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ABSTRACT
Today, outsourcing query processing tasks to remote cloud servers
becomes a viable option; such outsourcing calls for encrypting data
stored at the server so as to render it secure against eavesdrop-
ping adversaries and/or an honest-but-curious server itself. At the
same time, to be efficiently managed, outsourced data should be
indexed, and even adaptively so, as a side-effect of query pro-
cessing. Computationally heavy encryption schemes render such
outsourcing unattractive; an alternative, Order-Preserving Encryp-
tion Scheme (OPES), intentionally preserves and reveals the or-
der in the data, hence is unattractive from the security viewpoint.
In this paper, we propose and analyze a scheme for lightweight
and indexable encryption, based on linear-algebra operations. Our
scheme provides higher security than OPES and allows for range
and point queries to be efficiently evaluated over encrypted numeric
data, with decryption performed at the client side. We implement
a prototype that performs incremental, query-triggered adaptive in-
dexing over encrypted numeric data based on this scheme, without
leaking order information in advance, and without prohibitive over-
head, as our extensive experimental study demonstrates.

1. INTRODUCTION
We have entered the database-as-a-service era; data management

capabilities need not be present at the data owner’s locale, but can
be provided as a service by a cloud-based service provider, to which
the data is outsourced. This model provides users (i.e., the data
owner and its trusted clients) power to create, store, modify, and
retrieve data from anywhere in the world; the discussion about the
applicability of this model has entered domains such as high-fre-
quency trading, whereby a firm can use cloud providers’ servers
to test trading strategies, run time series analysis, assess risks, and
even execute trades, while collecting financial data daily, or on a
finer time scale [30, 2]. At the same time, such a model raises se-
curity and confidentiality concerns; to follow the same application
area, a firm may deploy trading, analytics, and risk management
modules to the cloud so as to filter out the most relevant finan-
cial data for in-house analysis. Thereby, sensitive data and query
results may be leaked to malicious adversaries and/or an honest-
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but-curious service provider itself. Such concerns have motivated
research on data encryption and query answering over encrypted
data, starting with SQL query processing over encrypted data [19],
and expanding to the design of tailor-made schemes that allow the
processing of specialized queries over encrypted data, such as kNN
[43] and skyline queries [10]. CryptDB has provided a coherent
collection of efficient SQL-aware encryption schemes that allows
for the execution of SQL queries over encrypted data [36].

In all cases, the aim is to allow data to be managed by a server
with minimal intervention by data owner and clients. The server
should be able to process queries over the encrypted data, and de-
liver encrypted query results to the client, while the client should
only have to decrypt the data and obtain the actual results thereby.
Nevertheless, in order for a system to manage data and process
queries efficiently, it should, first of all, be capable to index the data
to the extent deemed necessary. In addition, modern applications,
handling continuously arriving data, call for an inherent capacity
to perform incremental indexing on demand, while processing user
queries, and as a side-effect of such queries, requiring neither a
priori idle time nor a priori workload knowledge; in other words,
the system should not only be capable for indexing; it should be
capable for adaptive indexing and self-organization [25, 20, 28].

These requirements for data management in the database-as-a-
service era bring forth a contradiction. The requirement that data
be kept confidential necessitates that it be encrypted; the require-
ment that data be efficiently managed necessitates that it be in-
dexed. Encryption and indexing are in tension with each other; the
former requires that the service provider knows nothing about the
values of the data, while the latter necessitates that the same ser-
vice provider knows, ideally, the exact values of the data under its
purview. Given such conflicting aims, previous research has con-
fronted these two challenges in isolation from each other and made
no effort to face them in unison. Solutions for adaptive indexing
and self-organization have not considered security and confiden-
tiality, while secure database systems do not cater for adaptivity in
dynamic environments. Unfortunately, by shying away from such
an objective, such approaches offer fragmentary solutions to the
problem of secure and efficient outsourced data management; in
particular, extant encryption schemes suffer from one or more of
the following drawbacks: (i) they are too computationally expen-
sive; or (ii) leak too much information on the encrypted data, and/or
(iii) require more data than the actual query results to be retrieved
and then filtered in a post-processing step.

In this paper, we propose a model for breaking this isolation and
achieving a seemingly contradictory target: allow for database sys-
tems that are both secure and adaptive. We examine the challenge
of adaptively indexing an encrypted database. To bring about such
a result, we investigate the extent to which encryption and indexing



are in tension with each other: we study the bare-bones require-
ments for indexing, and the ways in which such requirements may
be reconciled with encryption. We propose a lightweight and effi-
cient encryption scheme that reveals less information than previous
suggestions and allows for indexing encrypted numeric data adap-
tively. This indexing capacity does not aim to develop a complete
index upfront, but to one built in an incremental, progressive man-
ner, so that only those data which are queried get indexed. Such
an adaptive indexing enables lightweight adaptation of the system
to the workload at hand and also mitigates the tension between en-
cryption and indexing. Our scheme relies on simple linear-algebra
operations for encryption and decryption, while it can efficiently
process range and point queries over ciphertexts without disclos-
ing the order among attribute values, as an Order-Preserving En-
cryption Scheme [3], and without the computational and storage
burdens of schemes like fully homomorphic encryption [14].

2. BACKGROUND AND STATE OF THE ART
We review prior work on data systems that support queries over

encrypted data, as well as on adaptive indexing.

2.1 Processing Encrypted Data
Research on processing encrypted data can be classified in two

broad classes. The former class of solutions propose processing
the encrypted data directly. Hacıgümüş et al. [19] proposed a
bucketization scheme that allows for approximate filtering of query
results at the server, followed by the final processing at the client,
after decryption. Hore et al. [22] expand on this scheme with an
index that supports obfuscated range queries, extended to the mul-
tidimensional case [21]. However, such schemes reveal the data
distribution and involve the client in query processing, while the
only indexing capacity they offer is that afforded by bucketization.

An attempt for fine-grained indexing would necessitate sorting
values at the server. Such an alternative is offered by Agrawal et
al.’s Order-Preserving Encryption Scheme (OPES) [3], built on an
encoding that preserves the order of numerical data. However, as
previous research has noted [44, 6, 7, 37], OPES reveals the data
order, hence cannot overcome attacks based on statistical analysis
on encrypted data. Arguably, OPES provides an overkill solution:
it delivers encrypted values in sortable form, hence allows such
values to be compared to each other. We argue that a more conser-
vative alternative would enable selective indexing without a priori
leaking information about the order of values.

In the meantime, advances in cryptography have led to the ca-
pacity to perform arbitrary computations over encrypted data, so
as to obtain a correct encrypted result, by fully homomorphic en-
cryption (FHE) [14]. Such computations rely on an expensive pub-
lic key cryptosystem, bringing forth prohibitive overheads of up to
nine orders of magnitude [15]. Besides, FHE does not enable in-
dexing encrypted data. With FHE, even while the server performs
all computations correctly, it does so only in the encrypted view of
the world. It has no access to any truth in the real world that would
allow for building an index. Mani et al. [33] discuss the potential
of FHE to enable the vision of secure database as a service, and
conclude that practicality remains a very important concern. To
process a simple select query by the two-step process proposed in
[33], the server computes the query results first and sends to the
client the encrypted number n of result tuples; the client decrypts
n, and asks for n′ ≥ n rows from the server. The server returns
the top-n′ rows in the result; thus, the client needs to be actively
involved in simple query processing tasks.

