of the dataset B. Without
data layout transformation, the next pivot would be a2 and
eventually we would load and test all space units/elements in
a1-a12 against b1. This is unnecessary considering that b1
overlaps only with a1 and a12. A better exploration strategy
in this case is to execute the exploration directed by the
space units in the sparse area. TRANSFORMERS therefore
switches the roles and splits the pivot, moving to a finer

678

granularity. It then uses dataset B as a guide and a spatial unit
as pivot. By doing so it decreases the number of disk accesses
and comparisons of spatial elements. At the same time, the
overhead in the number of metadata comparisons is increased.
Metadata comparisons, however, are not expensive as we will
show in the experiments.

C. Transformation Thresholds
Setting the thresholds for transformations is important for

TRANSFORMERS’ performance. In particular, we need to
determine the thresholds for changing the data layout, from
space node to space unit and from space units to single spatial
elements, and the threshold for the role transformation.
Data Transformations Threshold: The first threshold we
need to determine is when TRANSFORMERS has to switch
from a coarse-grained granularity (space node) to a finer-
grained granularity (space unit). As described in Section VI-A,
we compare the corresponding volumes in the guide and
follower datasets and if the ratio exceeds a threshold tsu
(Vg/Vf ≥ tsu) we split (transform data layouts). To determine
the threshold tsu, we first define the cost and benefit of the
splitting operation.

Equation 1 defines the additional cost as the adaptive
exploration (splitting means more elements to traverse), i.e.,
the number of new space units (nSU), after splitting a space
node, times the cost of traversal and exploration (Tae).

nSU × Tae (1)
The average benefit of splitting, on the other hand, is essen-

tially time saved by reading fewer space units (nSU×Tio) and
testing fewer spatial elements for intersection (nSU ×nSO×
Tcomp, where nSO is the number of spatial elements in a space
unit). How many space units do not need to be considered is
difficult to define a priori. The ratio Vg/Vf corresponds to the
maximum number of space units that can be filtered out. We
adjust this value using the parameter cflt = (0, 1), determined
at runtime based on the actual percentage of filtered elements.
Equation 2 formalizes the benefit of splitting.

Vg
Vf
× cflt × nSU × (Tio + nSO × Tcomp) (2)

Clearly, if the benefit exceeds the cost, then we should
split the space (Equation 3). Equation 4 therefore defines the
corresponding threshold tsu. Tae, Tio and Tcomp are all param-
eters that heavily depend on the hardware of the system and
are therefore best determined at runtime. TRANSFORMERS
initially uses the default threshold values (Section VII-D2) that
are updated after the first transformation.

Vg
Vf
≥ Tae
cflt × (Tio + nSO × Tcomp)

;
Vg
Vf
≥ tsu (3)

tsu =
Tae

cflt × (Tio + nSO × Tcomp)
(4)

Role Transformations Threshold: The data layout transfor-
mation is potentially preceded by a role switch between the
guide and the follower dataset if we detect that a locally sparser
area belongs to the follower dataset, that is:

Vf
Vg
≥ tsu;

Vg
Vf
≤ 1

tsu
;
Vg
Vf
≤ tsuRole; tsuRole =

1

tsu
(5)

Finest-grained Data Transformations Threshold: Once we
are on a space unit level we can additionally adapt the data
layout if we detect “extreme skew”, i.e., a considerable Vg/Vf

ratio. Similarly to deciding whether to split a space node into
a space unit, we also need to decide if we split a space unit
into single spatial elements. The reasoning behind cost and
benefit is the same, except that we replace nSU with nSO (the
number of spatial elements in a space unit) as Equation 6 and
Equation 7 show. The term describing the cost of comparisons
nSO × Tcomp remains the same because they already depend
on the number of spatial elements in a space unit.

nSO × Tae (6)

Vg
Vf
× cflt × nSU × (Tio + nSO × Tcomp) (7)

The threshold tso for deciding on splitting further thus is
the ratio between the new cost and new benefit (Equation 8).

tso =
nSO × Tae

nSU × cflt × (Tio + nSO × Tcomp)
(8)

VII. EXPERIMENTAL EVALUATION
In this section we describe the experimental setup &

methodology, compare TRANSFORMERS against state-of-
the-art spatial join approaches and then analyze its perfor-
mance. To study the impact of different dataset characteristics
on the performance of TRANSFORMERS we use synthetic
datasets where we control the number, size and distribution of
the elements. As a final test we use neuroscience datasets to
compare performance on a real workload.

