
Revisiting the Theory and Practice of Database Cracking
Fatemeh Zardbani

Aarhus University

Peyman Afshani

Aarhus University

Panagiotis Karras

Aarhus University

ABSTRACT
Database cracking (DBC) provides an adaptive data storage envi-

ronment that meets the needs of modern applications in business

and science, reorganizing data on demand and adapting indexes

on the fly, automatically, and collaterally to query processing. De-

spite intensive research on cracking and other adaptive indexing

variants, their theoretical side has scarcely been investigated. Yet,

quite surprisingly, as we show, an antecedent of database crack-

ing in a pure, no-frills form had been developed in the theory

community 24 years ahead of its time by the name of deferred data
structuring (DDS). While lacking system implementations, DDS

corresponds to what we would call, by the terminology used

in the database community, materialization-based data-driven
center cracking for point lookup queries, as well as a stochastic

variant thereof. Further, DDS has gone beyond regular cracking

proposals by suggesting a policy that reorganizes index ranges

along the median of a sample set, i.e., a mediocre element.

In this paper, we reanalyze state-of-the-art database cracking

algorithmswith the benefit of hindsight provided by deferred data

structuring, and propose new alternatives that use a mediocre

element as cracking pivot instead of a random or a median one.

In a thorough experimental study, we determine that a logarith-

mic or linear sample size yields best performance on a standard

benchmark across the board of cracking algorithms.

1 INTRODUCTION
Database Cracking (DBC) [1–3] addresses the needs of dy-

namic environments where workload knowledge and idle time

are scarce, queries follow an exploratory path, and new data ar-

rive continuously [1]; as a form of adaptive indexing [6], it paves

the way to self-organizing database management systems, es-

chewing the need for human administration in physical database

design. Cracking builds and refines index data structures for a

column-oriented database incrementally, in response to queries

and arriving data, without a need for human intervention; its

core operation, applied within the select operator, reorganizes a

column into pieces [5], handles updates [4] and invites security

features [8]. A stochastic alternative [1] improves performance

by refraining from blindly following queries; it also creates ran-
dom cracks on its own, and thereby avoids the deterioration of

performance that skewed workloads may cause.

Surprisingly, while database cracking has been studied over

the last decade, an antecedent thereof had been investigated from

a theory perspective two decades in advance by the name of De-
ferred Data Structuring (DDS) [7]. Specifically, DDS suggested
that, instead of processing a data set in advance, we may instead

process it while responding to queries. Traditionally, to answer

the query “is integer x in list ℓ?”, we would scan ℓ in O(n). If
the number of queries is high, it pays off to sort O(n logn) in a

pre-processing step and then perform binary search in O(logn)
for each query. By DDS, we create a data structure that represents

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

the list while processing queries, achieving better performance

in all cases. While DDS was proposed for lookup queries on a

static data set only, we will argue that its main logic uncannily

resembles that of database cracking.

In this paper, we observe the resemblance between DBC and

DDS and bring both concepts under the same roof. We conduct a

thorough theoretical study of state-of-the-art DBC algorithms

under the light of DDS methods. We implement existing DDS and

DBC proposals and propose new intermediary, mediocre-based

solutions, that inherit both the theoretical elegance of DDS and

the practical applicability of DBC.

2 RELATEDWORK
We discuss related works in two fields: database cracking and

defferred data structuring.

2.1 Database Cracking
Database Cracking [2, 3] reorganizes and indexes columns in

an adaptive manner triggered by user queries, within the SELECT
operator. In the general case, a query requests all values within a

range, [low,hiдh]; when responding to that query, the a cracking

system finds one or more pieces of the current index where the
requested data resides, reorganizes (i.e., cracks) the column so as

to bring the result values between query bounds low and high in

a contiguous space, and updates the index accordingly. Figure 1a

provides an example.

(a) Reorganizing a column. (b) Cracking algorithms at work.

Figure 1: Database cracking illustration [1].

Stochastic Cracking [1] maintains performance when faced

with pathological workloads; in addition to cracking using query

bounds as pivots, it creates additional cracks while traversing

the index towards query bounds. Figure 1b indicates how several

stochastic cracking algorithms work. We discuss the six main

alternatives: DDC, DDR, DD1C, DD1R, MDD1R, and PMDD1R.