Wang and Lakshmanan [42] propose a scheme for securely eval-
uating queries over encrypted XML data. They advocate an ex-

tension of OPES, order-preserving encryption with splitting and
scaling (OPESS), whereby each plaintext is ”split” into more ci-
phertexts and the split data are “scaled”, so that the attacker can-
not determine the identity of ciphertexts based on data frequency
knowledge. However, this scheme cannot support updates; thus, it
is unsuitable for a dynamic and adaptive database system.

Shi et al. [38] propose an encryption scheme for answering mul-
tidimensional range queries. Yet the problem they address is that
of allowing an auditor to decrypt those and only those records (e.g.,
financial audit logs, medical anamneses, etc.) whose attributes fall
within a specified range; privacy is not protected when an entry is
matched by the query. Unfortunately, this match-revealing scheme
does not allow for protecting attribute values while enabling a ser-
vice provider to identify records matching queries over encrypted
data in a way that can be exploited for indexing.

Boneh and Waters [9] process complex queries over encrypted
data based on Hidden Vector Encryption (HVE). The notion of
security in [9] is stronger than the one in [38]: query-matching
records are identified, but their attribute values remain hidden. This
match-concealing security notion fits the requirements for index-
ing while protecting the privacy of attribute values. However, the
scheme in [9] is not practicable for vast volumes of dynamic data;
it necessitatesO(DT ) public key size, encryption time, and cipher-
text size, forD attributes and T discrete values per attribute.

Tu et al. developed MONOMI [40], a system that can execute
analytical queries over encrypted data. Building on CryptDB [36],
MONOMI uses several techniques so as to improve performance,
along with a designer that chooses efficient server-side physical de-
signs and a planner that selects efficient query execution plans in-
volving server and client. However, insofar as MONOMI allows
for order-based indexing, it does so by relying on OPES. More
recently, Li et al. [31] proposed a scheme for processing range
queries over encrypted data in which inequality checks are con-
ducted via exhaustive equality checks; no mechanism for pure in-
equality checks over encrypted data is suggested.

Overall, these approaches do not provide a good tradeoff be-
tween confidentiality and efficiency; lately, some research efforts
have provided tailor-made encryption schemes that allow the pro-
cessing of specialized queries over encrypted data, such as kNN
queries [43], range search queries [45], and skyline queries [10].

An alternative to processing encrypted data directly is to main-
tain an encrypted index on the server, and rely on the client for
traversing this index and locate the data of interest after a few itera-
tions of retrieval and decryption. Damiani et al. [12] build a B-tree
over plaintext values, but encrypt every tuple and the B-tree itself
at node level; the tree’s content is not visible to the server. Ge and
Zdonik [13] propose Fast Comparison Encryption (FCE). An index
traversal with FCE necessitates comparisons between plaintext and
ciphertext key values by partial decryption on the client side. Wang
et al. [41] provide a secure query processing framework that pro-
tects data both in storage and at access, based on Salted IDA (Infor-
mation Dispersal Algorithm). By this scheme, a client maintains a
secret information dispersal matrix and the keys for decoding a data
matrixD; the client encodes and dispersesD onto n servers, while
using a pseudo-random number generator with a secret seed to add
a random salt to each data entry; when retrieving data, salts are re-
constructed and deducted from the decoded data, so as to recover
D. Thus, query processing is directed by the client, while servers
can only access data following the client’s instructions. Overall,
approaches based on an encrypted index do not allow the server to
build, maintain, and traverse an index relying on its own devices.

A third direction involves processing encrypted data in secure
hardware, most recently exemplified by Cipherbase [5]. Yet, for



a range index Cipherbase reveals the full ordering information of
index keys, even to a weak adversary; thus, range indexes in Ci-
pherbase provide “similar confidentiality guarantees” [5], and have
the same drawbacks as, order preserving encryption (OPE).

2.2 Adaptive Indexing
Apart from security requirements, data systems for modern ap-

plications need to be flexible and agile, easily adapting to rapidly
changing requirements [11, 24]. Adaptive indexing is a recently
introduced concept, by which index tuning need not be performed
during system initialization [25, 26, 29, 20, 17, 18, 23, 34, 16, 35];
instead, it occurs during query processing: each query is interpreted
not only as a request for a particular result set, but also as an advice
on how to physically store the data, triggering small actions that
refine the adaptive indexes. Those data portions that are queried
become progressively and incrementally indexed. This capacity
to index by continuously reacting to a changing query workload
brings forth the property of self-organization.

In this section, we describe database cracking [23] in more de-
tail. Database cracking introduced the notion of continuous, incre-
mental, and on-demand adaptive indexing in the context of modern
column-stores [1]. With cracking, the select operator of a database
system performs index-building operations as a side-effect of pro-
cessing a range (or equality) filtering action [25]; an index is built
and refined collaterally to query execution: the more a data range
is queried, the more its index is refined. The physical data store
is changing with each incoming range query q, interpreting q as a
hint on how data should be stored. That hint may explicitly use
q’s query bounds, or follow a more lax interpretation for the sake
of robustness [20]. Without loss of generality, we discuss the strict
interpretation. Assume a query requestsA<10. A cracking DBMS
responds to q by clustering all tuples of A with A<10 at the be-
ginning of the respective column C, while pushing all other tuples
to the column’s end. A subsequent query requesting A≥v1, where
v1≥10, will only need to look into the last piece of C, while a
query that requests A<v2, where v2≤10, searches its first part;
each subsequent query cracks its respective piece further. Figure 1
shows how two queries crack a column by their selection predi-
cates. Query Q1 cuts the column in three pieces, and Q2 enhances
this partitioning by cutting the first and the last piece further. Each
query collects its qualifying tuples in a contiguous area. Thereby,
the original columnA (including positions) is copied into a cracker
index column, which is then continuously reorganized.

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
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12
11
14
16
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Figure 1: Cracking a column [25]

As queries are being processed, the adaptive index of a column is
continuously split into more (and thus smaller) pieces. Therefore,
we also need a data structure to localize a piece of interest. Past
adaptive indexing literature has relied on an in-memory AVL-tree
to keep track of all pieces created due to physical reorganization

[25]. As a column becomes progressively indexed, queries request-
ing ranges that are exact matches of values known by the index are
answered at the cost of searching only that tree-index; in all cases,
even when there is no exact match, the index reduces the amount of
data a query has to touch, as each range query reorganizes at most
two pieces at the edge of the relevant range.

This on-the-fly physical reorganization is performed on individ-
ual pieces (or the whole column for the very first query) by in-place
algorithms relying on sequential access patterns [25]. Algorithm 1
shows the most basic cracking algorithm that splits a piece into two,
identifying tuples that need to be exchanged by comparison oper-
ations. Over the years, numerous algorithms have been proposed
that split a piece of a column into three pieces [25],N pieces using
radix clustering [29], partially sorting pieces in combination with
partition/merge operations [29], fully sorting pieces when touched
for the first time [18], and splitting pieces based on random pivots
as opposed to query predicates [20, 34], yet the core idea remains
the same. Figure 1 shows Query Q1, which partitions the whole
column into three pieces, followed by Query Q2 that reorganizes
Pieces 1 and 3 [25]. Other pieces of work accommodate updates
[26], propagate the physical organization from one column to oth-
ers on demand [27], and exploit multi-core CPUs [34, 35].

