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ABSTRACT
The Lattice Histogram is a recently proposed data sum-
marization technique that achieves approximation quality
preferable to that of an optimal plain histogram. Like other
hierarchical synopsis methods, a lattice histogram (LH) aims
to approximate data using a hierarchical structure. Still,
this structure is not defined a priori; it consists an un-
known, not a given, of the problem. Past work has de-
fined the properties that an LH needs to obey and developed
general-purpose approximation algorithms for the construc-
tion thereof. Still, two major issues remain unaddressed:
First, the construction of an optimal LH for a given error
metric is a problem unsolved to date. Second, the proposed
algorithms suffer from too high space and time complexities
that render their application in real-world settings problem-
atic. In this paper, we address both these questions, focusing
on the case that the target error metric is a maximum er-
ror metric. Our algorithms treat both the error-bounded LH
construction problem, in which the space occupied by an LH
is minimized under an error constraint, as well as the clas-
sic space-bounded problem. First, we develop a dynamic-
programming scheme that detects an optimal LH under a
given maximum-error bound. Second, we propose an effi-
cient, practical, greedy algorithm that solves the same prob-
lem with much lower time and space requirements. Then, we
show how both our algorithms can be applied to the classic
space-bounded problem, aiming at minimizing error under
a bound on space. Our experimental study with real-world
data sets shows the effectiveness of our methods compared to
competing summarization techniques. Moreover, our find-
ings show that our greedy heuristic performs almost as well
as the optimal solution in terms of accuracy.

1. INTRODUCTION
Data summarization is the problem of representing a large

data set by a compact synopsis that can be constructed
quickly and is characterized by high accuracy. The need for
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such a representation arises oftentimes in applications such
as distributed stream monitoring [39], approximate query
answering [2, 36, 22, 5], query optimization [32], OLAP/DSS
systems [41], time-series indexing [6], and data mining [31].
An overview of the area is given in [10, 19, 20].

The summarization problem can be formulated in two
variants: in the space-bounded problem, the goal is to min-
imize an approximation error over the summarized data
within a space budget; in the error-bounded problem, the
aim is to minimize the space occupied by a synopsis under a
given error bound. These problems have conventionally been
treated by two major approaches. The former, histogram-
based techniques [18, 21, 38, 37, 23, 22, 36, 11, 16, 14, 40,
12], summarize the data by dividing it into consecutive inter-
vals, or buckets; typically, a bucket is assigned a single rep-
resentative value that approximates the data therein; varia-
tions to this theme aim to optimize the data representation
within a bucket [30, 4, 42]. The latter methods utilize a pre-
defined hierarchical tree structure such as that defined by
the Haar wavelet decomposition [32, 41, 5, 8, 9, 25, 35, 12,
13] or alternatives that follow a similar pattern [39, 26, 24].

The question of combining the advantages of these two
methodologies into a more general structure was posed in
[19, 20] and has recently received focused attention. An at-
tempt to insert features of a hierarchical structure into a
histogram was made in [4], but its scope was constrained to
enhancing individual buckets independently of each other.
The concept of a hierarchical binary histogram was used in
[7], but the hierarchy in this case is a hierarchy of divisions
in the multidimensional space; it is not a hierarchy among
buckets in which a bucket may contain another. Hierar-
chical histograms based on a containment hierarchy were
proposed in [3] and [39]. [3] builds buckets using query feed-
back; hence it does not provide an accuracy guarantee. The
techniques of [39] provide accuracy guarantees, but they are
constrained by a predefined hierarchical tree structure. Most
recently, [28] proposed Lattice Histograms: hierarchical his-
tograms based on an arbitrary, non-predefined, containment
hierarchy. The algorithms proposed by [28] detect a most
suitable hierarchy to employ for lattice histogram (LH) con-
struction. Still, despite this progress, these algorithms suffer
from two major drawbacks: First, they do not construct a
provably optimal LH for a given error or space bound. Sec-
ond, they impose high time and space requirements, limiting
their applicability on practical summarization problems.

Thus, two cardinal research questions emerge: (i) a ques-
tion about the computational feasibility of the optimal-LH
construction; and (ii) the question of efficiency and scal-



ability in LH construction algorithms. In this paper, we
address both these questions and propose solutions to the
ensuing problems. We focus our solutions on the case the
target error function or error bound is expressed by means
of a maximum-error metric; synopses tailored for such met-
rics prove more robust in accurate data reconstruction [8,
9]. First, we show that it is indeed computationally feasi-
ble to construct optimal solutions to both the error-bounded
and space-bounded LH construction problems on maximum-
error metrics. Second, we develop an efficient and scalable
greedy algorithm that constructs LHs in practicable time
and space. In addition, we provide experimental evidence
to the effect that the latter algorithm achieves almost as high
accuracy as the optimal solution, while its performance is far
superior in terms of time and space requirements. Besides,
this algorithm can operate in a data stream context for the
error-bounded LH construction problem.

Outline The remainder of this paper is structured as fol-
lows. Section 2 presents background on Lattice Histograms.
Section 3 introduces our algorithm that optimally solves the
error-bounded LH construction problem with a maximum-
error metric. Section 4 develops our greedy algorithms for
scalable error-bounded LH construction. In Section 5, we ex-
plain how both of these solutions can be utilized for solving
the space-bounded LH construction problem. Experimental
results on real-world data sets are outlined in Section 6. In
Section 7 we discuss our results and in Section 8 we outline
our conclusions.

2. BACKGROUND
Research on summarization and data approximation has

until recently followed two divergent paradigms. An approx-
imate data representation, and the associated pattern dis-
covery in data, could either follow a segmentation-orientated
approach, or a hierarchy-oriented one. In the former case,
there is ample freedom on the choice of non-overlapping seg-
ments or buckets of consecutive data values into which to
partition the underlying data and select a single represen-
tative for each; still, non-local pattern and relationships are
lost. The resulting representation is called a histogram. In
the latter case, a more global view of the data is gained from
the vantage point of a hierarchical data structure. Still, local
interrelationships may be lost in this approach, as the em-
ployed hierarchical structure is predefined and cannot adapt
itself to the data at hand.

Both approaches aim to represent an n-size data vector
D = 〈d0, d1, . . . , dn−1〉 via an approximation D̂ that uses at
most B space units, and achieves as low approximation error
as possible. Such error is measured by an appropriate error
metric. Most popular metrics are instances of a normalized,
weighted Minkowski-norm distance between the original vec-

tor and its approximation, Lwp (D̂,D) =
(∑

i
(wi|d̂i−di|)p

n

) 1
p

,

where d̂i is the approximate reconstructed value for di and
wi an associated weight that signifies the importance of di;
in the case of a relative-error-based metric, wi = 1

|di|
.

Several attempts have been made towards extending and
generalizing the applicability of these approaches. Some
have focused on providing general-purpose algorithmic tech-
niques that are applicable on all of them. Thus, [12] has
offered a generic model for achieving space-efficiency in syn-
opsis construction algorithms; this model is applicable on
several summarization models. Likewise, [29] provided a

general-purpose technique for efficiently constructing syn-
opses optimized for a maximum-error metric, as opposed to
an aggregate one. Works like [23] and [16] have provided
histogram construction algorithms for several error metrics,
going beyond the simple heuristics of [21, 38, 37]. Another
stream of research has attempted to provide hierarchical
summarization algorithms applicable on general error met-
rics [8, 9, 25, 35, 13, 39, 27]. Still, other works have striven
to define histograms in multidimensional spaces, and even
build hierarchies over them at that, allowing overlaps and
containment relationships between buckets [34, 37, 17, 1, 3].
However, each technique in this genre relies on one or more
of the following: (a) heuristics, (b) query feedback, (c) pre-
defined hierarchical patterns and/or grids; thus, they do not
provide reliable approximation error guarantees and do not
aim to discover patterns in an unbiased fashion.