The Data-Driven Center (DDC) algorithm divides (i.e., cracks)

each value range it encounters while traversing the index along

the middle (i.e., median) of its value domain recursively, as in an

ideal case of pivot selection by quicksort. This recursive split-

ting process terminates when pieces become smaller than a size

threshold. Thereafter, DDC cracks on query bounds as usual.

Algorithm 1 illustrates the process. On the other hand, the Data-
Driven Random (DDR) algorithm avoids the median-finding over-

head: it uses a random element instead of the median as pivot

when cracking each value range in Line 6 of Algorithm 1.

Both DDC and DDR incur an overhead on the first few queries,

as they recursively introduce many cracks on the way to query

bounds. Two lightweight alternatives,DD1C andDD1R, eschew
the recursion, i.e., crack only once at a median or random pivot,

respectively, in addition to cracking at query bounds, by turning

the while loop in Line 5 of Algorithm 1 to an if statement.

ALGORITHM 1: DDC [1]

Result: Cracks at center of each relevant piece and bounds

1 int DDCCrack(C:array, v:value)
2 Find the piece Piece that contains value v;
3 pLow = Piece .firstPosition();
4 pHiдh = Piece .lastPosition();
5 while (pHiдh − pLow > CRACK-THRESHOLD)
6 pMiddle = (pHiдh + pLow)/2;
7 Introduce crack at pMiddle ;
8 if (v < C[pMiddle])
9 pHiдh = pMiddle
10 else
11 pLow = pMiddle
12 posit ion = crack(C[pLow, pHiдh], v);
13 return posit ion;

/* Main Body : DDC */

/* Crack array C on bounds a and b */

14 posit ionLow = DDCCrack(C, a);
15 posit ionLow = DDCCrack(C, b);
16 result = createView(C, posit ionLow, posit ionHiдh);

Still, the hitherto presented algorithms create cracks at each

query’s bounds, which may hurt performance without bringing

a benefit in the long run. MDD1R, a variation of DD1R, dispels

the cracking at query bounds as well, and simply materializes
query results while creating exactly one random crack per query.

Algorithm 2 shows the corresponding pseudocode.

ALGORITHM 2: MDD1R [1]

Result: Cracks at a random point in one relevant piece and bounds

1 array split-and-materialize(Piece, a, b)
2 L = Piece .firstPosition;
3 R = Piece .lastPosition;
4 r esult = newArray;

5 X = C[L + rand ()%(R − L + 1)];
6 while (L ≤ R)
7 while (L ≤ Q andC[L] < X)
8 if (a ≤ C[L] andC[L] < b)
9 r esult .Add (C[L])
10 L = L + 1;
11 while (L ≤ R andC[R] ≥ X)
12 if (a ≤ C[R] andC[R] < b)
13 r esult .Add (C[L])
14 R = R − 1;
15 if (L < R)
16 swap(C[L], C[R])
17 Add crack on X at position L;
18 return r esult ;

/* Main Body: MDD1R */

/* Crack array C on bound a, b */

19 Find the piece P1 that contains value a;
20 Find the piece P2 that contains value b ;
21 if (P1 == P2)
22 r esult = split-and-materialize(P1, a, b)
23 else
24 r es1 = split-and-materialize(P1, a, b);
25 r es2 = split-and-materialize(P2, a, b);
26 view = createView(C, P1.lastPosit ion + 1, P2.f ir stPosit ion − 1);
27 r esult = concat(r es1, view, r es2);

In more detail, the algorithm first finds the pieces where the

two bounds are. If they are in the same piece, it partitions that

piece with respect to a random pivot, while collecting the query

results in an array. Should they be in different pieces, it partitions

the pieces where each bound belongs and then concatenates

the query results, as well as all pieces in between to produce

the response to the query. Note that MDD1R maintains a data-

driven character: even though not cracking at query bounds, it

introduces random cracks in the pieces where those bounds are.