A. Experimental Setup
Hardware: We run the experiments on Red Hat 6.3 machines
equipped with 2 quad CPUs AMD Opteron, 64-bit @ 2700
MHz, 32 GB RAM and 4 SAS disks of 300GB (10000 RPM)
capacity as storage. We only use one of the disks for the
experiments, i.e., no RAID configuration is used.
Software: All algorithms are implemented single-threaded in
C++ for a fair comparison.
Setting: We experimentally compare TRANSFORMERS
against the latest or most broadly used spatial joins, i.e.,
the Partition Based Spatial Merged Join (PBSM), the Syn-
chronized R-Tree Traversal (R-TREE), and GIPSY. Like the
approaches we compare it with and driven by our motivating
application, TRANSFORMERS is designed to join two static
spatial datasets and we do not compare it to self-joins or
trajectory joins. PBSM and TRANSFORMERS use the grid
hash join [11] as the in-memory join algorithm, while R-TREE
uses the plane sweep. R-TREE is based on R-Trees bulkloaded
using the STR approach [10]. While more sophisticated ap-
proaches can outperform STR for certain dataset characteristics
(e.g., TGS [12] and PR-Tree [13]), they incur considerable
overhead for partitioning the data. In practice STR balances
the overhead of partitioning the data and the size of MBBs
(and thus the overlap) well.

Given the absence of heuristics, we set the configuration
of all approaches other than TRANSFORMERS for the best
performance identified with a parameter sweep. For PBSM the
configurations with 103 (uniform and clustered distribution)
and 203 (neuroscience data) partitions balances the number
of elements needed to be compared by the grid hash join
algorithm and the number of elements replicated, deduplicated,
additionally written/read to/from disk best, and therefore exe-
cutes the fastest. The synchronized R-Tree approach (R-TREE)
uses a fanout of 135 (based on disk page size). The parameters
of TRANSFORMERS are set according to Section VI-C.

679

We set the disk page size to 8KB for all approaches. For all
experiments we assume cold system caches and we therefore
clear OS caches and disk buffers before each experiment.

B. Experimental Methodology
Synthetic Datasets: We create synthetic datasets by distribut-
ing spatial boxes in a space of 1000 units in each dimension of
a three-dimensional space. The length of each side of each box
is determined uniform randomly between 0 and 1. The spatial
elements are distributed using a particular data distribution. We
use two basic data distributions - clustered and uniform.

We use three different types of clustered datasets which
differ in number and size of the clusters. For the DenseClus-
ter we produce on average 700 densely populated clusters.
UniformCluster datasets contain 100 clusters whose elements
are distributed in a wide area resulting in a nearly uniform
distribution while MassiveCluster datasets contain 5 densely
populated clusters each with a fixed number (100K) of uni-
formly distributed elements. DenseCluster and UniformCluster
use a normal distribution (µ = 500, σ = 220) to determine the
centers of the clusters. Figure 9 illustrates the datasets.

The number of spatial elements in the datasets ranges
between 100M and 1300M (50M-650M per dataset) resulting
in a size on disk between 4.6GB and 58.2GB.

Fig. 9. UniformCluster & DenseCluster (left) and MassiveCluster (right)
dataset samples.

Neuroscience Datasets: To evaluate TRANSFORMERS on
real data we use a small part of the rat brain model represented
with 450 million cylinders as elements. We take from this
model a contiguous subset with a volume of 285 µm3 and
approximate the cylinders with minimum bounding boxes. In
the spatial join process axons are represented by one dataset,
dendrites by another and the detected intersections represent
the synapses. The number of spatial elements joined ranges
between 100M to 500M (50M-250M per dataset). The size on
disk ranges from 5GB to 16GB.
Approach: Spatial joins typically involve two steps: filtering
followed by refinement. The filtering step finds pairs of spatial
elements whose approximations (MBBs) intersect with each
other, while the refinement step detects the intersection be-
tween the actual shape of the elements. Considering these two
steps are independent in terms of their implementation and the
refinement step is application specific, we focus on the filtering
like most spatial join methods [14] and like other evaluations
we do not account for the refinement step.