2.1 The Lattice Histogram
The tradeoff between histogram and hierarchical struc-

tures, and the ensuing need for its investigation, were first
noted by Ioannidis [19, 20]. On the one hand, a histogram
is not constrained by restrictions on bucket position or size,
yet it carries an implicit locality assumption. On the other
hand, hierarchical structures are advantaged by their capac-
ity to exploit non-local interrelations and gain in compact-
ness therewith; still, they are constrained by the predefined
character of the hierarchies they utilize. Indeed, as [28] ob-
served, any predefined hierarchy used at the task of summa-
rization imposes an arbitrary constraint on the problem; the
most suitable hierarchical pattern for a given data approxi-
mation task should not be a given of the problem, but rather
an unknown that needs to be discovered as part of the solu-
tion itself. In an attempt to overcome this tradeoff, [28] pro-
posed the Lattice Histogram (LH), a synopsis data structure
that aims to discover and utilize any arbitrary hierarchy in
the data. Benefited from both a freedom in bucket position
and size, as well as a capacity to exploit non-local, hier-
archical interrelations, Lattice Histograms can outperform
other hierarchical index-based as well as histogram-based
techniques in terms of accuracy.
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Figure 1: The LH Structure

An LH structure that can approximately represent a data
vector of n = 8 elements, {d0, . . . , d7}, is shown in Figure

1. This LH structure includes N = n(n+1)
2

= 36 nodes,

{c0, . . . , d35}, arranged in a lattice of n levels. The `th level
(from the top) contains ` nodes, each of them affecting a
range Ri of length n− `+ 1. The index fk of the first node

cfk in level k is fk = k(k−1)
2

. In effect, the level `(i) in which

a node ci resides is `(i) = b 1+
√

8i+1
2
c. The left child of a node

ci at level ` is ci+`; its right child is ci+`+1. An approximated



data item dj stands below node cN−n+j in the last level of
the lattice. In order to construct an LH-based synopsis of a
data vector D using a space budget of B, we need to assign
non-zero values to, i.e. occupy, B LH nodes. One of the
ranges Ri, Rj affected by two occupied nodes ci, cj is al-
lowed to contain the other; however, the two ranges may not
overlap without having a clear containment relationship [28].
For example, if we occupy node c4 in Figure 1, then it is al-
lowed to occupy any of its descendant nodes, as well as nodes
that either fully contain, or are disjoint from, range R4, i.e.,
nodes c0, c1, c2, c28 and c35. The approximation of a data
value di represented by an LH is constructed as the value of
the lowest occupied node affecting di, by means of an inter-
val tree; hence, data reconstruction requires O(logB) time
(as for other summarization techniques [32, 16, 26, 24]). An
optimal LH synopsis of D in space B should achieve the
minimum error ε∗ achievable in B space for the employed
error metric. For example, the LH synopsis of the data
vector D={4,3,5,10,12,11,11,4} that minimizes metrics L1,
L2, and L∞, occupies the nodes c0 =4 and c13 =11; thus,
it approximates the data as D̂ = {4,4,4,11,11,11,11,4} and
achieves errors L1 = 0.5, L2 =

√
.5, and L∞ = 1. This ap-

proximation is better than can be achieved using traditional
summarization methods [28].
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Figure 2: Groups of descendants of an LH node

Plain histograms [21, 23, 16] as well as Compact Hierarchi-
cal Histograms (CHHs) [39] constitute special cases of LHs
[28]. According to the terminology in [28], in Figure 1, c13 is
the nepot of c5 (i.e., common child of its two children), while
nodes c16 and c25 are complementary with respect to node c7
(i.e., their ranges are disjoint and, when combined, form the
range of c7). The descendants of a node are divided into two
groups: linear and nepotic descendants. These groups for a
selected node, as well as an example of a pair of complemen-
tary nodes among the linear descendants, are illustrated in
Figure 2. A node ci in level ` has n − ` pairs of comple-
mentary linear descendants, one pair for each level below.
As [28] has shown, it is redundant to occupy the linear de-
scendants (hence, symmetrically, the linear ancestors) of an
occupied node. Based on this observation, [28] constructed
a dynamic-programming approximation scheme for LH con-
struction.

Still, the introduction of the LH structure was accompa-
nied neither by an algorithm capable to construct an optimal
LH for a given problem, nor by a scalable algorithm suit-
able for efficient LH construction. Only a high-complexity
approximation scheme was provided. Thus, two cardinal
questions on the potential of LH-based data approximation
remain open. In the next sections, we proceed to provide
optimal-quality and heuristic solutions to the LH construc-
tion problem. Table 1 summarizes the notation we employ.

Symbol Meaning
D Summarized data vector
ci Node in Lattice Histogram
cik

L
Left node in kth complementary pair for ci

cik
R

Right node in kth complementary pair for ci

Ri Range of data items affected by node ci
` Level of the lattice
dj Approximated data value
wj Weight associated with dj
Tj Tolerance interval of dj
v Incoming value to ci
z Value assigned to ci
S(i, v) Space required at ci with v
s∗i Minimum value of S(i, v) at ci
s∗
ik
L

Minimum value of S(i, v) at cik
L

s∗
ik
R

Minimum value of S(i, v) at cik
R

ski Minimum space using kth complementary pair
Ii Set of incoming values v yielding s∗i at ci
Lki Set of v yielding s∗

ik
L

at cik
L

Rk
i Set of v yielding s∗

ik
R

at cik
R

Iki Set of v yielding ski with kth pair at ci
ε∗i Best achievable error at ci with s∗i space
ε∗ Best achievable error in a subinterval of Ii

Table 1: Employed notation

3. OPTIMAL LATTICE HISTOGRAM
CONSTRUCTION

We start out our investigation by providing an algorithm
that achieves an optimal solution to the error-bounded LH
construction problem. Later, in Section 5, we will show how
this solution can be applied towards an equally effective so-
lution to the dual, space-bounded problem. We focus on
the problems for maximum error functions, which provide
intuitive deterministic error guarantees for independent ap-
proximate values [8, 9, 25, 35]. A maximum-error bound,
as opposed to an aggregate error bound, has to be individ-
ually satisfied by each approximate value. As we will show,
the computation of an optimal solution is rendered tractable
and elegant thanks to this property. Moreover, we define a
strong version of the problem under consideration as follows:

Problem 1. Given a data vector D and an error bound
ε for a (weighted) maximum-error metric Lw∞, construct an

LH L that produces an approximation D̂ of D, such that

Lw∞
(∥∥∥D−D̂

∥∥∥)≤ε and the number of used LH nodes B∗ in

L is minimized. Moreover, of all B∗-term LH representa-
tions satisfying ε, select one of minimal actual error ε∗≤ε.

This version of the problem is deemed to be named strong
due to the secondary optimization requirement to choose an
error-optimal representation among those that satisfy the
given error bound in the minimum space. To solve this
problem, we need to determine the minimal set of LH nodes
that need to be occupied and the values assigned to them.
Thanks to the fact that the error bound needs to be indi-
vidually satisfied at each approximated data value, we can
break down this problem into a separate subproblem for
each specific LH node. Thus, for each LH node ci, we need
to determine the minimum amount of nodes that need to be
occupied among itself and its descendants. This amount de-
pends on the value v assigned at the lowest occupied ances-
tor of ci; we call v the incoming value at ci; this is assumed
to be 0 at the root of the lattice. Thus, we need to analyze
how this required amount of space depends on v.