Even with MDD1R, the initial queries of a workload need

to reorganize almost all the the data. PMDD1R is a progressive
instantiation of MDD1R that takes the incremental nature of

cracking one step further. MDD1R performs a reorganization

task on a given piece in smaller units, performed with each query

touching that piece. A percentage p determines how much of the

pending reorganisation task is done with each relevant query,

while materializing and returning the query result.

2.2 Deferred Data Structuring
Deferred Data Structures [7] are tree-like structures built in
response to queries. Their objective and rationale resembles data-

base cracking, even though they were introduced two decades

earlier with a focused theoretical intent and no accompanying

system implementation. Consider a list ℓ = {x1,x2,x3, . . . ,xn }
and existence queries thereupon, q = {q1,q2,q3, . . . ,qr }. A con-

ventional approach would sort the list and answer each query by

binary search. DDS performs sorting through query answering:

it answers each query in O(n) time, and partition the list as well

while doing so. Algorithm 3 illustrates DDS. By the terms of

Section 2.1, Algorithm 3 corresponds to a DDC variant of data-

base cracking specialized on point lookup queries, without a size

threshold: it cracks recursively on the median, like DDC does, and

reports the existence or absence of the lookup query value; were

there a size threshold, it would correspond to anMDDC variant,

yet without such a thresholdMDDC degenerates to DDC.

ALGORITHM 3: DDS via recursive median finding [7]

Result: Create a tree structure representation of list l while responding to queries

1 boolean SEARCH(v:node, q:query)
2 if(v is not labeled)
3 EXPAND(v);
4 if(label(v) == q)
5 return true;

6 if(v is a leaf node)
7 return false;

8 if(q < label(v))
9 return SEARCH (lef t_child (v), q);
10 if(q > label(v))
11 return SEARCH (r iдht_child (v), q);
12 void EXPAND(v:node)
13 S ← set (v);
14 m ← MEDIAN − F IND(S);
15 label (v) ←m;

16 if(∥S ∥ == 1)

17 return ;

18 Sl ← [x | x in S and x < m];
19 Sr ← [x | x in S and x > m];
20 set (lef t_child (v)) ← Sl ;
21 set (r iдht_child (v)) ← Sr ;

/* Main Body */

22 initialize the tree TX with the n data keys at the root;

23 Get a query q;
24 Result← SEARCH (root, q);
25 Output the result;

26 Goto Line 23;

Further, DDS [7] comes along with a randomized proposal,

which replaces the exactmedian-finding operationwith amediocre
function, i.e., the median of small sampled set of values, whose

computed rank passes a sanity test, instead of the whole set, as Al-

gorithm 4 shows; this choice improves the cost per query while it

still creates a well-balanced tree structure in the long term. Once

again, the rationale is reminiscent of what we would callMDDR
in database cracking terms. In particular, a randomized DDS

where the size of the sampled set is one element corresponds to

anMDDR cracking algorithm specialized on point lookup queries

and without a size threshold.

ALGORITHM 4: Mediocre finding function [7]

Result: Finds mediocre of set T
1 int mediocreFind(T:set of values)
2 t ← size(T);
3 Pick a random of sample S of size 2 ∗ ⌈t 5/6 ⌉ + 1 from T;

4 m ← MEDIAN − F IND(S);
5 Compute rank(m) by comparing with each element of T − S ;
6 If rank(m) is not in the range (t/2) ± t 2/3 ;
7 returnm;

3 THEORETICAL ANALYSIS
Here, we analyze state-of-the-art database cracking algorithms

by the tools of deferred data structuring, assuming a cracking

size threshold of zero and point lookup queries. We also propose,

study, and build upon an alternative stochastic cracking algo-

rithm, DDM, which uses a mediocre element as cracking pivot,

as in Algorithm 4, instead of a random one, as DDR algorithms

do, or a median one, as DDC algorithms do.