C. Comparative Analysis
We evaluate the performance of TRANSFORMERS and

compare it with other approaches (PBSM, R-TREE, GIPSY) in
four sets of experiments. We first expand the motivation exper-
iment with TRANSFORMERS demonstrating its robustness on
uniform datasets. We then evaluate the performance of spatial
joins on datasets with non-uniform data distributions, on uni-
form distributions and finally demonstrate TRANSFORMERS
benefits on real neuroscience data. For the latter experiments
we measure the time to index, a breakdown of the join time and

the major factor of the join time, the number of intersection
tests between spatial elements.

1) Robustness: This set of experiments illustrates TRANS-
FORMERS’ robustness with respect to varying relative density.
Figure 10 illustrates the performance of TRANSFORMERS
when performing the set of experiments from Section II-A.
The results of the join, excluding the index building time, are
shown in Figure 10. The values above the curves indicate the
density ratio of the datasets. TRANSFORMERS outperforms
GIPSY when joining datasets with the highest density ratio
(point 1000x) with a speedup of 5, while its speedup over
PBSM is 6.7 when joining two dense datasets (point 1x). Its
average speedup over the R-TREE is 10.

0.01

0.1

1

10

Jo
in

 t
im

e
 (

h
o

u
rs

)
–

lo
g

sc
al

e

#Elements in datasets

PSBM

GIPSY

RTREE

TRANSFORMERS

10x
50x

100x
1000x

1x

200M100M

200K200M 100M

Dataset A

Dataset B
200K

Fig. 10. Joining datasets with variable relative density.

TRANSFORMERS combines different levels of granular-
ity and switches to the finest level only when the walking
overhead is low. GIPSY’s performance, on the other hand,
suffers from the overhead of the directed walk on the spatial
element level, which is its only level of granularity. The finest
grained transformations are unnecessary when joining two
densely populated datasets with a uniform distribution (point
1x). In this case, by being able to combine coarse (space node)
and fine-grained granularity (space unit), TRANSFORMERS
compares less data than PBSM. The performance of PBSM
is also significantly affected by random reads: PBSM writes
pages to disk arbitrarily while indexing (when the number of
elements buffered for a cell exceeds the disk page size) leading
to random reads when retrieving all elements in one cell.

This experiment exemplary demonstrates the robustness of
TRANSFORMERS: by adapting to dataset characteristics at
runtime (changing role and data layout), the join algorithm
can compensate for extremely contrasting dataset densities.

2) Non-uniform Data Distributions: In the following set
of experiments we compare and analyse TRANSFORMERS’
performance on datasets with non-uniform distribution. We
join synthetic datasets with clustered distribution: one dataset
corresponding to DenseCluster and one to UniformCluster. We
increase the size of the datasets from 350M to 650M elements,
in steps of 100M and measure join and indexing time. Due
to the long execution time when joining densely populated
datasets, we exclude GIPSY from all these experiments and
R-TREE when joining the biggest datasets (650M elements).
Indexing: The index building time is the time necessary to
build the initial data structures. For PBSM this process involves
creating partitions and assigning elements to them and for
TRANSFORMERS partitioning the data, organizing metadata

680

~400

0

0.5

1

1.5

2

2.5

350 450 550 650

In
d

e
xi

n
g

ti
m

e
 (

h
o

u
rs

)

Elements in datasets (millions)

TRANSFORMERS

PBSM

R-TREE

0

5

10

15

20

25

30

35

40

TR

P
B
SM

R
-T
R
EE TR

P
B
SM

R
-T
R
EE TR

P
B
SM

R
-T
R
EE TR

P
B
SM

R
-T
R
EE

350 450 550 650

Jo
in

 t
im

e
 (

h
o

u
rs

)

Elements in datasets (millions)

Join I/O

0

10

20

30

40

50

60

70

350 450 550 650

#i
n

te
rs

e
ct

io
n

 t
e

st
s

(b
ill

io
n

s)

Elements in datasets (millions)

TRANSFORMERS
PBSM
R-TREE

~900

Fig. 11. Execution time breakdown and number of intersection tests for the join phase on synthetic data.