Algorithm 1 CrackInTwo(c,posL,posH,med,inc)
Physically reorganize the piece of column c between posL and posH such that all
values lower than med are in a contiguous space. inc indicates whether med is
inclusive or not, e.g., if inc = false then φ1 is "<" and φ2 is ">="

1: x1 = point at position posL
2: x2 = point at position posH
3: while position(x1)< position(x2 ) do
4: if value(x1) φ1 med then
5: x1 = point at next position
6: else
7: while value(x2) φ2 med &&

position(x2)> position(x1) do
8: x2 = point at previous position
9: exchange(x1 ,x2 )
10: x1 = point at next position
11: x2 = point at previous position

In this work, without loss of generality, we consider the basic
cracking design. We focus on the action of reorganizing a col-
umn into pieces with respect to a breakpoint as part of a query
plan itself; thereby, a cracking select operator physically reorga-
nizes the proper pieces of a column to bring all qualifying values in
a contiguous area, which is leveraged to return the result, without
additional result materialization [23]. Besides, with an AVL tree
used for indexing, tree updates and rebalancing actions are also
performed during query processing, in logarithmic time. This core
operation is common and universally applicable to all adaptive in-
dexing design. Our subsequent discussion shows how to apply this
basic notion over encrypted data; we emphasize that our design
extends the basic cracking design in a way that does not violate
its assumptions about the underlying architecture: we assume that
data is stored one column-at-a-time in fixed-width dense arrays as
in modern column-stores [32, 39, 8], both on disk and in memory.
Query processing may happen in bulk or vector-wise processing.
These basic properties apply to all column-stores.

Crucially, adaptive indexing never necessitates fully sorting in-
dividual pieces [23, 29]; when a piece becomes small enough to
fit in L1 cache, we scan the data at virtually no overhead. Thus,
queries only cause reorganization for data pieces larger than a size
threshold; that threshold can be bigger (e.g., L3 cache size) without
a significant performance drop. In the context of our work, it fol-
lows that we never leak the total data order by a fully sorted index,
as OPES does by default.



3. PROPOSED ENCRYPTION SCHEME
We aim to devise an encryption scheme that provides protection

against attacks that aim to compromise data confidentiality, yet en-
ables self-organizing indexing operations over encrypted numeric
data, i.e. an indexable encryption scheme. However, unlike OPES
[3], we do not wish our encryption to preserve the order of nu-
merical data; we aim to enable efficient querying without leaking
information about the order of tuples. An adversary can be either
an external malicious entity or an honest-but-curious server. In-
sider attacks, such as those arising from malicious partners, are
not considered. Client machines are assumed to be safe; confiden-
tial information such as secret keys on the client and client queries
are not known to attackers. Attacker’s computations are bounded
by polynomial-size circuits. We first outline the requirements we
would like our encryption scheme to satisfy.

1. It should provide the server with some capacity to conduct
inequality comparisons between data values (plaintexts) em-
ploying their encrypted forms (ciphertexts).

2. This capacity to perform comparisons should not directly
reveal the order among encrypted numeric data.

3. Comparison operations should not necessitate decryption at
the server; attribute values should always remain hidden to
the server.

4. The key sizes, encryption time, and ciphertext sizes should
be manageable and not growing with the size of data, num-
ber of attributes, or number of discrete values.

5. The client should not be elaborately involved in processing
simple queries; the server should deliver the encrypted re-
sults, and only those, to the client in a single round of com-
munication.

6. The server should be capable to gracefully accommodate newly
arriving data values and support updates in the encrypted
data.

A prime challenge is to resolve the tension between requirements
(1) and (2), i.e., enable inequality comparisons without revealing
order. A way to achieve this result is to postulate that comparisons
should not be possible among encrypted data residing at the server.
If such data are not comparable to each other, then they cannot be
straightforwardly brought to sorted order. We must then spell out
under what circumstances a server should be able to perform an
inequality check among ciphertexts. Such comparisons should be
possible only on demand, between ciphertexts (e.g., a query bound
and a tuple value) rendered comparable by their encryption; in ef-
fect, indexing actions would also be possible only on client demand.
Such on-demand indexing, would be compatible with adaptive in-
dexing: If we have to perform on-demand indexing for the sake of
security, we also need to perform exactly such actions for the sake
of adaptiveness, as the data has to be indexed in response to queries.
Then, instead of being in tension with each other, the requirements
for security and adaptivity reinforce each other.

We must then devise a method of creating comparable cipher-
texts. Such a method could utilize two complementary encryption
modes, A and B, interfacing with each other, so that a ciphertext
encrypted in mode A can be compared to one encrypted in mode B.
Then, encrypting attribute values in mode A and query bounds in
mode B, we would offer the server a capacity to compare the for-
mer to the latter; as we saw, such comparisons form the backbone
of adaptive indexing operations, and are performed with operators

φ1 and φ2 in Algorithm 1. Assume a server needs to perform an
inequality check between key value v in a column C and query
bound value b, i.e., to check whether v ≥ b. Equivalently, we need
to check whether:

v − b ≥ 0 (1)

Using vector notation, we express Inequality (1) as(
1
b

)
·
(

v
−1

)
= v − b ≥ 0 (2)

Our objective is to devise an encryption scheme that allows the
computation of such scalar vector products in obscured fashion. We
employ three obscurement operations, to be be performed by the
data vendor when uploading the data to the server and by a trusted
client before issuing a query: (i) noise addition; (ii) scalar multipli-
cation, and (iii) matrix multiplication. We elaborate on these in the
following.

3.1 Noise Addition
Our noise addition operation builds two longer vectors b, v, by

adding extra noisy elements to the length-2 vectors used in Inequal-
ity (2), such that the result of the vector product remains the same.
We call b and v the encrypted bound and value vector, respec-
tively. The specific length � of vectors b and v, and the position-
ing and distinction between the added noisy contents and original
value contents therein constitute part of our encryption key, known
to the data owner and trusted client, but not to the service provider.
Without loss of generality, we present an example using vectors of
length 5. We can rewrite Inequality (2) as follows:

b · v =

⎛
⎜⎜⎜⎝
−4
1
8
b
4

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

3
v
−2
−1
7

⎞
⎟⎟⎟⎠ = v − b ≥ 0 (3)

In this example, the original contents of the vectors occupy posi-
tions 1 and 3 in them, whereas positions {0, 2, 4} are reserved for
noisy contents that cancel each other out in the scalar vector prod-
uct, as they form two orthogonal length-3 embedded subvectors,
nb and nv , with inner product 0:

nb · nv =

⎛
⎝−48

4

⎞
⎠ ·

⎛
⎝ 3
−2
7

⎞
⎠ = 0 (4)

We call these orthogonal subvectors noisy subvectors of b and
v. We emphasize that we need not use the same exact noisy sub-
vectors for each encrypted key value v or each encrypted bound
value b, yet we do have to use the same positions for noisy con-
tents across all encrypted values in the same column. We could use
any pair of vectors orthogonal to each other, such that their inner
product produces 0. Nevertheless, a vector b produced for a given
bound value b should be orthogonal to all vectors v produced for
attribute values. Therefore, we cannot choose our orthogonal vec-
tor pairs in an entirely arbitrary fashion. However, it suffices to
select a unit vector u, and make sure that each bound value b is
obscured by embedding into the column vector

(
1
b

)
a randomly se-

lected noise vector nb collinear to u, nb = λ(b) ·u, with the values
1 and b occupying specific preselected positions, as shown above,
to produce b. Then, any data value v is obscured by similarly em-
bedding a randomly selected vector nv = u⊥(v), orthogonal to u,
into the column vector

(
v
−1

)
, to produce v. We emphasize that the

vectors u⊥(v) do not need to be collinear to each other. Any vector



orthogonal to u will suffice. Summing up, given a unit vector u,
the noisy subvectors embedded in b should be collinear to u, while
those embedded in v should be orthogonal to u. Then an inequal-
ity check can be performed by means of a scalar vector product, as
v − b is calculated as b · v.