Theorem 3.1. DDC: The number of operations needed to process
r queries on a list of n points is no more than λ(n, r):

λ(n, r) =

{
3n log r + r logn, if r ≤ n

(3n + r) logn, if r > n

Proof. In case r ≤ n, at any level of the tree, at most r nodes
are expanded. For the top log r levels, the total cost is less than
3n log r , since all nodes have to be expanded. The creation of a

crack includes finding the median, which requires 3|set(node)|.
The cost of node expansion at level i of the tree for i > log r ,
is O(rn/2i), since the expansion of a node at this level costs at

most 3n/2i . Summing over all but the first log r levels, we get
an O(n) cost, which is dominated by 3n log r . Searching for each

query costs O(logn), since the tree is balanced, hence the r logn
term. When r > n, expansion will complete the tree, with a cost

of 3n logn, while search follows the same principles. □

Theorem 3.2. DDR: The number of operations needed to process
r queries on a list of n points is no more than λ(n, r):

λ(n, r) = n2 + rn

and is expected to be no more than λ(n, r) operations:

λ(n, r) =

{
1.39n log r + r logn, if r ≤ n

(1.39n + r) logn, if r > n

Proof. As there is no guarantee that the created tree will be

balanced, in the worst case, the random numbers chosen to create

cracks yield a completely unbalanced tree. A query may cause

the entire tree to be created in O(n2). Due to the lack of balance,

search can take up to n operations, producing the rn term. In

the average case, we expect performance similar to quicksort [9],

with 1.39 in place of 3 in Theorem 3.1. □

Theorem 3.3. DDM: The number of operations needed for pro-
cessing r queries in a list of n points is no more than λ(n, r):

λ(n, r) =

{
(1 + α)(n log r + r logn), if r ≤ n

(1 + α)(n + r) logn, if r > n

with probability greater than 1− log r
βn , where α ≪ 1 and β depends

on the value of α .

Proof sketch. The proof follows from [7]. The height of the

tree created only differs from logn by a constant, so the search

operations are r logn. Then, the probability of the first sample

chosen rendering a median that passes the test is higher than

(1− 1

4 |set (node) |), which leads to the conclusion that the total cost

of testing for mediocrity is at most (1+α)n log r with probability

higher than 1 −
log r
k2n , where α and k are small constants, and

β depends on α . The total cost of finding the medians for the

first log r levels isO(n
5

6 r
1

6) with probability higher than 1−
log r
βn ,

from which the complexity for r ≤ n follows. If r > n the tree

will be complete with some extra costs, as in the DDR case. □

Theorem 3.4. DD1C: The number of operations needed to pro-
cess r queries in a list of n points is no more than λ(n, r):

λ(n, r) =

{
14n + r logn, if r ≤ n

(3n + r) logn, if r > n

Proof. As the first query, q1 is made to a list of length n, the
median should be found in 3n. Then, one of the two crack pieces

is chosen and another crack is made, with regards to the query.

The process of partitioning takes at most
n
2
comparisons. For

the second query, up to two comparisons are made based on

the crack created in the first query, to choose a chunk of size at

most n/2, find its median, and crack one of the resulting pieces,

yielding
3n
2
+ n

4
. Following the same pattern until the r th query,

we get a cost of:

i=r∑
i=1

3n

2
i−1 +

i=r∑
i=1

n

2
i = 7n

i=r∑
i=1

1

2
i < 14n

while the search component costs r logn. When the number of

queries reaches n, the tree will be complete, and the cost is as in

the proof of Theorem 3.1. □

Theorem 3.5. DD1R :The number of operations needed to pro-
cess r queries in a list of n points is no more than λ(n, r):

λ(n, r) =

{
3rn + r , if r ≤ n

n2 + rn, if r > n

and is expected to be no more than λ(n, r) operations:

λ(n, r) =

{
7.56n + r logn, if r ≤ n

(1.39n + r) logn, if r > n

Proof. In the worst case in terms of random pivot choices, for

query q1 we pick a random point and partition based on it, in at

most n operations. The pieces may be of size 1 and n − 1. One of
those two is partitioned based on the query in n − 1 comparisons.