0

1

2

3

4

5

6

7

8

TR

P
B
SM

R
-T
R
EE TR

P
B
SM

R
-T
R
EE TR

P
B
SM

R
-T
R
EE

100 250 350

Jo
in

 t
im

e
 (

h
o

u
rs

)

Elements in datasets (millions)

Join I/O

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 250 350

In
d

e
xi

n
g

ti
m

e
 (

h
o

u
rs

)

Elements in datasets (millions)

TRANSFORMERS

PBSM

RTREE

0

20

40

60

80

100

120

140

160

180

200

100 250 350

in

te
rs

e
ct

io
n

 t
e

st
s

(b
ill

io
n

s)

Elements in datasets (millions)

TRANSFORMERS

PBSM

R-TREE

Fig. 12. Execution time breakdown and number of intersection tests for the join phase on neuroscience data.

information and introducing connectivity information. Simi-
larly to TRANSFORMERS, R-TREE has to partition the space
and additionally build all levels of the hierarchy.

Figure 11 shows the results of measuring the indexing
time. The results illustrate the difference between indexes
based on space- and data-oriented partitioning very well. As
a space-oriented approach, PBSM only needs to assign each
element to the cells of a uniform grid they overlap with. PBSM
consequently outperforms TRANSFORMERS by a factor of
between 2.9 - 3.6. As a data-oriented partitioning approach,
on the other hand, TRANSFORMERS spends time on creating
data partitions of equal size. It essentially needs to sort the
spatial elements in three dimensions to produce partitions (that
correspond to the space units). R-TREE partitions the data
with a similar strategy but additionally has to recursively build
levels, resulting in a higher indexing time.

While PBSM efficiently partitions the data, the partitions
produced are unlikely to be reused efficiently. The resolu-
tion of the grid of PBSM is determined based on several
factors (number of elements, spatial extent and distribution
of elements) but crucially on the size of the elements of
both datasets because the size of the grid cells needs to be
chosen so that not too many elements are replicated. The
partitions produced therefore depend on the characteristics
of a particular combination of datasets and cannot efficiently
be reused when joining with datasets that have considerably
different characteristics.

As opposed to PBSM, TRANSFORMERS builds the in-
dexes for each dataset separately and adapts the join execution
to the characteristics of the two indexes. An index built on

one dataset can therefore be reused when joining with any
other dataset. The additional time TRANSFORMERS requires
to index one dataset can therefore be amortized over additional
joins with other datasets.
Join Performance: To analyse the join performance we break
the execution time into I/O and join time. The I/O time is the
time spent on loading data during the join process while join
time is the time needed to join the data in memory, i.e., testing
spatial elements for intersection (and related operations). The
results of the experiments joining two datasets of the same size
are shown in Figure 11 (middle). TRANSFORMERS (labeled
TR) achieves the best results and outperforms PBSM by a
factor between 5.5 & 7.4.

PBSM requires substantially more time for I/O because it
reads a significant amount of unnecessary data during the join
phase. Data-oriented partitioning in combination with adaptive
exploration allows TRANSFORMERS to filter out 20% of
the total data on average when joining DenseCluster datasets.
When comparing the datasets with more distinctive local
variations (e.g., MassiveCluster) TRANSFORMERS filters out
on average 47% of the data while PBSM has to read all
data. The execution time, however, is additionally determined
by the join selectivity and the randomness of reads. PBSM
inherently writes data for each partition to disk individually
(and thus distributed) in the indexing phase, resulting in almost
exclusively random reads during the join phase.

Figure 11 (right) shows the number of intersection tests be-
tween spatial elements for the same experiment. For TRANS-
FORMERS this time also includes metadata comparisons.
PBSM compares all elements in one (possibly large) cell of

681

0

100

200

300

400

500

600

700

800

900

50M 150M 250M 350M

Jo
in

 t
im

e
 (

se
co

n
d

s)

Elements in datasets (millions)

No TR TRANSFORMERS

0

500

1000

1500

2000

2500

MassiveCluster UniformvsDenseCluster Uniform

Jo
in

 t
im

e
 (

se
co

n
d

s)

Dataset distributions

OverFit CostModelFit UnderFit

Fig. 13. Impact of transformations on join performance (left) and transformations threshold sensitivity (right).

both datasets and thus only avoids tests between elements
in different cells. PBSM consequently needs to perform 4.4
times more comparisons than TRANSFORMERS which only
retrieves and compares the very fine-grained partitioned data.