In the above example, the unit vector used is u =

( −1√
6

2√
6

1√
6

)
. No-

tably, ‖u‖ = 1. A noisy subvector of b is produced by multiplying
u by a randomly selected factor λ(b). In above case, λ(b) = 4

√
6.

On the other hand, a noisy subvector of v is produced by randomly
selecting any vector of length �− 2, u⊥(v), orthogonal to u.

3.2 Scalar Multiplication
So far we have devised an encryption scheme that enables the

calculation of the difference v− b by the server, via the calculation
of a scalar product of two vectors. Thus, we attain the objective of
performing inequality checks, hence processing range queries, over
the encrypted numeric data, while our encryption scheme does not
preserve the order of the data in the way that OPES does. However,
given an encrypted bound vector b, an adversary can calculate any
scalar product of the form b ·v, hence the difference v− b, for any
encrypted value vector v; then, by comparing the obtained v − b
values, one obtains not only the order, but also the exact differences
among the encrypted data values.

To prevent this kind of leakage, we should not enable the cal-
culation of exact differences of the form v − b. After all, we are
not interested in obtaining the correct norms of those differences.
Getting merely their sign would suffice. The norm of |v − b| may
be altered, as long as the sign is correctly obtained. We achieve this
effect by adding a scalar multiplication in our obscurement opera-
tion. Then, for each data value v, the data vendor chooses a random
positive multiplier ξ(v) > 0, and recalculates the encrypted value
vector v as v′ = ξ(v)v. Henceforward, we use v to refer to this
recalculated value vector. In effect, the scalar product we calculate
becomes b · v = ξ(v)(v − b). The server still obtains the correct
sign of the difference v−b, without the exact norm of this difference
being leaked. In effect, an adversary cannot reconstruct the order
of data values using information obtained from scalar products.

3.3 Matrix Multiplication
Our noise addition and scalar multiplication operations produce

a vector v representing each key value v and a vector b represent-
ing a query bound value b, so that the sign, but not the norm, of
v − b can be obtained from the scalar product b · v. Still, the se-
curity these operations provide cannot withstand a simple breach:
an adversary who learns the position within a vector v where the
values ξ(v)v and −ξ(v) reside, can effectively acquire all original
key values. We now provide an additional encryption layer that
obstructs this breach.

Assume v and b are vectors of length �, and let M be any in-
vertible � × � matrix, and M−1 its inverse. M constitutes part of
our encryption key; it is known to the data vendor and its trusted
clients, but not to the service provider. We can then encrypt any
key value v and any breakpoint b as follows.

Ev(v) = M−1v (5)

Eb(b) = MTb (6)

where Ev(·), Eb(·) are our encryption functions, b and v are rep-
resented as column vectors, andMT is the transpose of matrixM .
Then:

Eb(b) ·Ev(v) = Eb(b)
TEv(v)

= (MTb)T (M−1v)

= (bTM)(M−1v)

= bTv = b · v = ξ(v)(v − b)

where row vector aT is the transpose of column vector a.
In effect, any inequality check can be effectively conducted us-

ing the encrypted vectors Ev(v) and Eb(b). Ev(v) is generated
by the data vendor and passed on to the server when the data (or
an update) is generated. Eb(b) is produced by the trusted client,
or again by the data vendor on behalf of the client, when issuing a
query. These two encryption (and reverse decryption) steps are the
only workload data vendor and client have to bear. Other compu-
tations and query processing are conducted by the server as with a
non-encrypted database. At the same time, given those encrypted
vectors, an adversary cannot determine the values of v or b without
knowing the invertible matrixM .

3.4 The Encryption Key
In a nutshell, our total encryption key consists of:

1. The unit vector u.

2. The arbitrary orientation of each vector u⊥(v), orthogonal
to u, which is individually selected to construct v for a data
value v.

3. Each factor λ(b) used to produce a noisy vector collinear to
u, in order to construct b for a query bound b.

4. Each random positive multiplier ξ(v) used to obscure the
norm of v − b.

5. The positions occupied by the contents of
(

ξ(v)v
−ξ(v)

)
and

(
1
b

)
in v and b, respectively.

6. The invertible matrixM .

3.5 Resistance to Attacks
We provide a sketch of the capacity of this lightweight encryp-

tion scheme to withstand attacks, assuming an honest but curious
adversary, aware of the internal workings of our scheme, who aims
to learn our key from known ciphertexts and potentially known
plaintexts. As our scheme consists of three layers, we separate our
discussion in two parts.

Noise and Scalar Multiplication Layers Leaving the matrix
multiplication part aside, assume an adversary, Alice, who directly
observes noisy vectors before they are multiplied by M . In such
a known ciphertext attack, Alice would only be challenged to sort
out the noisy contents from the value contents of those vectors. She
can use the information that the noisy elements of an encrypted
value vector v and an encrypted breakpoint vector b are orthog-
onal to each other, and make a hypothesis about the positions of
the noisy contents vs. value contents in the observed vectors, i.e.
arbitrarily select 2 positions out of � in those vectors where the
assumed value contents reside. To test this hypothesis, she can ex-
amine whether the assumed noisy subvectors produce consistently
inner product 0 across many different observed {b,v} pairs. If that
is the case, then she can safely conclude that her hypothesis is ver-
ified. The question is how much Alice would have to try in order
to reach a correct hypothesis by exhaustive search. Her hypothe-
sis amounts to selecting 2 out of � vector elements. As there are



(
�
2

)
= �(�−1)

2
= O

(
�2
)
ways of making such a selection, Alice

can arrive at the correct hypothesis in polynomial time. We con-
clude that the noise layer of our scheme is easy to break. This is
why we added the matrix multiplication layer, which we study next.

Matrix Multiplication Layer Once the noisy vectors Alice ob-
serves get multiplied by M , she cannot carry out the above attack.
Now the multiplication matrix M enters the picture, consisting of
�2 unknowns. The unit vector u brings � − 2 more unknowns into
the picture; each encrypted vector v brings �− 3 more unknowns,
as only one out of its �− 2 noisy elements can be derived using the
�− 3 others and orthogonality to u, and the ξ(v) factor, which has
multiplied {v,−1} to produce its noisy contents; each encrypted
vector b brings a λ(b) factor, which multiplies u to produce its
noisy contents. An attack that could still bear fruit is a known plain-
text attack, in case Alice could gain access to pairs of an original
value (either v or b) and its encrypted form (Ev(v) or Eb(b), re-
spectively). For each such pair, she can construct � scalar linear
equations. Eventually, it can be shown that it suffices for Alice

to know N ≥ �2+�−2
�−1

+ 1 = O(�) plaintext-ciphertext pairs of
values b; she can then solve the resulting system of equations for

each of
�(�−1)

2
ways of positioning noisy contents in v and b, and,

again, identify the one that leads to a solution consistently resulting
in orthogonal noisy vector products. We conclude that the security
of our encryption scheme against known plaintext attacks strongly
depends on the chosen ciphertext size �, while our scheme provides
the data owner with the flexibility to choose the value of � at will.