The second query will partition a piece of size as large as n−2 for
the random crack and one as large as n − 3 for the query bound,

and so on, in [n − 2(i − 1)] + [n − (2i − 1)] operations for the ith

query. Going all the way to qr , we have

i=2r−1∑
i=0
(n − i) = 2rn − 2r2 + r

operations for expansion and rn operations for search. Should the

number of queries exceed n, the tree is completed, hence n2 op-
erations. In the expected case, the tree resembles a balanced tree

and results follow Theorem 3.4, with the quicksort complexity

factor 1.39n replacing 3n in calculations, as in Theorem 3.2. □

Theorem 3.6. DD1M: The number of operations needed to pro-
cess r queries in a list of n points is no more than λ(n, r):

λ(n, r) =

{
(1 + α)(n log r + r logn), if r ≤ n

(1 + α)(n + r) logn, if r > n

with probability greater than 1 −
log r
βn .

Proof. By Lemma 3 in [7], with high probability we only need

to compute a median over a sample once, as the first attempt

passes the mediocrity test. For the first r queries, we compute

the medians of nodes that will overall lead toO(n
5

6 r
1

6) (Lemma 5

in [7]). The cost testing for mediocrity at level i , denoted by ci ,
is proven to be less than (1 + α)n log r . After cracking at the

0 10 20 30 40

23

24

25

26

27

Sample size

t
o
t
a
l
r
u
n
t
i
m
e
,
a
v
e
r
a
g
e
o
f
1
1
0
(
s
e
c
)

DDMs

DDR

logarithmic

linear

exponential

fitted binomial

(a) Recursive crack

0 10 20 30 40

36

38

40

Sample size

t
o
t
a
l
r
u
n
t
i
m
e
,
a
v
e
r
a
g
e
o
f
1
1
0
(
s
e
c
)

MDD1Ms

MDD1R

logarithmic

linear

exponential

fitted binomial

(b) Crack with materialization

0 10 20 30 40

40

45

50

Sample size

t
o
t
a
l
r
u
n
t
i
m
e
,
a
v
e
r
a
g
e
o
f
1
1
0
(
s
e
c
)

PMDD1Ms

PMDD1R

logarithmic

linear

exponential

fitted binomial

(c) Progressive materialization

DDM DD1M MDD1M PMDD1M

30

40

Cracking variant

t
o
t
a
l
r
u
n
t
i
m
e
,
a
v
e
r
a
g
e
o
f
1
1
0
(
s
e
c
)

constant logarithmic

linear exponential

(d) All variants, constantm = 21

Figure 2: Total runtime, 160K queries; linear:m = size
1000

, logarithmic:m = loд(size), exponential:m = size
5

6 .

mediocre, we scan the list to find the query point and create

another crack there, in at most si (Lemma 1 in [7]), yielding:

n
5

6 r
1

6 +

i=r∑
i=1

ci + 1.5si+1 ≤

n
5

6 r
1

6 + (1 + α)n log r + 2n(1 − (0.5)r) + 20n
2

3

1 − 2
2r
3

1 − 2
2

3

The cost of search remains similar to that of DDM. □

Overall, materialization-based algorithms have similar com-

plexities as their default counterparts due to their common bases.

4 EXPERIMENTAL STUDY
We assess the performance of mediocre-based variants database

cracking algorithms [1] inspired from our study of deferred data

structures [7]. We conduct experiments on a Ubuntu Linux server

release 18.04 machine with a 10-core 3.1GHz Intel E5-2687W

processor and 377GB of RAM. All methods are implemented in

C++ upon the code
1
of [1]; our code is also available

2
online.

We use the 4TB SkyServer
3
data and workload [1], derived from

an astronomy project mapping the universe. We filter selection

predicates from 160K chronologically ordered queries using the

right ascension attribute of the Photoobjall table, which contains

500 million tuples. Query patterns are complex, as users tend to

focus in a specific area of the sky before moving on.

4.1 Compared Algorithms
We compare the state-of-the-art stochastic cracking algorithms

presented in Section 2, namelyDDR, DD1R,MDD1R, and PMDD1R

with p = 0.1 and CRACK_THRESHOLD = 128 to their median-

based counterparts and to counterparts that use a mediocre

cracking pivot, i.e., the median of a random sample set of a

cracked piece, rather than a median or random one: DDM, DD1M,

MDD1M, and PMDD1M, respectively.