3.1 Computation of the Space Function
Let S(i, v) ∈ IN be the minimum number of occupied LH

nodes among ci and its descendants required to satisfy the
given Lw∞-error bound ε with incoming value v to node ci in
level `. We calculate the solution by means of a bottom-up
recursive process that computes the value range of S(i, v) on
each node ci. After S(0, 0) is established, the exact choices
of LH nodes can be traced back for the extraction of the
optimal LH. For any i, S(i, v) is defined for every v ∈ IR
and takes values in IN. Its value range can be delimited by
the following theorem.

Theorem 1. Let s∗i ∈ IN be the minimum value of S(i, v)
on an LH node ci, v ∈ IR. Then, ∀v, S(i, v) ∈ {s∗i , s∗i + 1}.

Proof. Let v̄ be an incoming value to ci with which the
minimum value of S(i, v) is obtained: ∀v, S(i, v) ≥ S(i, v̄) =
s∗i . If node ci were assigned a non-zero value z∗ in the LH
corresponding to S(i, v̄), then this very value z∗ would make
a preferred incoming value to ci, allowing for an equivalent
LH in which node ci would be unoccupied, i.e. S(i, z∗) =
S(i, v̄)− 1; this contradicts our assumption that v̄ achieves
minimum space. Thus, by reductio ad absurdum, it follows
that node ci has to be unoccupied for any incoming value v̄
with which the optimal S(i, v) is achieved. Then, for any
other incoming value v′ ∈ IR to ci, we may simply assign the
value v̄ itself to ci and maintain the same solution as with
incoming value v̄ among the descendants of ci otherwise.
The assignment of v̄ to ci increases the number of occupied
nodes among ci and its descendants by one unit. In conclu-
sion, S(i, v) obtains exactly two values in the whole domain
of IR, hence ∀v ∈ IR, S(i, v) ∈ {s∗i , s∗i + 1}.

According to Theorem 1, we can divide all incoming values
v ∈ IR to a node ci into two groups: (i) the set of values with
which the optimal, minimum space S(i, v) = s∗i is achieved,
and (ii) the rest, for which S(i, v) = s∗i +1. In the following,
we examine how the division of the domain of S(i, v), v ∈ IR
into these two sets and the respective value range {s∗i , s∗i+1}
can be inductively calculated from raw data.

At the bottom LH level, the division of the domain of
S(i, v) is computed from the approximated data values and
the given error bound. A data item dj with an associated er-
ror weight wj defines a tolerance interval, Tj = [dj− ε

wj
, dj+

ε
wj

]; any approximate value d̂j ∈ Tj satisfies the given error

bound ε for dj .
An LH node ci at the next-to-bottom LH level has to

approximate two data items, say left-side item dL and right-
side item dR; these two items define two tolerance intervals,
say TL = [a, b] and TR = [c, d]. We distinguish two cases,
depending on the nature of the intersection of TL and TR. If
TL∩TR 6= ∅, then the minimum value of S(i, v) is 0, achieved
for any v ∈ TL ∩ TR. Then, according to Theorem 1, the
worst-case value of S(i, v) is 1, obtained for v /∈ TL∩TR; this
value can namely be rectified towards the optimal solution
by assigning a single non-zero value to ci. Otherwise, if TL∩
TR = ∅, then the minimum value of S(i, v) is 1; this optimal
case is obtained with any incoming value v ∈ TL ∪ TR; such
incoming values require the assignment of a single non-zero
value in one of the two children nodes of ci in order for
the error bound ε to be satisfied. In this case, according to
Theorem 1, the worst-case value of S(i, v) is 2, required for
incoming values v /∈ TL ∪ TR.

For the sake of illustration and distinction, both cases
of the state of affairs in which S(i, v) = 1 at a next-to-
bottom-level node ci with incoming value v, are depicted
in Figure 3. The left side of the figure depicts the case in
which TL∩TR = ∅, and v ∈ TL∪TR, hence a single non-zero
value assigned to one of the children of ci suffices to satisfy
the error bound ε for both approximated data values. In
the particular depicted case, such a value is assigned to the
right child c2i+1, since the incoming value lies specifically
within the tolerance interval of the left child. On the other
hand, the right side of the figure presents a case in which
the intersection of the two tolerance intervals is not empty,
i.e., TL ∩ TR 6= ∅, yet the incoming value v does not belong
to this intersection, i.e., v /∈ TL ∩ TR. In this case, a single
non-zero value z ∈ TL ∩ TR assigned to ci suffices for data
approximation within the error bound.
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Figure 3: Two cases of S(i, v) = 1 in a next-to-
bottom-level LH node ci.

Putting all our observations together, the value of S(i, v)
at a next-to-bottom-level LH node ci is expressed as:

S(i, v) =


0, TL ∩ TR 6= ∅ ∧ v ∈ TL ∩ TR
1, ∨ TL ∩ TR 6= ∅ ∧ v /∈ TL ∩ TR

TL ∩ TR = ∅ ∧ v ∈ TL ∪ TR
2, TL ∩ TR = ∅ ∧ v /∈ TL ∪ TR

(1)

From Equation 1 we deduce that, in order to fully repre-
sent the division of the domain of S(i, v), v ∈ IR at a next-
to-bottom-level LH node ci, we only need to store the set Ii
such that v ∈ Ii ⇔ S(i, v) = s∗i , where s∗i is the minimum
value of S(i, v) at ci. Thus, if TL∩TR 6= ∅, then Ii = TL∩TR
and s∗i = 0; otherwise, if TL∩TR = ∅, then Ii = TL∪TR and
s∗i = 1. These relations are collectively expressed as follows:

Ii =

{
TL ∩ TR, TL ∩ TR 6= ∅
TL ∪ TR, TL ∩ TR = ∅ (2)

s∗i =

{
0, TL ∩ TR 6= ∅
1, TL ∩ TR = ∅ (3)

In effect, Ii is expressed as a union of at most two distinct
v-value intervals. We can store this union as an ordered se-
ries of intervals. Henceforward, we use the term series of
intervals to distinguish this storage method from a mathe-
matical union. The storage of this series suffices for the full
representation of the value domain of S(i, v); it is namely
inferred that, if v /∈ Ii, then S(i, v) = s∗i + 1.

For a node ci at a subsequent, higher LH level `, we need
to divide the problem among one pair of complementary
linear descendants of ci. The optimal pair to choose itself
depends on the incoming value v. Let cik

L
and cik

R
be the

kth pair of complementary linear descendant nodes of ci, on
which the respective minima of the S(i, v) function are s∗

ik
L

and s∗
ik
R

. Furthermore, let Lki =
⋃l
j=1 L

k
j , Rk

i =
⋃m
j=1R

`
j be

the corresponding subsets of the domain of v ∈ IR (i.e.,
mathematical unions of continuous intervals Lkj and Rki ,



stored as ordered series of intervals) in which these min-
ima of S(i, v) are achieved. Finally, let Iki be the subset
(union of intervals) of the domain of v ∈ IR in which the
minimum-space solution using this kth pair of complemen-
tary linear descendants of ci is achieved, and ski be this
minimum space. Then, the actual form of Iki depends on
whether Lki and Rk

i have a non-empty intersection or not.
That is, if the intersection of Lki and Rk

i is non-empty, then
Iki is this intersection itself. Otherwise, Iki is the union of
Lki and Rk

i , again stored as an ordered series of intervals.
Thus, by analogy to, and extension of, the state of affairs at
the the next-to-bottom LH level, Iki is expressed as follows.