4. INDEXING ENCRYPTED DATA
We now discuss how our server can perform adaptive indexing

over data encrypted by our encryption scheme. Notably, the choice
of � in our scheme determines the dimensions of matrix M , and
incurs a �-fold increase in our storage requirements. We contend
that this storage overhead is an affordable price to pay for the sake
for performing secure adaptive indexing operations.

4.1 The Problem of Leakage by Structure
We have so far emphasized that we eschew an order-preserving

encryption scheme, so that the order of values does not leak to ad-
versaries. Nevertheless, adaptive indexing operations do progres-
sively bring the underlying data column in sorted order. After all,
database cracking can be validly described as an incremental quick-
sort, while another alternative for adaptive indexing [18], adaptive
merging, can be seen as an incremental external merge sort. An
adaptive indexing mechanism, left to its own devices, will tend to
bring the data in sorted order. Given a workloadW such that, for
any pair of values in the column v1, v2, there exists at least one
query bound b ∈ {v1, v2}, adaptive indexing withW will eventu-
ally bring the data in an exact sorted order.

In effect, even though the encryption does not intrinsically betray
the order of values, that order can eventually be observed in the
order records are brought to after enough cracking operations have
been applied. An adversary who can identify a target tuple can
infer its position in the sorted order by observing the structure of
the constructed index tree. The more refined the tree becomes, the
more information it can leak about the order of underlying tuples.

4.2 Deliberately Allowing Errors
To mitigate the problem of leaking order by structure, we allow

for erroneous interpretations of outsourced data, while the server
cannot distinguish which interpretation is valid. Thus, even an ad-
versary (or a server) knowing the internal workings of our scheme
will not be able to make confident inferences about the relative po-
sitions of tuples.

We define two possible ways of interpreting each encrypted data
value, without leaking which one of the two is correct for each
tuple t. The server merely takes actions on both, by maintaining
both possible interpretations of each record whenever needed. Only
one of those versions corresponds to the true record, yet only the
data owner and its trusted clients can make this distinction. From
the point of view of the server, each interpretation is equally likely
to be valid. In other words, the sever is concurrently managing
multiple possible worlds. We configure such multiple realities by
making each Ev(v) vector longer by a value θ, arbitrarily adding
θ as a prefix or as a suffix to it, to obtain Ēv(v); we select θ so
that both the �-prefix and �-suffix of Ēv(v) work consistently as
valid Ev(v) vectors interfacing with Eb(b) vectors: in both, after
multiplying by matrix M , the contents obtained in the positions
reserved for noisy contents in a v vector are orthogonal to u.

To facilitate the following discussion, we introduce a number of
matrices useful so as to formally represent the creation of vectors
and noise addition via linear-algebra operations. These matrices,
and the purposes they serve, are gathered together in Table 1.

Matrix Purpose
Enm expansion matrix: extends vector with n−m zeros
Pnm permutation matrix: shuffles extended value/bound vectors
P c
nm complementary permutation matrix: shuffles noise vector

S shift matrix: cyclically shifts vector elements down

ST symmetric shift matrix: cyclically shifts vector elements up

Table 1: Employed matrices

We calculate the value of θ as follows. We are starting out from
(v;−1)T , the noisy subvector nv ∝ u⊥, and (1; b)T , the noisy
subvector nb = λ(b) · u, where u is the secret unit vector and u⊥

a vector orthogonal to u. Then, for the purposes of our encryption
scheme, we first need to formally describe the expanding of these
vectors into vectors of size �. To that end, we employ two n ×m
expansion matrices that we denote as Enm; such matrices multiply
vectors from left and thereby extend those vectors with n −m ze-

ros. The structure of an Enm matrix can be represented as

(
I
0

)
,

where I is the identity matrix. Then it holds that:

E�2

(
v
−1

)
=

⎛
⎜⎜⎜⎝

v
−1
0
...
0

⎞
⎟⎟⎟⎠ , E�(�−2)nv =

⎛
⎝ nv

...
0

⎞
⎠

As a next step, we need to shuffle the contents of those expanded
vectors so as to bring their contents in the positions predicted by
our scheme. To that end, we employ two n × n permutation ma-
trices that we denote as Pnm and P c

nm; these matrices shuffle the
extended value/bound and noise vectors, respectively, according to
our noise addition scheme; only their first m rows have nonzero

contents, hence it holds that Pnm(Pnm)T =

(
Im 0
0 0

)
; P c

nm

is chosen so that Pnm(P c
nm)T = 0, i.e. Pnm and P c

nm do not
have permutation intersections: the one shuffles a vector’s elements
into positions complementary to those of the other. Last, let ξ(v)
and λ(b) be the “scaling” functions we employ in our encryption
scheme, as defined in Section 3.4. Thus, scaled noisy value and
bound vectors can be represented as:

v = ξ(v)

(
P�2E�2

(
v
−1

)
+ P c

�(�−2)E�(�−2)nv

)



b = P�2E�2

(
1
b

)
+ P c

�(�−2)E�(�−2)λ(b)u

We denote the final encrypted noisy value vector asEv = M−1v,
where M is the encryption matrix. Our error-allowance scheme

creates one of the following two vectors:

(
Ev

θ

)
or

(
θ
Ev

)
.

Without loss of generality, we consider only the first variant. In
this first variant, we need to represent the fake encrypted noisy
value vector Ef

v , i.e., the �-suffix of Ēv(v), which can be consid-
ered as true by an adversary. To this end, we employ an �× � shift
matrix that we denote as S; multiplication by this matrix cycli-
cally shifts vector components down. For example, for n = 3:

S =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ . Symmetrically, its transpose, ST , shifts vec-

tor components up. Thereby:

Ef
v = STEv + (θ −Ev · e1)e�

where ek is a unit vector with all components zero except the kth;
the above equation simply retains the (�− 1)-prefix of Ev , shifted
one position upwards, while it places θ at the �-th position.

We want this Ef
v to have all properties of a real encrypted value

vector. Then, the “noisy” l− 2× 1 subvector of the respective fake
value vector vf = MEf

v must be orthogonal to nb:

nf
v · nb = ET

�(�−2)(P
c
�(�−2))

Tvf · nb = 0⇔
ET

�(�−2)(P
c
�(�−2))

TM
[
STEv + (θ −Ev · e1)e�

]
· u = 0⇔[

ET
v S + (θ −Ev · e1)e

T
�

]
MTP c

�(�−2)E�(�−2) · u = 0⇔

θ = Ev · e1 − ET
v SW · u
eT
� W · u

where W = MTP c
�(�−2)E�(�−2).