Given the very efficient indexing of PBSM, the overall
improvement of TRANSFORMERS when taking into account
the indexing and the join phase over PBSM shrinks to 2.1 -
2.5. More important, however, is the speedup in the join phase
as the indexes built for TRANSFORMERS can be reused for
future joins (between different datasets).

3) Uniform Data Distributions: To further demonstrate
TRANSFORMERS general applicability, we join Uniform
datasets with a uniform distribution (similar distribution and
density throughout the area they cover). We vary the number
of elements from 150M to 350M, in steps of 100M. The results
of the join are shown in Table I.

TRANSFORMERS PBSM RTREE
150M 0,16 1,02 4,55
250M 0,30 2,24 11,63
350M 0,49 4,28 24,92

TABLE I. EXECUTION TIME (HOURS) FOR DATASETS WITH UNIFORM
DISTRIBUTION.

For this set of experiments TRANSFORMERS achieves a
improvement of between 6.2 - 8.6 compared to PBSM. The
overall improvement when joining datasets with a uniform
distribution is a result of TRANSFORMERS’ initial strategy
that suits the datasets with similar distribution and similar num-
ber of elements. Considering that we join densely populated
datasets with the uniform distribution, PBSM’s performance
deteriorates compared to the previous set of experiments due
to the increased replication rate. By default, its strategy causes
elements replication that leads to additional I/Os, comparisons
and deduplication. Although the grid hash join [11] provides
better performance for PBSM than the plane sweep join, it
additionally increases the replication rate. The R-TREE join
suffers from overlap at tree level and therefore performs on
average 21 times more comparisons.

4) Neuroscience Data: To demonstrate the general appli-
cability of TRANSFORMERS we also test its performance on
neuroscience data by performing joins like the neuroscientists
do. In total, at most 350 spatial elements are spatially joined,
where 250M are axons and 100M are dendrites.

As the illustration shows (Figure 3) the neuroscience
dataset has a skewed distribution and hence TRANSFORM-
ERS behaves similarly as in the previous set of experiments.

Figure 12 illustrates the experimental results. TRANSFORM-
ERS achieves a speedup in join time of 2.3 - 3.3 compared to
PBSM and 4.1 - 6.5 compared to R-TREE.

D. TRANSFORMERS Analysis
In the following we analyse the impact of transformations

and quantify the overhead of adaptive exploration.
1) Impact of Transformations: In the following experi-

ments we use MassiveCluster datasets to illustrate the im-
pact of transformations on the performance. We join the
same datasets, once with TRANSFORMERS and once with
TRANSFORMERS that does not apply transformations (No
TR), i.e., it just uses space nodes as the level of granularity.

With the increase of dataset size, also the data skew
increases for MassiveCluster datasets. As the results measuring
the join time in Figure 13 show, the benefit of transformations
increases as the skew grows. An increase in skew triggers finer-
grained transformations and thus TRANSFORMERS filters
on average 47% of data resulting in an improvement in the
performance between 1.2 and 1.6 compared to No TR.

2) Transformation Threshold: As discussed, TRANS-
FORMERS’ performance depends on the transformation
threshold. If the threshold is too high we will not benefit from
transformations. On the other hand, if we set the transforma-
tions threshold too low the performance will be affected by
the adaptive exploration overhead.

In these experiments we test the cost model using three
datasets, each with 350M elements but with different data
distributions: MassiveCluster, UniformCluster & DenseCluster
and Uniform. To demonstrate the quality of the cost model, we
use two additional configurations: OverFit uses 1.5 as a thresh-
old and thus triggers many transformations and UnderFit uses
1,000,000 which prevents transformations, i.e., the algorithm
uses default guide and follower and space nodes as data layout.
All the parameters of the cost model are set and updated at
runtime with an additional constraint that Tae and cflt are
provided once the first transformation is executed. To trigger
the first transformation we set the corresponding thresholds
to initial values, i.e., tsu = 8, and tsu = 27. This volume
ratio corresponds to the case where an edge of one MBB is
two/three times bigger than the other one.

The results of the join are shown in Figure 13. When
joining datasets with uniform distribution TRANSFORMERS
should perform a minimal number of transformations since
the two datasets do not have local variations in the distri-
bution. The threshold proposed by the cost model leads to

682

performance close to UnderFit, the best configuration tested.
MassiveCluster datasets have significant local variations in the
distribution and therefore benefit considerably from transfor-
mations. Therefore, the threshold proposed by the cost model
provides a performance very close to OverFit (leading to many
transformations). The data distribution in UniformCluster &
DenseCluster datasets (empty areas in DenseCluster, Figure 9)
allows the coarse grained configuration to filter considerable
number of elements and the performance of the cost model
and UnderFit is thus similar.