Iki =

{
Lki ∩Rk

i , Lki ∩Rk
i 6= ∅

Lki ∪Rk
i , Lki ∩Rk

i = ∅ (4)

In more detail, in the former case, incoming values v ∈
Lki ∩Rk

i achieve a minimum-space solution under the scope
of both nodes in the kth pair of complementary linear de-
scendants of ci. Thus, such values achieve the minimum
space s∗

ik
L

+ s∗
ik
R

for node ci itself. In the latter case, any

value v ∈ Lki ∪ Rk
i can achieve an optimal-space solution

under the scope of one of the two complementary nodes
(i.e., the node to whose series of intervals it particularly be-
longs), and requires one additional space unit at the other
complementary node. Thus, ski is expressed as follows.

ski =

{
s∗
ik
L

+ s∗
ik
R
, Lki ∩Rk

i 6= ∅
s∗
ik
L

+ s∗
ik
R

+ 1, Lki ∩Rk
i = ∅ (5)

We emphasize that Equations 4 and 5 also cover the next-
to-bottom case, in which there is only a single pair to be
examined. Thus, Eq. 2 and 3 are special cases of Eq. 4 and
5, respectively. These are conceptually the end-cases of the
recursive computation of optimal spaces and the subsets of
value space within such optimal spaces are achieved.

We have now shown how to calculate the optimal space
achieved with a certain pair of complementary linear descen-
dants of ci and determine the subset of the incoming value
domain where it is achieved. Still, in order to derive the
overall solution at ci itself, we need to concatenate the so-
lutions from all linear descendant pairs. Thus, let S(i) = s∗i
be the minimum number of occupied LH nodes among ci
and its descendants required to satisfy the given Lw∞-error
bound ε, i.e., the minimum value of S(i, v), v ∈ IR. Then
S(i) = mink

{
ski
}

. Consequently, our algorithm needs to
search over all values of k, i.e. over all pairs cik

L
, cik

R
of com-

plementary linear descendants of ci, and identify the set L∗
of those pair-values that achieve this optimal-space solution,
L∗ = argmink

{
ski
}

. For each such k ∈ L∗, Iki is established,

and the union of these sets, Ii =
⋃
k∈L∗ Iki is calculated.

This calculation requires k linear merge operations on the
stored ordered series of intervals. The optimal solution S(i)
is achieved for v ∈ Ii. For v /∈ Ii, a solution of S(i)+1 space
can be achieved. Thus, the function S(i, v) is succinctly
expressed as follows.

S(i, v) =

{
S(i), v ∈ Ii

S(i) + 1, v /∈ Ii
(6)

In effect, the fact that Ii is, in the general case, a union
of intervals has been established by induction. We have
namely shown that it is so in the bottom-level and next-to-
bottom-level cases. Then, we have also shown that, if Ij is

expressed as a union of intervals for all linear descendants
cj of a node ci, then Ii is so expressed for ci as well.
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Figure 4: Selection of descendants pair

The example data set and LH in Figure 4 illustrates how
the investigation of all complementary pairs of linear de-
scendants guarantees the detection of the optimal-space so-
lution S(i) and the correct representation of the value range
of S(i, v). Assume we wish to calculate the value range of
S(i, v) at node c3 under the maximum absolute error bound
ε = 1. Then, the examination of all complementary pairs
of linear descendants results in the outcome S(3) = s∗3 = 1.
This optimal space is achieved with an incoming value v ∈
[4, 5] ∪ [6, 7] at c3. With such an incoming value, the prob-
lem at c3 can be divided among the pair of complementary
linear descendants c15 and c18. Thus, the data in R3 can
be approximated using only one occupied node beneath c3,
namely either c15 = 4.5, or c18 = 6.5 (colored in the figure),
depending on whether the actual incoming value belongs to
the subinterval [4, 5] or [6, 7]. Otherwise, with an incoming
value v /∈ [4, 5] ∪ [6, 7] at c3, both of the nodes c15 and c18
must be used, covering the whole of R3. Thus, the assign-
ment of a value at c3 itself is unnecessary. Naturally, when
v /∈ [4, 5] ∪ [6, 7], one of the values assigned at c15 and c18
can be equivalently assigned at c3 itself; still, for the sake of
clarity, we use the assignment at the lowest level. An assign-
ment at c3 itself would be strictly required if the intersection
of the intervals defined for an optimal-space pair of comple-
mentary linear descendants had been non-empty, and the
incoming value did not belong to this intersection. In such
a case, (at least) the two values at the edges of R3, namely 5
and 6 under c28 and c33, would be directly approximated by
the value assigned at c3. Incidentally, it is indeed possible
to approximate both c28 and c33, for example by assigning
the value = 5.5 at c3. However, this option would require
occupying two more nodes, namely c22 = 4 and c24 = 7 (the
three nodes composing this solution are colored in the fig-
ure). In other words, such a solution would be suboptimal.
Thus, the investigation of complementary linear descendant
pairs correctly avoids this option. Had such a solution, us-
ing an assignment at c3, been indeed optimal, then it would
be detected by the algorithm.

We have now elaborated on the computation of the func-
tion of space and its associated value ranges; we proceed to
discuss the particular way these partial solutions are stored
and secondary error optimization is achieved.

3.2 Storage and Error Optimization
As we have discussed, in the general case, Ii is stored as

an ordered series of subintervals, mathematically denoted as
Ii = ∪jIj . Each of these subintervals Ij = [m,M ] arises, in
the general case, from a single, or the intersection of two



or more, tolerance intervals of the form [di − ε
wi
, di + ε

wi
].

In order to facilitate our solution of the strong version of
the problem, we need to store each subinterval [m,M ] along
with some accompanying track-keeping information. This
information includes:

1. In the case of maximum absolute error, the data items
dm, dM that have defined the subinterval’s limits m,
M ; that is, the minimum and maximum value among
the data approximated by ci, whose tolerance intervals
intersection has produced [m,M ]. In the general case
of a weighted maximum-error metric this information
should include the full set of data items that define
the error function in the subinterval, as the analysis in
[16, 15] specifies. These are the items such that their
approximation error for some representative value(s)
v ∈ [m,M ] is not exceeded by that of any other item,
hence they define the maximum error for those v (see
the thorough analysis in [15] for details).

2. The optimal value v∗ ∈ [m,M ] that minimizes the
target error metric. In the general case, for a weighted
maximum-error metric (and the special case of maxi-
mum relative error), v∗ is calculated according to the
analysis in [16, 15]. In the case of the maximum abso-

lute error, v∗ = dm+dM
2

.

3. The optimal error value ε∗ that can be achieved by
using a value v ∈ [m,M ]. This optimal error is not
always simply the error achieved with v∗; it is so only
in the base case at the bottom level. Thereafter, when
the subinterval [m,M ] participates in a union Lki ∪Rk

i

for a pair of complementary linear descendants, then
the best achievable error at the other complementary
node needs to be taken into consideration at the com-
putation of ε∗. Thus, when we have to construct Iki
as a union, Iki = Lki ∪Rk

i , if the previously computed
optimal error ε∗ for a subinterval [m,M ] = Lkj ∈ Lki
is lower than the best achievable error ε∗

ik
R

among all

subintervals in Rk
i , then we attribute this ε∗

ik
R

as ε∗

value for [m,M ] as a member of Iki ; otherwise, we
maintain the previously computed value of ε∗. The
same point also holds vice-versa, reversing the roles of
Lki and Rk

i in the preceding statement. We have to
do so, in order to ensure that the left member of the
pair will take into consideration what error is incurred
at the right pair, and vice-versa. This necessity arises
from the fact that the two nodes in the pair forming
a union are independent of each other as far as data
approximation is concerned. On the other hand, such
an issue does not arise in the case we need to construct
Iki as an intersection, Iki = Lki ∩Rk

i 6= ∅. However, a
related matter appears in this case also: The inherited,
previously computed, optimal error ε∗ for each subin-
terval in Lki and Rk

i needs to be taken into considera-
tion. Such an inherited error may be derived from the
computation of Lki or Rk

i as a union itself. Thus, in
this case, ε∗ is computed as the maximum among three
errors: the errors inherited from the two intersecting
subintervals that form [m,M ], and the error achieved
with v∗ in [m,M ] itself. The latter is calculated ac-
cording to the thorough analysis in [16, 15]. In the

case of maximum absolute error, it is
∣∣∣ dm−dM

2

∣∣∣.