The median-based counterparts of DDR, DD1R and MDD1R

are DDC, DD1C and MDD1C respectively; we included those

three in our study, but they proved to be too expensive. We

do not include a median-based counterpart of PMDD1R, since

median-finding operations are hard to render progressive. The

mediocre-based policy is reduced to the median-based one form
equal to piece size, and to the randomized one form = 1.

4.2 Results
We apply each algorithm on the same 160K-query workload and

measure the total runtime, juxtaposing mediocre-based variants

to their randomized and median-based counterparts, where such

1
https://github.com/felix-halim/scrack

2
https://gitlab.com/fatemeh.zardbani/adaptive-indexing

3
http://cas.sdss.org/

exist. Figure 2 shows the results when varying the sample set

sizem from 1 to 41, and as a linear, logarithmic, or exponential

function of piece size, with the mediocre-based policy, averaging

over 110 runs and foregoing the mediocrity check [7]. The case

of single crack without materialization is very similar to that of

single crack with materialization in Figure 2b, hence we omit a

separate figure for that case.

In the case of a constant sample size, the cost of calculating the

median of a small sample set is initially a worthwhile price to pay

for the benefits it brings, yet the cost to benefit ratio deteriorates

asm grows; binomial fit curves visualize the trends in Figure 2a,

2b, and 2c. However, cases where sample size is a simple function

of piece size achieve the best performance in all variants. The

logarithmic function is the best performer with recursive and

simple crack with and without materialization. In the variant

with progressive materialization, a linear function, m = size
1000

,

performs best.

5 CONCLUSION
We revisited the theory and practice of database cracking, which
has been intensively studied in practice, yet scantily examined in

theory. We provided the first thorough study of the complexity

of the all state-of-the-art stochastic cracking algorithms, drawing

from an overlooked 32-year-old study that introduced analogous

concepts under the name of deferred data structuring. Inspired
from deferred data structuring, we introduced a refined stochastic

cracking policy that uses a sample-based mediocre pivot, rather
than an arbitrary random ormedian one, for data-driven cracking.

We showed that variants of state-of-the-art stochastic cracking al-

gorithms using the mediocre-based policy have lower complexity

than their median-based and randomized counterparts with high

probability, and demonstrated experimentally that they stand out

in terms of cumulative time efficiency.

REFERENCES
[1] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap. 2012.

Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-

memory Column-stores. PVLDB 5, 6 (2012), 502–513.

[2] Stratos Idreos. 2010. Database Cracking: Towards Auto-tuning Database Kernels.
Ph.D. Dissertation. CWI.

[3] Stratos Idreos, Martin L. Kersten, and StefanManegold. 2007. Database cracking.

In CIDR. 68–78.
[4] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Updating a

cracked database. In SIGMOD. 413–424.
[5] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2009. Self-organizing

tuple reconstruction in column stores. In SIGMOD. 297–308.
[6] Stratos Idreos, StefanManegold, Harumi Kuno, andGoetz Graefe. 2011. Merging

What’s Cracked, CrackingWhat’s Merged: Adaptive Indexing in Main-Memory

Column-Stores. PVLDB 4, 9 (2011), 585–597.

[7] Richard M. Karp, Rajeev Motwani, and Prabhakar Raghavan. 1988. Deferred

Data Structuring. SIAM J. Comput. 17, 5 (1988), 883–902.
[8] Panagiotis Karras, Artyom Nikitin, Muhammad Saad, Rudrika Bhatt, Denis An-

tyukhov, and Stratos Idreos. 2016. Adaptive Indexing over Encrypted Numeric

Data. In SIGMOD. 171–183.
[9] Kurt Mehlhorn and Peter Sanders. 2008. Algorithms and Data Structures: The

Basic Toolbox. Springer, Berlin.

https://github.com/felix-halim/scrack
https://gitlab.com/fatemeh.zardbani/adaptive-indexing
http://cas.sdss.org/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Database Cracking
	2.2 Deferred Data Structuring

	3 Theoretical Analysis
	4 Experimental Study
	4.1 Compared Algorithms
	4.2 Results

	5 Conclusion
	References