3) Adaptive Exploration Overhead: The adaptive explo-
ration process potentially introduces overhead. More precisely,
by using a fine-grained data granularity we may lose the benefit
of processing comparisons in a batch operation and we may
thus unnecessarily repeat filtering operations such as distance
and overlap calculations.

0

100

200

300

400

500

600

50M 150M 250M 350M

Jo
in

 t
im

e
 (

se
co

n
d

s)

Elements in datasets (millions)

Overhead Join cost

Fig. 14. Adaptive exploration overhead.

In the following experiments we measure the overhead of
adaptive exploration using MassiveCluster datasets. To analyze
the join performance, we break the execution time in join cost
and adaptive exploration overhead. The join cost is the time
spent on disk access and the time needed to join the data (the
final candidate set) in memory. Everything else is considered
as the overhead of adaptive exploration (Overhead).

As the results of the experiment show in Figure 14,
the data layout transformations manage to keep the adaptive
exploration overhead low by moving to a coarser granularity if
too many elements need to be visited. On average, the adaptive
exploration overhead takes 17% of the join execution time.

VIII. RELATED WORK
Several spatial join approaches have been developed in the

past with the vast majority [14] focusing on the filtering phase
and only few addressing the refinement phase [15]. Because
distance join approaches [16] can be trivially implemented as
a variation of a spatial join (by enlarging the objects by the
distance predicate) we do not distinguish between the two but
instead categorize related work according to its use of data- or
space-oriented partitioning.

A. Data-oriented Partitioning
Spatial join methods based on data-oriented partitioning

require one or both datasets to be partitioned and indexed in
a data-oriented way (e.g., an R-Tree [6]).

The synchronized R-Tree traversal [2] synchronously tra-
verses the R-Trees [6] RA and RB built based on datasets A
and B. Starting at the root nodes of RA and RB , the approach
traverses the trees top down and, if two nodes nA ∈ RA and
nB ∈ RB on the same level intersect, recursively tests their
children. On the bottom level the spatial elements are tested
for intersection.

The indexed nested loop join [5] only requires an index
IA on dataset A. It iterates over dataset B and queries IA for
each element b ∈ B with b as the query. The query results are
all intersections of b in A. Given the considerable cost of a
query, this approach clearly is only efficient in case A >> B.

The seeded tree approach [17] assumes the existence of an
R-Tree IA based on dataset A and uses IA as a template to
build a second R-Tree IB based on dataset B. Both indexes
are joined with the synchronous R-Tree traversal [2] approach.
As IB is built based on IA, the bounding boxes are aligned
leading to less overlap and the synchronous join therefore has
to compare fewer bounding boxes. Extensions to the basic
approach use sampling to build the R-Trees faster [18] or avoid
memory thrashing [19]. Sampling the spatial datasets is also
used to make the spatial join interactive [20].

In case all data is known a priori, the R-Tree used can
be bulkloaded to reduce overlap. Bulkloading the indexes
generally reduces overlap but still cannot avoid it. Multiple
approaches like STR [10], Hilbert [21], TGS [12] and the
PR-Tree [13] have been developed. While TGS and PR-Tree
are efficient on datasets with extreme skew and aspect ratio,
Hilbert and STR perform similarly, outperforming the others
on real-world data.

As a consequence of using the R-Tree as a basis, the
approaches discussed so far also suffer from the same prob-
lems, namely inner node overlap and dead space. Both prob-
lems lead to a substantially increased number of disk reads
as well as comparisons and hence lead to a considerably
slower spatial join. Several approaches like the R+-Tree [22]
or the R*-Tree [23] have been developed to mitigate the
problem of overlap through replication or an improved node
split algorithm. The former, however, introduces considerable
overhead because duplication leads to more comparisons and
disk accesses (to retrieve the duplicates). The latter reduces
overlap but cannot avoid it.