4. The value k denoting the kth pair of complementary
linear descendants of ci from which the subinterval
[m,M ] in Ii =

⋃
k∈L∗ Iki itself arises. This value is

necessary for backtracking the choices in order to con-
struct the derived optimal Lattice Histrogram at the
end of the computation.

We now elaborate on the computation of Ii by merging
k series of subintervals, Ii =

⋃
k∈L∗ Iki . Several subintervals

encountered in this merge operation may overlap, as each of
them is arising from a different pair of complementary linear
descendants. Still, their error properties may differ. Thus,
in such a case, the subinterval of lower optimal achievable er-
ror subsumes its peer subinterval in their domain where they
overlap. Still, the higher-error subinterval remains valid in
the non-overlapping region. In effect, Ii is eventually ex-
pressed in a more elaborate fashion than a simple series of
disjoint intervals. It may namely contain contiguous inter-
vals, each of them holding different ε∗ and k attributes. We
emphasize that the data items dm, dM , defining the limits
m, M of an interval truncated due to such overlap, and these
limits themselves, remain unchanged for the purposes of cal-
culating v∗ and ε∗.This observation is crucial for ensuring
correct error and value calculations in subsequent steps. We
re-iterate that this discussion pertains to the solution for
the strong version of the problem only. A simpler version
of the problem, in which we would not require that the er-
ror achieved within the optimal space be minimized itself,
would not necessitate such an elaborate computation.
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Figure 5: Calculation Example

Figure 5 provides an illustration on how partial infor-
mation is kept with the computed subintervals, how these
subintervals are merged along several pairs of complemen-
tary linear descendants, and how the computed information
is inherited at higher levels of the lattice. We wish to com-
pute an error-bounded LH for the top node in the figure
under the maximum absolute error bound ε = 2. For the
sake of clarity, the computations for nodes at the bottom
level are not shown in the figure. At this level, the three
approximated data values, 6, 9, 13, generate the tolerance
intervals [4, 8], [7, 11], and [11, 15] respectively, each with op-
timal achievable error ε∗ = 0 and preferred incoming value
v∗ the data value itself. At subsequent levels, each subinter-
val in a series is depicted along with its associated optimal
value v∗ as superscript and achievable error ε∗ as subscript;
the optimal achieved space s∗ is also shown for each node.
Thus, the left node in level 2 accepts incoming values within
the non-empty intersection [7, 8] = [4, 8] ∩ [7, 11] of the tol-
erance intervals in its two children and achieves minimal
space s∗ = 0. The optimal value in [7, 8] is v∗ = 9+6

2
= 7.5,

while the achieved error is ε∗ = 9−6
2

= 1.5. Similarly, the
right node in level 2 accepts the single incoming value 11,
the single element in the intersection [7, 11] ∩ [11, 13] of the



two relevant tolerance intervals, and achieves s∗ = 0 with
v∗ = 13+9

2
= 11 and ε∗ = 13−9

2
= 2.

The top node c0 in the figure needs to compute the solu-
tion for each of two pairs of complementary linear descen-
dants, and merge them. For the first pair (k = 1), we need
to check whether [7, 8] and [11, 15] intersect. Since they
do not, we generate the union [7, 8] ∪ [11, 15] and compute
the optimal space s10 = 1 for this pair. In this union, the
subinterval [11, 15] is assigned the new optimal error value
ε∗ = 1.5, i.e., the best possible error effected by its com-
plementary node in the union. This is due to the fact that,
even if we assume a convenient incoming value v ∈ [11, 15]
at the top, we still have to consider the big picture on both
sides. Similarly, for the second pair of complementary linear
descendants (k = 2), we establish that [4, 8] and [11, 11] do
not intersect either. Thus, we build the union [4, 8]∪ [11, 11]
and compute s20 = 1. Again, in this union, the subinterval
[4, 8] assumes the new optimal error value ε∗ = 2, since this
is the best value at its complementary node in the union.

We observe that both pairs of complementary linear de-
scendants have achieved equal space, hence s∗0 = 1. In effect,
we now proceed to properly merge the series of intervals for
these two pairs. This operation encounters a double over-
lap among them. Subinterval [7, 8] for the first pair over-
laps with [4, 8] for the second, while [11, 15] overlaps with
[11, 11] too. Thus, the subinterval of best error should pre-
vail in each case. Since the achievable error for [7, 8] is 1.5,
which is less than the ε∗ = 2 for subinterval [4, 8], the lat-
ter is truncated to [4, 7). Still, it maintains the same value
v∗ = 6, as well as the value k = 2, denoting the pair it has
arisen from. This is followed by subinterval [7, 8]. Then,
in the overlap between [11, 15] and [11, 11], the subinterval
[11, 15] with ε = 1.5 prevails and completely subsumes its
peer. In conclusion, we obtain the series of intervals de-
picted at the top of Figure 5. The calculation proceeds in a
similar fashion at subsequent nodes and levels.

3.3 Construction
Eventually, the minimum-space result is calculated as the

value of S(0, 0). The minimum error that can be achieved
with a Lattice Histogram of that space is also calculated
thanks to the performed track-keeping outlined in Section
3.2; hence the secondary error optimization is achieved. How-
ever, apart from deriving the optimal space and error result,
we need to actually construct the Lattice Histogram that
achieves these optimal results. In order to retrieve this op-
timal LH, we have to trace through the choices made at
each node after the solution at the top is established. The
construction commences with the root node and assumes
incoming value v = 0. Thereafter, whenever the incoming
value we end up with for a node ci is space-suboptimal, we
have to assign a value v∗i , that achieves a minimal error ε∗i
compared to all options at ci. This value v∗i is selected as
the optimal value v∗ for a subinterval in Ii that achieves
the optimal error ε∗i . If Ii at the examined node ci is ex-
pressed as a single interval, then we can deduce that this
has been derived from an intersection of subsets among a
pair of complementary linear descendants. In this case, if
v /∈ Ii, then we definitely have to assign v∗i at ci itself. In
effect, we achieve the solution of S(i) + 1 space at ci. Oth-
erwise, if v ∈ Ii, then we can simply proceed to the selected
pair of complementary linear descendants for the interval to
which v belongs. On the other hand, if Ii is expressed as

a series of more than one subintervals
⋃
j Ij , then we can

deduce that this has been derived from a union of disjoint
subintervals. Then, for v /∈ Ii, we can achieve the S(i) + 1
solution by simply proceeding to the selected pair of com-
plementary linear descendants with which the optimal space
is achieved. Appropriate values are then assigned to the de-
scendants themselves, as required. In all cases, we proceed
the LH construction with the appropriate pair of linear de-
scendants of ci.

3.4 Complexity Analysis
The space required to store the set (ordered series of in-

tervals) Ii representing the optimal-space domain of S(i, v)
for a node ci grows with the LH level in which ci resides. In
a next-to-bottom-level node ci, two distinct value intervals
need to be stored in the worst case, one for each approxi-
mated data value. In general, in the worst case, a node ci at
level k, counting from the bottom, achieves optimal space
in a union of as many intervals as the data items under its
scope, i.e. k intervals. Therefore, O(k) space is required
in order to store Ii in the worst case. However, in practice
this space is significantly pruned, in a data-driven fashion.
Whenever an intersection of the series of intervals at a two
complementary nodes is achieved, only those subintervals
that participate in this intersection survive for computations
at subsequent levels. Problems with a large number of in-
tersecting intervals are more interesting, since it is exactly
such intersections that exploit the hierarchical potential of
the LH structure. Thus, the more interesting a data sum-
marization problem is, the more pruning it also achieves in
the LH computation.