Figure 2 shows the form of an encrypted vector Ev , while Fig-
ure 3 shows the encrypted vector Ēv(v), with ambiguity added.
The size of the ambiguity-added vector is one more than original
encrypted vector, hence each original value acquires two represen-
tations in the database: the one represented by the real encrypted
vector, as the �-prefix in the figure, and another represented by the
fake vector, as the �-suffix in the figure. Both are derived from the
ambiguity-added vector as shown in Figure 3.

Figure 2: Encrypted Vector

Figure 3: Encrypted Vector with Ambiguity

Having added this ambiguity about the identity of the real en-
crypted vector, we should render that identity identifiable by the
trusted client. This can be achieved by selecting the (previously
declared random) multiplier ξ(v) in a particular way, e.g., postu-
lating that it be an odd integer. The data owner and trusted client

can then determine the real Ev(v) given Ēv(v) as follows: they
decrypt both the �-prefix and �-suffix of Ēv(v), multiplying each
by matrix M . The one that delivers an odd integer in the position
of ξ(v) is the real one. The fact that only one decryption attempt
delivers an odd integer at that position is verified by the data owner
during encryption.

However, what the client can determine so easily is inaccessi-
ble to the server. Under this arrangement, the server generates and
manages each possible interpretation of Ēv(v) separately; this re-
dundancy provides an obscurity that reduces the confidence of an
adversary’s inferences about the value order. Our end result is sim-
ilar to adding counterfeit records in our database. However, the se-
curity provided by our scheme is higher than that provided by mere
counterfeit insertion. In the case of adding counterfeits, an adver-
sary with sufficient background knowledge may identify a single
record of interest and infer information-leaking observations about
its position in the index. On the other hand, with our scheme, the
position of a record of interest in the index is uncertain even when
that record of interest is identified, since each single record spawns
two possible interpretations; this state of affairs confers additional
security to our construction.

4.3 Managing an Encrypted AVL Tree
Our encryption scheme enables a server to manage a column of

encrypted values, even with ambiguity inserted, and conduct com-
parisons between query bounds and data values. Yet, our system
should also construct an AVL tree; in particular, query bounds,
which correspond to the breakpoints b, are used as key values in
tree nodes and utilized in subsequent tree traversals. During such
a traversal, a new bound value b′ has to be compared to a previous
one, b, now used as key; then, at each node we need to compare
two breakpoints values, b′ and b, to each other.
In order to adapt this tree traversal mechanism to our encrypted

data, the server needs to be able to compare two breakpoint val-
ues, b′ and b, to each other. However, our encryption scheme uses
two different encryption modes, one for breakpoints b, and one for
values v, constructed so as to allow us to compare b to v only, but
not different b and v values to each other. We solve this problem
by having the query-issuing client encrypt a breakpoint b in both
ways, i.e., in its native way, as Eb(b), and as an attribute value,
Ev(b), and pass them on to the server. Subsequently, the former
value is used for inequality checks with attribute values, while the
latter is employed for storing it as a key in the constructed AVL tree
index. When searching the encrypted AVL tree for a new break-
point value b′, the required comparison is conducted by calculating
Eb(b

′) ·Ev(b) = ξ(b) · (b− b′).

Figure 4: Finding a piece in an encrypted AVL Tree

Consider the example encrypted AVL tree in Figure 4. Finding
a piece in this tree utilizes a query bound b encrypted as Eb(b),
and key values in the tree itself encrypted asEv(b); thus, the query
bound and key values interface with each other and allow for con-
ducting comparisons, resulting in the traversal shown in the figure.



Algorithm findpiece(objAVLTree,N ,Eb,posL,posH)
Traverses AVL Tree and returns upper bound (posH) and lower bound (posL)
values of the piece in which query bound vector Eb is located.

1: posL = 0
2: posH = N
3: isFound = true
4: rootNode = objAVLTree.getRoot()
5: if rootNode is not empty then
6: minNode = objAVLTree.findMinNode(root)
7: maxNode = objAVLTree.findMaxNode(root)
8: fNode = objAVLTree.findNode(Eb)
9: if ScalarProduct(Eb,maxNode.key) > 0 then
10: isFound = false

**Case 1**
11: if isFound == false && fNode is not minNode then
12: posL = maxNode.position

**Case 2**
13: else if fNode == minNode then
14: if ScalarProduct(Eb,fNode.key) < 0 then
15: posH = fNode.position
16: else
17: posL = fNode.position
18: fNode = objAVLTree.findSuccessor(fNode)
19: if ScalarProduct(fNode.key,maxNode.key) < 0 then
20: posH = fNode.position

**Case 3**
21: else if ScalarProduct(Eb,fNode.key) < 0 then
22: posH = fNode.position
23: posL = objAVLTree.findPredecessor(fNode).position

**Case 4**
24: else
25: posL = fNode.position
26: fNode = objAVLTree.findSuccessor(fNode)
27: if ScalarProduct(Eb,fNode.key) < 0 then
28: posH = fNode.position

Algorithm findpiece illustrates the finding of the crack po-
sitions for a query bound b; it makes use of largest and smallest
values in the AVL tree in order to determine whether the query
bound is out of the tree’s range; otherwise it obtains the leaf node
fNode by a search operation on the tree based on the given query
bound Eb; overall, it distinguishes the following cases:

• Case 1 holds in case b is greater than the largest value in the
tree; then the largest value in the tree is returned as the lower
bound of the piece range.

• Case 2 holds when the returned fNode is equal to the smallest
value in the tree; then, if the query bound b is greater than that
value, the range from that value to its successor is returned; if
the query bound is smaller, then the smallest value is returned
as the upper bound of the piece range.

• Case 3 holds in case b is less than fNode; then the range
between fNode and its predecessor is returned.

• Case 4 holds when b is greater than fNode; then a range be-
tween fNode and its successor, if such exists, is returned.

In all cases, comparisons are performed via scalar vector prod-
ucts according to our scheme.

Having located a piece where a query bound b belongs, we need
to complete the cracking operation by adding the bound b, repre-
sented by bothEv(b) andEb(b), at a leaf node position in the AVL
tree itself (and possibly rebalance the tree), so as to facilitate fu-
ture searches. Figure 5 presents an AVL-tree traversal along with
the addition of a leaf node for b8 at the last step, after the piece in
which b8 belongs has been cracked in two. Algorithm addCrack
illustrates how this operation is performed; its first three cases ex-
amine the situation where a node for b already exists in the tree; the
fourth case adds a new node.

Figure 5: Adding a node in an encrypted AVL tree

Algorithm addCrack(objAVLTree,N ,Ev ,Eb,pos)
Adds a new node, for query bound b, to the AVL tree indexingN values,
corresponding to position pos in the data array.