The GIPSY [4] spatial join uses data-oriented partitioning
but minimizes the impact of overlap by using a crawling
strategy [8], [9]. GIPSY is efficient for joining a sparse dataset
with a dense one. It cannot, however, efficiently join datasets
of similar volumes with arbitrary local density variations.
Besides, the performance of GIPSY relies on the ability to
predetermine which dataset is dense and which one is sparse.

The JiST [24] approach goes beyond the traditional under-
standing of a spatial join and does not only index objects, but
instead trajectories of moving objects. Based on data-oriented
partitioning, JiST parametrizes trajectories on time and uses
traditional indexes [6] to find the nearest trajectories to a query.

B. Space-oriented Partitioning
The class of space-oriented partitioning approaches do

not partition space based on the data distribution but use
uniform partitioning of the dataset space. As a consequence,
each spatial element can intersect with several partitions.
To address this ambiguity the assignment approaches use a
multiple assignment or a multiple matching strategy.

The multiple assignment strategy assigns a copy of the
element (or a reference) to each partition the element intersects
with. Doing so has the advantage that only elements in the
same partition need to be compared to perform the spatial
join. Replicating elements, however, has several disadvantages:
1) replicated elements need more space on disk as well as
more disk reads and more comparisons for the join and 2)

683

results may be detected twice and deduplication is required
(at runtime [25] or at the end).

PBSM [3], the Partition Based Spatial Merge join, parti-
tions the space uniformly into cells of equal size. In the first
phase each element of both datasets is assigned/replicated to all
cells it overlaps with. In the second phase PBSM iterates over
all cells c ∈ C and tests all elements of dataset A in c against
all elements of dataset B in c to find pairwise intersections.

The multiple matching strategy avoids replication of el-
ements and copies each element only to one partition it
intersects with. Doing so, however, also means that several
partitions (that share a border) potentially need to be compared
with each other because an element could be assigned to one
of several different partitions.

SSSJ [26], the Scalable Sweeping-Based Spatial Join, par-
titions space into n strips of equal width in one dimension and
assigns each element e of both datasets to the strip where e is
fully contained. In each of the n strips it uses a plane-sweep
approach to determine all intersections between elements of
datasets A and B. Elements intersecting with several strips
(e.g., from strip i to strip k) are assigned to set Sik. When
swiping strip j all sets Sjk with j < n < k are also joined.

The size separation spatial join (S3 [27]) uses a hierarchy
of equi-width grids of increasing granularity. Each element of
both datasets is assigned to the lowest level in the hierarchy
where it only overlaps with one cell. To perform the join S3
iterates over each cell c in the hierarchy and joins it with all
cells that cover c on a higher level.

The problem of skewed datasets has already been studied
in a distributed setting [28] to investigate the impact of skew.
The work done for datasets with skewed distribution, however,
focuses on partitioning and distributing the datasets so that all
worker nodes perform a similar amount of work, while still
considering all the data. Our approach, on the other hand, deals
with skew by minimizing unnecessary I/Os and comparisons.

IX. CONCLUSIONS
This paper identifies the problem of spatial join robustness,

which arises when joining spatial datasets of similar volumes
but locally varying densities. As we show, current methods
cannot efficiently perform a join between such datasets, which
are prevalent in applications across sciences; such methods
read too much data and/or require too many comparisons.

We propose TRANSFORMERS, a method that achieves
robust spatial joins by adapting to local data characteristics.
TRANSFORMERS partitions the data in advance, but, con-
trary to previous work, does not rely solely on that partitioning;
it also adapts its execution in an on the fly, data-driven manner.
First, it uses the locally sparser dataset to guide data retrieval,
ensuring that only strictly needed data from the locally denser
dataset are retrieved. Second, it adjusts the employed data
layout, ensuring that only the relevant parts of the locally
denser dataset are compared.

We show that TRANSFORMERS achieves robust and
efficient joins. Thanks to its adaptivity, it achieves a speedup
between 2 and 8 in the join phase compared to PBSM, the
fastest state-of-the-art method throughout the density ratio
spectrum. Moreover, it is scalable, capable to perform on ever
bigger data of growing density variations.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Union Seventh Framework Programme

(FP7/2007-2013) under grant agreement n 604102 (HBP).

REFERENCES
[1] H. Markram, K. Meier, S. Grillner, R. Frackowiak, S. Dehaene,

A. Knoll, H. Sompolinsky, K. Verstreken, J. DeFelipe, S. Grant, and
J.-P. Changeux, “Introducing the Human Brain Project,” vol. 7, no. 1,
2011, fET ’11.