Nevertheless, the intersection of L`i and R`
i has to be

checked, and their union or intersection computed, for each
of the k − 1 pairs of complementary linear descendants of
ci. The series of intervals are always maintained in sorted
order, hence these union/intersect operations are performed
in O(k) time. Thus, O(k2) processing time is required for
each node in level k. The are n−k+1 nodes in level k, hence
the total time complexity is O

(∑n
k=1 k

2(n− k)
)

= O
(
n4
)
.

Similarly, the space is O
(∑n

k=1 k(n− k)
)

= O
(
n3
)
. We ex-

pect the runtime to be closer to cubic in practice, thanks to
the pruning achieved whenever series of intervals intersect.

4. GREEDY LATTICE HISTOGRAM
CONSTRUCTION

The algorithm of Section 3 achieves optimal quality for
any given maximum-error metric. Still, its time- and space-
complexity is impracticable for very large data sets. There-
fore, in this section, we develop a scalable, greedy algorithm,
that constructs an error-bounded LH, given any weighted
maximum-error metric and an associated error bound ε.

Our algorithm only needs to perform a linear scan of the
data, in a streaming fashion. During this scan, it tries to
build an LH that satisfies the given error bound with as few
LH nodes as possible. In order to achieve this purpose, in
includes a retrospective as well as a forward-looking oper-
ation. In the forward-looking step, the algorithm extends
the right boundary of the running kth LH bucket bk as long
as the error bound is satisfiable in bk, i.e. there exists a
representative value v with which an Lw∞ error ≤ ε can be
achieved for bk. In order to determine this satisfiability we
maintain the running set of such values. An encountered



data item di with associated weight wi defines, as in Section
3.1, a tolerance interval Ii = [di − ε

wi
, di + ε

wi
]; values in

this interval can satisfy ε for di. The algorithm maintains
the intersection Ik of such intervals for bk along the scan.
When the tolerance interval Ii of the last read data item
di has null intersection with the current Ik for the running
bucket bk, then a new bucket boundary is introduced before
item di.

At this point the retrospective step of the algorithm takes
over. The algorithm looks back to previously created LH
buckets bj , j < k, that are not hierarchically contained by
other already created buckets. To facilitate this operation, a
lattice skyline, i.e., an ordered list of such hierarchically non-
contained LH buckets, is maintained. The nearest bucket b`
such that Ii has a non-empty intersection with I`, if such
exists, is assigned data item di. If no such bucket b` is found,
then di forms the first item in a new bucket bk+1. Other-
wise, bucket b` is shifted to a higher hierarchical level in the
lattice, and is henceforward extended further in the forward-
looking mode. The choice of the nearest bucket b` that can
accommodate di is sound, since it greedily minimizes the
number of interloping buckets, between b` and di, that are
becoming hierarchically contained, hence can not be used in
subsequent steps.

[ 4 3 5 ] [ 9 10 11 ] [ 6[  4   3   5  ]   [ 9   10   11  ]  [ 6 …
Figure 6: Greedy shift operation

Figure 6 illustrates the shift operation performed by the
greedy algorithm. Assume we are working with a maxi-
mum absolute error bound ε = 2. Then, the three first
items 4, 3, 5 in the figure can be included in the same bucket
b1, as the intersection of their tolerance intervals is I1 =
[2, 6] ∩ [1, 5] ∩ [3, 7] = [3, 5]. Still, the fourth item, d4 = 9,
defines the tolerance interval I4 = [7, 11] that has null in-
tersection with I1 = [3, 5]. Hence, the extension of the first
bucket ends there. There are no previously created buckets
to be searched in the retrospective step, hence the forward-
looking operation resumes with the second bucket b2. This
can include the next three items 9, 10, 11 that collectively
define the tolerance interval I2 = [9, 11]. Still, b2 comes to
an end when the seventh item, d7 = 6, is encountered, as its
tolerance interval I7 = [4, 8] does not intersect with [9, 11].
Still, now the retrospective step succeeds, as [4, 8] intersects
with I1 = [3, 5]. Thus, b1 is now shifted to a higher hier-
archical level, assumes the position of a containing bucket
of b2, and incorporates d7. Thus, subsequent retrospective
steps will only see b1 and miss b2. For the maximum abso-
lute error, the optimal value to be assigned at a bucket bk is
vk = Mk+mk

2
, and the error achieved with it is εk = Mk−mk

2
,

where mk (Mk) is the minimum (maximum) value in bk. In
the general case of a weighted maximum-error metric, vk and
εk are calculated according to the analysis in [16, 15].

In the worst case, this GreedyLH algorithm needs to look
back at all previously created buckets for each newly cre-
ated bucket bk. Thus, if B is the eventual number of buck-
ets created, or a known upper bound for this number, then
GreedyLH requires O(n+ B2) time and O(n) space. Figure
7 illustrates the operation of GreedyLH.

Algorithm GreedyLH(ε, B)
Input: error bound ε, n-data vector [d0, . . . , dn−1]
Output: LH of no more than B buckets that satisfies ε
1. f = 0; i = 0; j = 1; c = j; Ij = IR;
2. while (i < n) ∧ (j ≤ B)
3. read di;
4. compute Ii;
5. if (Ic = Ii ∩ Ic 6= ∅)
8. include di in bucket bc;
5. else
7. if ∃` : (Ii∩I` 6=∅) // b` is nearest fit noncontained bucket
8. include di in bucket b`;
7. c = `; // start extending b`

5. else
7. j = j + 1; c = j; // resume counter
7. start new bucket bj with di; Ij = Ii

9. i := i+ 1;
11. if (i < n) return failed;
12. else return created LH;

Figure 7: Greedy LH construction algorithm

5. SOLVING THE SPACE-BOUNDED LH
CONSTRUCTION PROBLEM

We have now introduced two algorithms for the error-
bounded LH construction problem. Still, we are most inter-
ested in solving the reverse, space-bounded problem.

Problem 2. Given a data vector D and a space bound B,
construct an LH L using no more than B nodes, producing
an approximation D̂ of D, so that the (weighted) maximum-

error metric Lw∞
(∥∥∥D− D̂

∥∥∥) is as low as possible.

5.1 Testing Error-Optimality
Our approach to this problem is to apply our algorithms

for its error-bounded counterpart in a binary search mode.
Still, we need some elaboration in order to guarantee the
soundness and convergence of our method. Thus, we intro-
duce the following lemma, which defines an error-optimality
test for the LHs returned by both our error-bounded LH
construction algorithms. That is, it defines the conditions
under which the actual Lw∞-error ε̄, achieved by the LH
returned by the employed algorithm with error bound ε,
is the lowest error that the employed algorithm could sat-
isfy within the same amount of space B∗ (or even other,
higher values). Hence, for the optimal error-bounded LH
algorithm, this test provides a guarantee that the secondary
error-optimization problem has been effectively solved.

Lemma 1. Let L be the B̄-bucket Lattice Histogram of D
for the Lw∞-error bound ε returned by an algorithm for the
error-bounded problem, and ε̄ ≤ ε be the actual Lw∞-error of
L. Let L̃ be the B̃-bucket Lattice Histogram of D returned
by the same algorithm running in a different mode, under
the constraint Lw∞,r < ε̄. That is, for both our algorithms,
all computed intervals are open instead of closed; thus, error
values less than but not equal to the new bound ε̄ are allowed.
Then, ε̄ is the minimum Lw∞-error that the given algorithm
can satisfy for D using any number of LH buckets in and
only in {B̄, . . . , B̃ − 1}.