1: if pos == 0 or pos ≥ N then return
2: rootNode = objAVLTree.getRoot()
3: isFound = true
5: if rootNode is not empty then
6: minNode = objAVLTree.findMinNode(root)
7: maxNode = objAVLTree.findMaxNode(root)
8: fNode = objAVLTree.findNode(Eb)
9: if ScalarProduct(Eb,maxNode.key) > 0 then
10: isFound = false

**Case1**
11: if isFound == true then
12: if fNode.position== pos then return
12: tmp = fNode
13: if ScalarProduct(tmp.key,Eb) == 0 then
14: tmp = objAVLTree.findSuccessor(tmp)
15: if ScalarProduct(tmp.key,Eb) > 0 then
16: if tmp.position == pos then return

**Case2**
17: if fNode is not minNode then
18: if isFound == false then fNode = maxNode
19: else fNode = objAVLTree.findPredecessor(fNode)
20: if fNode.position == pos then return

**Case3**
21: if isFound == true && ScalarProduct(fNode.key,Eb) == 0 then
22: fNode.setPosition(pos)
23: return

**Case4**
24: objAVLTree.insert(Ev ,pos,Eb)
25: return

5. EXPERIMENTAL RESULTS
In this section we present an experimental analysis, demonstrat-

ing that secure adaptive indexing applying our schemes maintains
all the adaptive properties and performance benefits of adaptive in-
dexing while working over encrypted data. Our implementation
is based on a stand-alone prototype in C++ that precisely imple-
ments the select operator of a modern column-store; it receives a
column of values (fixed-width dense array) as input and returns a
set of positions that mark qualifying values, represented again in a
fixed-width dense array, as output. We keep this interface, common
to all modern column-stores and all adaptive indexing approaches,
intact. Our design affects only data manipulations that avoid data
leakage. As our encryption scheme is based on precision-sensitive
matrix operations, such as matrix inversion, matrix-vector multi-
plication, and vector-vector multiplication, we require high arith-
metic precision; we employ the GNU Multi Precision Arithmetic
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(b) First 30 Queries, Encrypted
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(c) First 30 Queries, Encrypted with Ambiguity
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(d) 50k Queries, Plain
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(e) 50k Queries, Encrypted
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(f) 50k Queries, Encrypted with Ambiguity

Figure 6: Total Cumulative Time for different data sizes and types

Library (GMP)1, a free library for arbitrary precision arithmetic,
which operates on signed integers, rational numbers, and floating-
point numbers, providing fast arithmetic operations for applications
that need higher precision than is directly supported by the basic C
types; GMP uses full words as the basic arithmetic type.

Our infrastructure consists of a 3.5 GHz Intel-Xeon machine
with 12 CPU(s) and 32 GB of memory. In our core experiments,
we run a query sequence that incrementally reorganizes a single
column, and observe performance as the sequence evolves. In or-
der to measure the effect of encryption, we perform such experi-
ments on three types of data: (a) plain data without encryption, (b)
data encrypted by the scheme introduced in Section 3, and (c) data
encrypted along with the provision introducing added ambiguity,
as described in Section 4.2. Moreover, we compare our cracking-
based results against a plain scan of the encrypted numeric data,
evaluating queries using comparisons via scalar products without
any indexing or cracking; we call this approach SecureScan.

In all experiments, we encrypt data with default key size � = 4.
The data are unique integers, drawn uniformly at random from
[0, 231). The default workload is a sequence of 50K random selec-
tion queries with selectivity 1%; such workloads have been shown
to be representatively challenging in terms of index adaptation [20].

1http://gmplib.org/

5.1 Cumulative Cost
We first present results based on the cumulative cost for process-

ing a query workload. Figure 6 depicts our results for increasing
data sizes ranging from 1M to 32M tuples, for Plain Data, En-
crypted Data, and Encrypted Data with Ambiguity, along with the
SecureScan method (based on simply scanning encrypted data with
no ambiguity) in dashed lines; the x-axis in all graphs represents
the query sequences, and the y-axis the cumulative response time
up to query x. The top 3 graphs in Figure 6 focus on the first part
of the workload, i.e., the first 30 queries, while the bottom 3 graphs
show the complete query sequences. We focus separately on the
beginning of a query sequence as this is where most of the heavy
adaptive indexing actions take place, as the pieces being reorga-
nized are much larger at this point [17].

The first row of figures shows that, in the first few queries, cumu-
lative time grows significantly; this effect follows from the nature
of cracking, as in the beginning more data is physically reorga-
nized. On the other hand, in the second row of figures we notice
that, as the workload evolves, for all data types, the cumulative
time almost flattens, a result indicating that progressive physical re-
organization renders query processing increasingly more efficient;
moreover, this result applies irrespectively of data type, with en-
cryption and with ambiguity as well as without. Furthermore, all



figures show that, as the data size grows, the cumulative time in-
creases in a scalable manner.

By comparing the plots across the three columns in Figure 6,
we deduce that the trends observed for plain data are reproduced
for encrypted data, as well as for encrypted data with ambiguity
(which doubles data size). Remarkably, even the case of encryp-
tion with added ambiguity retains the fast convergence benefits of
database cracking and vastly outperforms the SecureScan method
in cumulative time on large query workloads. Besides, we note
that the cumulative time for SecureScan keeps growing even after
50K queries have been processed, while the cumulative time for all
cracking-based methods has flattened by that time.

Figure 7 puts together the cumulative times for the three tested
types of data for different data sizes, as well as SecureScan for
Encrypted Data. The figure shows that plain data require much less
time than encrypted data to be processed; e.g., the cumulative time
for the first 100 queries for the plain data of size 32M is 1.6 seconds,
while the cost of the first query for the encrypted data of size 8M is
28.4 seconds. This is due to the fact that encrypted data necessitate
costly vector-based comparisons and the high-precision arithmetic
to retain correctness, whereas in the case of plain data we merely
compare numbers in integer data type. However, scalability with
encrypted data follows the trends for plain data, while the overall
overhead for the sake of security remains manageable.

Besides, the figures shows that the cumulative time for encrypted
data with ambiguity is double of that for encrypted data of the same
size. This is due to the fact that, in the former case, the data size
doubles, as each real value spawns a fake value in the database.
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Figure 7: Total Cumulative Time Comparisons

5.2 Cost per Operation
As we have discussed, a cracking system invests its time in three

main operations: (a) Cracking (b) Inserting query bounds in the
AVL Tree (c) Searching for query bounds in the AVL Tree. We
measure the time spent for each of these three purposes. Figure 8
shows the breakdown of the cost per operation for plain data. We
observe that the core cracking operation is most expensive for the

Figure 8: Cost per operation per query on Plain Data

initial queries, while it becomes progressively cheaper as the query
workload evolves. In the case of smaller data sizes, as 1M and
2M, the Crack operation eventually becomes cheaper than the In-
sert and Search operations within the lifespan of the 50K workload,
even while those other operations only take a few microseconds.
Yet, overall, the Crack operation is more costly than the Insert and
Search operations.

Figure 9 shows the cost per operation and per query for En-
crypted Data. As in the case of plain data, the Crack operation be-

Figure 9: Cost per operation per query on Encrypted Data



Figure 10: Cost per operation per query on Data with Ambiguity

comes cheaper as the query workload evolves, with response time
decreasing significantly. We also note that the Insert and Search op-
erations become more costly from the initial query onwards, with
their response times increasing from a few microseconds to a few
milliseconds. Moreover, while cracking is more expensive at the
early stages, after about 1000 queries for each data size the cost of
cracking becomes less than 0.2 second.