[2] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient Processing of
Spatial Joins using R-Trees,” in SIGMOD ’93.

[3] J. Patel and D. DeWitt, “Partition Based Spatial-Merge Join,” in
SIGMOD ’96.

[4] M. Pavlovic, F. Tauheed, T. Heinis, and A. Ailamaki, “GIPSY: Joining
Spatial Datasets with Contrasting Density,” in SSDBM, 2013.

[5] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems,
3rd ed. Addison Wesley, 2000.

[6] A. Guttman, “R-trees: a Dynamic Index Structure for Spatial Search-
ing,” in SIGMOD ’84.

[7] J. Kozloski, K. Sfyrakis, S. Hill, F. Schurmann, C. Peck, and
H. Markram, “Identifying, Tabulating, and Analyzing Contacts between
Branched Neuron Morphologies,” IBM Journal of Research and Devel-
opment, 2008.

[8] F. Tauheed, L. Biveinis, T. Heinis, F. Schürmann, H. Markram, and
A. Ailamaki, “Accelerating Range Queries For Brain Simulations,” in
ICDE ’12.

[9] S. Papadomanolakis, A. Ailamaki, J. C. Lopez, T. Tu, D. R. O’Hallaron,
and G. Heber, “Efficient Query Processing on Unstructured Tetrahedral
Meshes,” in SIGMOD ’06.

[10] S. Leutenegger, M. Lopez, and J. Edgington, “STR: a Simple and
Efficient Algorithm for R-tree Packing,” in ICDE ’97.

[11] F. Tauheed, T. Heinis, and A. Ailamaki, “Configuring Spatial Grids for
Efficient Main Memory Joins,” in BICOD ’15.

[12] Y. J. Garcia, M. A. Lopez, and S. T. Leutenegger, “A Greedy Algorithm
for Bulk Loading R-trees,” in Advances in Geographic Information
Systems (AGIS ’98).

[13] L. Arge, M. D. Berg, H. Haverkort, and K. Yi, “The Priority R-tree: A
Practically Efficient and Worst-case Optimal R-tree,” ACM Transactions
on Algorithms, vol. 4, no. 1, pp. 1–30, 2008.

[14] E. H. Jacox and H. Samet, “Spatial Join Techniques,” ACM Transactions
on Database Systems, vol. 32, no. 1, p. 7, 2007.

[15] D. J. Abel, V. Gaede, R. A. Power, and X. Zhou, “Caching Strategies
for Spatial Joins,” vol. 3, no. 1.

[16] J. Sankaranarayanan, H. Alborzi, and H. Samet, “Distance Join Queries
on Spatial Networks,” in GIS ’06.

[17] M. Lo and C. Ravishankar, “Spatial Joins Using Seeded Trees,” in
SIGMOD ’94.

[18] ——, “Spatial Hash-joins,” in SIGMOD ’96.
[19] N. Mamoulis and D. Papadias, “Slot Index Spatial Join,” IEEE TKDE,

2003.
[20] S. Alkobaisi, W. D. Bae, P. Vojtĕchovský, and S. Narayanappa, “An

Interactive Framework for Spatial Joins: A Statistical Approach to Data
Analysis in GIS,” vol. 16, no. 2.

[21] I. Kamel and C. Faloutsos, “On Packing R-trees,” in CIKM ’93.
[22] T. K. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-Tree: A

Dynamic Index for Multi-Dimensional Objects,” in VLDB ’87.
[23] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:

an Efficient and Robust Access Method for Points and Rectangles,” in
SIGMOD ’90.

[24] Y. Chen and J. M. Patel, “Design and Evaluation of Trajectory Join
Algorithms,” in GIS ’09.

[25] J.-P. Dittrich and B. Seeger, “Data Redundancy and Duplicate Detection
in Spatial Join Processing,” in ICDE 2000.

[26] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter,
“Scalable Sweeping-Based Spatial Join,” in VLDB ’98.

[27] N. Koudas and K. C. Sevcik, “Size Separation Spatial Join,” in SIGMOD
’97.

[28] J. Patel and D. DeWitt, “Clone Join and Shadow Join: two Parallel
Spatial Join Algorithms,” in SIGSPATIAL ’00.

684