Proof. By definition, the algorithm needs at least B̃
space in order to achieve any error bound less than ε̄. Thus,
if B̃ > B̄ then any LH of D with Lw∞-error less than ε̄ re-
quires more than B̄ buckets. Thus, ε̄ is the best error the
algorithm can satisfy using B̄ LH buckets, and indeed any
number of LH buckets in the non-empty set {B̄, . . . , B̃− 1}.
Besides, ε ≥ ε̄ requires at least B̄ LH buckets; thus, space
less than B̄ can only satisfy errors higher than ε̄. Likewise,
space more than B̃ − 1 can satisfy errors lower then ε̄.

5.2 Main Methodology
We now describe our methodology for the space-bounded

LH construction problem under any weighted maximum-
error metric, based on Lemma 1.

The starting point of our scheme is the observation that
the required space is monotonically non-increasing as the
Lw∞ -error bound grows. Thus, a binary search process over
the domain of error bound ε leads to the lowest error an
error-bounded LH construction algorithm can satisfy for a
given space budget B. This monotonicity holds with the
optimal LH construction algorithm; it is also generally true
with the greedy algorithm, except for pathological cases, in
which a larger error bound may allow for greedy shift oper-
ations that spoil subsequent steps. Still, the binary search
can still apply in such cases, and result in a local minimum
of error in the worst case.

Algorithm IndirectLH(B)
Input: space bound B, n-data vector [d0, . . . , dn−1]
Output: Lw

∞-error optimal histogram partitioning H
1. εu = Lw

∞-error of equi-width B-histogram;
2. el = 0; eh = εu;
3. while not finished
4. em = (eh + el)/2;
5. B̄ = ErrorboundedLH(em);
6. ε̄ = actual Lw

∞-error of returned LH; // ε̄ ≤ ε
7. if (B̄ ≤ B)

8. B̃ = ErrorboundedLH(< ε̄); // optimality test

9. if (B̃ > B)
10. finished := 1; // found best error
11. else eh = ε̄;
12. else if (B̄ > B) el = em

13. return LH;

Figure 8: Indirect space-bounded LH construction

The operation of the general IndirectLH procedure is shown
in Figure 8. The required seed value of the error bound
ε is obtained by measuring the Lw∞-error of an equiwidth
B-bucket histogram of D; this error constitutes an upper
bound for the Lw∞-error achieved using B LH nodes with
both our error-bounded LH algorithms. Besides, IndirectLH
performs an optimality test whenever the tested error bound
value ε requires exactly B or less LH nodes to be satisfied.
When such an optimality test indicates that any error bound
ε less than the already achieved ε̄ would require more than
B LH nodes, the search can safely terminate. Thus, the con-
vergence of the search is reassured. In fact, as OptimalLH
achieves secondary optimization of error, the optimality test
is redundant with it when OptimalLH requires exactly B LH
nodes in order to satisfy the tested error bound - in this case
the optimal error in B units has already been achieved.

The complexity effect of this binary search operation is
an O(log ε∗) factor in time. The gist of this analysis has
appeared in [35, 29, 27]. In effect, the time complexity of our
algorithm for space-bounded LH construction is O(n4 log ε∗)
with OptimalLH, and O

(
(n+B2) log ε∗

)
with GreedyLH.

Coupled with our OptimalLH algorithm, IndirectLH results

into an LH of the minimum Lw∞-error ε∗ that can be achieved
in the space budget B, hence achieves the optimal solution to
the space-bounded Lattice Histogram construction problem
for any maximum-error metric. In conclusion, this result
overcomes the difficulty of this problem observed in [28].

Having an algorithm for the space-bounded problem un-
der any maximum-error-based metric, we can customize it
to work for general error metrics as a heuristic. We first
let the algorithm build an LH for a native maximum-error-
based metric most closely related to the general error metric
at hand. Then, after the B occupied nodes are established,
we alter their assigned values so as to render them optimal
for the error metric at hand in the data subset they affect.
In Section 6 we include a comparison of this general-error
extension of our algorithms against conventional techniques.

5.3 Ascertaining Convergence
We emphasize that IndirectLH shall always converge to the

optimal error result, even if that error is a recurring number.
Namely, even if it has to calculate that error by means of the
binary-search calculations, it still approximates that result
with as much decimal precision as the machine allows. The
same limitation holds for any exact algorithm.

Furthermore, the convergence of IndirectLH coupled with
OptimalLH is not brought about by means of the binary
search computations per se. It is achieved even more rigor-
ously, by means of the secondary error optimization. Thus,
the binary search terminates when it reaches an error bound
ε that necessitates the same space budget as the optimal er-
ror within the given space budget B, i.e., either B itself,
or a budget B̄ < B that achieves the same optimal error
as B. In effect, any error bound within an appropriate
interval is sufficient for termination. Let f : IR+ → IN
be the non-increasing function that returns the least space
B = f(ε) ∈ IN required to satisfy the error bound ε ∈ IR+;
f defines the concept of the error interval of B, i.e., the do-
main of error values that can be satisfied in B but no less
space: [εBmin, ε

<B
min), where εBmin is the minimum error that

can be achieved using B LH nodes and ε<Bmin is the mini-
mum error achievable in less than B LH nodes. Thus, B is
the minimum budget of LH nodes required to achieve error
bound ε if and only if ε ∈ [εBmin, ε

<B
min). A B value has a null

error interval if the optimal error achieved with B can also
be achieved in less than B space. We now prove the conver-
gence of IndirectLH coupled with OptimalLH more robustly,
without reference to the precision of the machine it runs on.

Theorem 2. IndirectLH converges to the optimal error in

O
(

log E
rB∗

)
iterations, where E is the seed error bound of

the binary search, B∗ ≤ B be the minimum space in which
the same minimum error ε∗ as in the given space budget
B can be achieved in a given summarization problem, and
rB∗ = ε<B

∗

min − εB
∗

min is the size of the error interval of B∗.

Proof. As soon as the binary search reaches a value of
the error bound ε in the error interval of B∗, the actual min-
imum error ε∗ in space B∗ is calculated, and the optimality
test is positive. In effect, the binary search does not need
proceed to higher precision; thus, IndirectLH converges to

the optimal error result in O
(

log E
rB∗

)
iterations.

Conclusively, IndirectLH would still converge to the opti-
mal error result even on an ideal machine that allowed for
infinite decimal-point (or binary-point) precision.



6. EXPERIMENTAL EVALUATION
We are primarily interested to assess our greedy algorithm

in terms of accuracy. We possess an ideal accuracy bench-
mark, provided by the OptimalLattice algorithm. Further-
more, we included other popular data summarization tech-
niques in our comparison, as follows:

• Plain Histogram The optimal histogram algorithms
of [23, 16]. These provide an upper bound to the qual-
ity of approximate histograms [21, 38, 37, 11, 14, 40].

• CHH The winning greedy heuristic for a Compact
Hierarchical Histogram [39]. This technique initially
computes an overlapping partitioning in the fixed bi-
nary hierarchy defined by a CHH. In such an overlap-
ping partitioning, the value assigned on a CHH node
is the optimal value for the complete data interval un-
der that node’s scope, regardless of the data set the
node eventually approximates. Then, it modifies the
values assigned to the selected nodes so as to better
approximate the data they actually affect. The CHH
is a special case of a Lattice Histogram.

• Haar+ The synopsis construction model based on
the Haar+ tree [26]. This model supersedes previous
wavelet-based techniques [9, 13]. Besides, the CHH
can also be seen as a special case of a Haar+ tree.

• Optimal Lattice Our algorithm for Optimal LH con-
struction described in Sections 3 and 5.