Next, Figure 10 shows the cost per query for encrypted data with
ambiguous values. All operations’ trends remain the same as for
encrypted data, with some higher peaks for cracking time, espe-
cially in the initial queries. This is due to the fact that physical
reorganization is also done for ambiguous values along with real
values. Thus, cracking becomes more expensive and burdens the
initial queries of the workload. Even so, after about 2000 queries,
response time again becomes approximately equal to 0.2 second.
Besides, the time for cracking fluctuates a bit, as the cost of a crack-
ing operation depends on the issued query’s bounds; if the query
falls on a previously unindexed piece, it requires more physical re-
organization, hence higher response time.

We now focus on the time for cracking per query in particular.
Figure 11 gathers together results for all data types, showing how
cracking time grows as data sizes grow. Once gain, we observe that
different data types present similar and comparable trends, while
the overhead incurred for the sake of encryption and ambiguity,
i.e., for the sake of security, remains manageable and reasonable.

5.3 Effect of Key Size
We now study the effect of our encryption key size on the sys-

tem’s performance. Figure 12 presents the total response time per
query over encrypted data of size 10M, while varying encryption
matrix key size from 4 to 64. This experiment is performed only
for regular encrypted data, so as to examine the effect of key size in
its native setting. The results we obtain show that a change in the
key size bears a significant effect on performance across the query
workload. This effect is felt most intensely with initial queries,
which carry the heaviest burden anyway. However, in all cases, the

Figure 11: Cracking Time per query per data type

response time increases proportionally to the key size change. For
example, the initial response times shown in the figure are 2, 4, 8,
17, and 40 seconds for key sizes of 4, 8, 16, 32, and 64, respectively.
The observed effect is due to the fact that vector comparisons be-
come linearly more expensive with an increase of vector size. Nev-
ertheless, as the cracking process progressively amortizes its cost
while the query workload advances, the effect of encryption key
size becomes negligible; for example, it makes a difference from
a millisecond to 0.01 seconds between key size 4 and 64; we ar-
gue that this is an overhead that can be accepted for the sake of
additional security.

Figure 12: Cracking Time per query for different key sizes for
Encrypted Data of size 10M



5.4 Client-Side Performance
All our experiments have hitherto studied the view from the server,

as the server performs adaptive indexing actions. Yet a question
arises about performance at the client, who receives query results,
decrypts them, and, in the case of ambiguity, identifies and removes
false positives. To address this question, we run a query workload
of 1K random range queries of increasing selectivity from 0.1% up-
wards in geometric progress (0.1%, 0.3%, 0.9%, 2.7%, 8.1%) over
data of size 10M; each group of 200 queries obtains a new selec-
tivity value. Figure 13 shows our results. Figure 13a presents the
false positives rate (FPR) at the client, i.e., the ratio of fake results
over total results delivered to the client per query, while Figure 13b
presents the runtime for decryption and filtering per query, com-
paring the case of Encrypted Data to that of Encrypted Data with
Ambiguity, on a logarithmic time axis. We observe that the FPR
fluctuates around 50%, as expected, and is unaffected by selectiv-
ity; besides, its fluctuation, with a variance of 7.1%, provides an ad-
ditional security feature, as the exact number of returned results is
not revealed and cannot be inferred by an adversary. Furthermore,
we note that the decryption overhead is doubled due to ambiguity,
presenting stability across different queries of the same selectivity,
as well as scalability with increasing selectivity, with each new se-
lectivity group coming one step upwards in the logarithmic time
scale in the case with ambiguity just as in the case without ambi-
guity. Overall, the overhead remains manageable throughout the
workload. We conclude that the client-side impact of our scheme
is predictable and not detrimental to efficiency.

(a) False Positives Rate

(b) Runtime for Decryption and Filtering

Figure 13: Client-Side Performance with increasing Selectivity

5.5 Discussion
In summary, our experimental analysis shows that our secure

adaptive indexing schemes maintain the basic properties of adap-
tive indexing while working over encrypted data; by incrementally
and adaptively focusing on hot data areas without requiring any
initialization effort, they achieve significantly better performance
compared to simply scanning encrypted data.

Naturally, working over encrypted data is more costly than work-
ing over plain data, for two reasons. First, we read and write more
data due to auxiliary data for the sake of encryption and ambigu-

ity. Second, we perform more computations, as comparisons are
performed by vector operations. Even so, our schemes are several
orders of magnitude faster than a secure scan.

An optimization that can be applied on top of our work is the uti-
lization of modern hardware capabilities, such as multi-core CPUs
and SIMD (Single Instruction Multiple Data) instructions. Past
work has shown how to exploit multi-core CPUs for plain crack-
ing, letting each core work on a single subpartition of a column in
parallel and then merging these partitions to create new contiguous
partitions [35]. A similar approach can be used in secure adap-
tive indexing out of the box. On the other hand, past work also
attempted to reap the benefits of SIMD for plain cracking, with in-
conclusive results [35], as it is hard to map cracking comparison
and swap actions to current SIMD instruction sets. On the other
hand, the inner-product operations, on which our scheme relies
(on top of plain cracking) to perform comparisons, are in principle
amenable to SIMD-based vectorization: we multiply size-� vectors;
such vectorization should bring a significant performance boost, in
the best case even absorb the computational cost of security at the
server (assuming � is not larger than modern SIMD vectors). Thus,
secure cracking stands to gain from such optimizations. In our pro-
totype implementation, we have opted for the arithmetic precision
obtained by carrying out linear-algebra operations using the GMP
arithmetic library, which does not inherently support vectorization,
as it does not use primitive data types. In that sense, we have pre-
sented a worst-case scenario for our scheme in this paper. In our
future work, we intend to examine the opportunity for SIMD uti-
lization thoroughly by vectorizing GMP multiplication.

Past work has also speculated that sorting algorithms in highly-
parallel environments could pose serious alternatives to plain crack-
ing as modern CPUs evolve [4]. In that regard, we note that a
highly-parallel sorting algorithm could not pose a legitimate algo-
rithmic alternative to secure cracking, since our encryption scheme
does not allow for sorting by cross-tuple comparisons; as we dis-
cussed, data encrypted by our scheme can be sorted only in a query-
triggered manner, relying on encrypted pivot values provided by the
client; thereby, our scheme reinforces the rationale for cracking.

6. CONCLUSION
This paper presents a novel, lightweight, linear-algebra-based

encryption scheme that allows for (i) range query processing over
encrypted numeric data outsourced in the cloud, and thereby for (ii)
incremental, adaptive indexing whereby only data that are queried
by trusted clients get indexed. Our scheme represents numerical
values as short vectors, and relies on simple linear-algebra oper-
ations for encryption and decryption; it allows neither the actual
data values nor their order to be disclosed. While the structure of
the index may reveal order in the long-term, this only happens after
crucial indexing operations have been performed; furthermore, we
propose an additional obfuscation component in our scheme, which
deliberately introduces ambiguity in our construction by allowing
two variant interpretations of each encrypted value vector. We pro-
pose that our scheme assures the security needed in time-critical
operations such as high-frequency trading and financial transac-
tion processing over the cloud. We designed and implemented a
prototype system that performs basic adaptive indexing operations,
in the form of database cracking, over encrypted numeric data.
Our experimental study demonstrates that our scheme preserves the
graceful adaptation and hands-free self-reorganization advantages
of cracking with a reasonable overhead incurred due to encryption.

In the future, we plan to (i) thoroughly analyze the properties of
our encryption scheme, and (ii) utilize modern hardware capabili-
ties for improved performance in cryptographic operations.
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