• Greedy Lattice Our Greedy algorithm for LH con-
struction, as in Sections 4 and 5.

In order to extend the scope of our comparison, we have
applied our algorithms not only to maximum-error-based
metrics for which they are designed, but also for other, gen-
eral metrics, as described in Section 5.2. All algorithms
were implemented using the g++ 4.1.2 compiler. The ex-
periments were run on a 2 CPU Xeon 2.8GHz machine with
2.5GB of main memory running Centos 5.2.

Description of Data For our quality assessment, we
have used two real-world data sets characterized by hard
to approximate bursts and discontinuities, and another real
data set with more pronounced continuity features. In order
to enable binary-interval-based techniques such as Haar+

and CHH to perform smoothly, we have used binary data
sizes. Our first data set1 (FR) is discussed in [33]; it contains
a sequence of the mean monthly flows of the Fraser River
at Hope, B.C. The flows present periodic autoregression fea-
tures, while they average at 2709 with standard deviation
2123 and feature discontinuities (min value: 482, max value:
10800). We have used a 512-value prefix of this data set.
Our second data set2 (FC) is extracted from a relation of
581,012 tuples describing the forest cover type for 30 x 30
meter cells, obtained from US Forest Service. FC contains
the frequencies of the distinct values of attribute Aspect in
the relation. The frequencies average at 1613 (standard de-
viation: 730) and feature spikes of large values (min value:
499, max value: 6308). We have used a 256-value prefix of
FC. The third data set (DJIA) hails from the Dow-Jones

1Available at http://lib.stat.cmu.edu/datasets/fraser-river
2Available at http://kdd.ics.uci.edu/

Industrial Average (DJIA) data set3; it contains closing val-
ues of the Dow-Jones Industrial Average index from 1900 to
1993. Negative values were removed. We used a 512-value
subset of closing values from April 14th, 1948 to February
8th, 1950. The closing values average at 182 (standard de-
viation: 8.73) and exhibit both continuities and hierarchi-
cal patterns (min value: 161.6, max value: 205.03). Even
though the GreedyLattice algorithm can run on very large
data sets, we focus on data sizes for which the OptimalLattice
algorithm can run smoothly, facilitating our comparison.

6.1 Synopsis Accuracy on Bursty Data
We first examine how several techniques perform on data

containing spikes and discontinuities.
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Figure 9: Quality: FR, L∞
In our first experiment we evaluate the accuracy achieved

with the L∞ metric on the the FR data set. Figure 9 shows
the results we obtained. The Haar+ technique summarizes
data using a resolution parameter δ. This parameter has
been set at δ = 50. Smaller values did not confer any signif-
icant quality benefit. The OptimalLattice achieves observ-
ably the highest quality. Moreover, remarkably, the more
efficient GreedyLattice technique follows the accuracy per-
formance of OptimalLattice from a very close distance, and
also outperforms all other contenders. Haar+ achieves the
best quality among these other techniques.
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Figure 10: Quality: FC, L∞
Our second experiment (Figure 10) examines the state of

affairs with the FC data set. The resolution of Haar+ was
set at δ = 10. The picture is pretty much the same, while
Haar+ performs slightly better in this case. Still, both our
LH algorithms achieve consistently higher accuracy, while
GreedyLattice is again approaching at a close distance from
OptimalLattice. This observation further verifies the claim
that our greedy algorithm achieves near-optimal quality.

Next, we examine the accuracy on the contrasting L1 met-
ric with the the same data sets and resolution settings. Now
both LH algorithms operate as heuristics, as described in
Section 5.2. Figure 11 shows the FR results. Despite the

3Available at http://lib.stat.cmu.edu/datasets/djdc0093



fact that none of our LH heuristics confers any guarantee of
optimality in this case, they both achieve mostly the highest
accuracy in this case as well. Moreover, the Greedy-based
heuristic is closely following the results of the Optimal-based
one in this setting too. A weakness of performance appears
only for small values of space budget B. This weakness is
natural, and arises from the fact that a small space bud-
get, while well disposed for a given maximum-error metric,
may not occupy LH nodes suitable for a metric of different
characteristics. Still, this effect is attenuated as the space
budget grows. Among the other contenders, Haar+ again
performs best.
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Figure 12 shows the results with the FC data set. In this
case, the Optimal-based algorithm again outperforms other
contenders, even though being a heuristic. This result is due
to the inherent advantages of the Lattice Histograms. Still,
even though the Greedy-based heuristic follows the same
trend as the Optimal-based one, it does not perform as well
compared to Haar+ in this case. Again, this result is due to
the fact that good choices for a maximum-error metric are
not always as good for a different metric.
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6.2 Synopsis Accuracy on Smooth Data
We now turn our attention to the accuracy on smoother

data, which do not present as sharp discontinuous features.
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Figure 13: Quality: DJIA, L∞

Figure 13 shows the results on the DJIA set with the max-
imum absolute error metric. The resolution value for Haar+

is now set at δ=0.5. Again, the Lattice algorithm achieves
the highest quality. More interestingly, in this case the best
performer among the other techniques is not the Haar+ any
more; now the plain histogram does better. Still, despite this
change of affairs among the other techniques, the Lattice al-
gorithms remain unchallenged, while the Greedy method al-
most matches the optimal Lattice Histogram quality again.
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Last, the results for DJIA with L1 are in Figure 14. The
relationship among techniques is again the same. Now the
difference between the Lattice-based heuristics and the other
techniques is less pronounced, but holds. Thus, even the fast
greedy LH heuristic matches the O(n2B logn) L1-optimal
plain histogram algorithm. The Greedy-based algorithm
again follows the Optimal-based heuristic closely.

6.3 Runtime Comparison
We now extend our comparison to a runtime assessment.

For this purpose we constructed data sets of various sizes by
randomly drawing values from FR. We varied the synopsis
budget B linearly with the data set size n, as B = n

8
. Fig-

ure 15 shows the results. As expected, the runtime difference
between the OptimalLattice and GreedyLattice is paramount,
while other methods fall in between. Thus, GreedyLattice
emerges as a genuinely practical algorithm, possessing ad-
vantages of both efficiency and quality.
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7. DISCUSSION
A remarkable finding of our results is that the relatively

simple greedy algorithm can construct Lattice Histograms
of near-optimal quality, outperforming other summarization
techniques in both quality and efficiency. The accuracy it
achieves generally follows the optimal accuracy at a close dis-
tance, with rare exceptions. However, the runtime difference
between the two LH algorithms is much more significant,
with the optimal-accuracy algorithm running in near-cubic
time while the greedy runs in near-linear time. Moreover,



the accuracy results are consistent across data posing di-
verse requirements, with different second-best contenders in
each case, and are maintained even when our algorithms are
deployed as heuristics for a non-maximum-error metric.

8. CONCLUSIONS
A Lattice Histogram approximates data by discovering hi-

erarchical associations without the constraint of a predefined
hierarchy. This paper has provided two divergent, yet re-
lated, contributions in the domain of LH construction algo-
rithms. First, we have addressed the question of optimality
in LH construction, by proposing a low-polynomial-time dy-
namic programming scheme that calculates a minimal-space
LH under any maximum-error-based error bound, while sec-
ondarily optimizing the actual error in this minimal space.
Furthermore, we have shown that the same scheme robustly
achieves a minimal-error solution to the space-bounded LH
construction problem. Secondly, we have also treated the is-
sue of scalability, by providing an efficient near-linear greedy
algorithm for the same problems. Our experimental investi-
gation has verified the effectiveness of these LH methods at
achieving high-accuracy data approximations compared to
conventional techniques. More significantly, we have found
that the greedy algorithm consistently provides near-optimal
accuracy, even though it is much less computationally de-
manding than the algorithm that guarantees optimality.
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