
Revisiting Multidimensional Adaptive Indexing∗

Anders Hammershøj Jensen
Aarhus University

Frederik Aarup Lauridsen
Aarhus University

Fatemeh Zardbani
Aarhus University

Stratos Idreos
Harvard University

Panagiotis Karras
Aarhus University

ABSTRACT
Modern applications require managing large data in main mem-
ory. Adaptive indexing allows for building an index incremen-
tally in response to queries, rather than upfront; in its default
form, it treats each attribute independently. However, several
data exploration tasks involve multidimensional range queries.
Two recent proposals, CKD and QUASII, address the need for
multidimensional (especially spatial) adaptive indexing. Both
adaptively build an augmented KD-Tree. Still, no previous work
has compared these two methods to each other. We conduct the
first experimental comparison of CKD and QUASII. Further, we
propose a lightweight variant of CKD, the Lazy CKD, which per-
forms data-driven along with query-driven actions for the sake
of robustness, and a set of hybrid strategies that combine good
convergence and low initialization cost. Our study on synthetic
and real data and workloads shows that the enhanced variants
of CKD have an advantage in terms of speed of convergence, yet
QUASII may eventually achieve lower response times.

1 INTRODUCTION
Scientists and analysts need to query and explore large amounts
of data in dynamic environments where new data arrive contin-
uously, without building a full index in advance. This need calls
for self-organizing DBMSs that eschew human administration.
Adaptive indexing [8], such as database cracking [4, 6], accommo-
dates this need by building and refining a main-memory index
incrementally, in response to queries and arriving data. Cracking
is applied within the select operator in a column-oriented data-
base [7, 10]. A stochastic alternative [4] creates random cracks so
as to perform robustly on skewed workloads.

Despite the intense interest in adaptive indexing, suchmethods
for multidimensional data have been examined scantily. Recently,
two solutions appeared: the QUery-Aware Spatial Incremental
Index [12] (QUASII) and the Cracking KD-Tree (CKD) [5] (CKD).
Both incrementally build an augmented KD-tree [1]; both con-
clude that their query response times converges to that of static
approaches after processing a sufficient amount of queries; how-
ever, no comparison among these two works has been attempted.

In this paper, we conduct the first comparison of these two
approaches [5, 12]; we also propose a lightweight CKD variant,
the Lazy CKD (LCKD), incorporate stochastic cracking [4] strate-
gies to improve robustness, and propose hybrid strategies that
combine desirable traits of different solutions. We evaluate all
methods on both synthetic and real datasets and workloads.

∗The two first authors contributed equally to this work.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

2 1D ADAPTIVE INDEXING
Cracking [6] progressively partitions and sorts a column by
quicksort while answering range queries. A partition containing
one or both query range bounds is further split, or cracked, up
to a minimum size. A partition containing the entire interval is
split into three. Cracking directly into three partitions is possi-
ble [6], yet cracking into two partitions twice instead yields better
results [13]. Listing 1 presents the basic cracking algorithm.

Listing 1: Crack in two [6].
1 def crack_in_two(pivot 𝑝 , value 𝑙𝑜𝑤, value ℎ𝑖𝑔ℎ):
2 𝑥1 ← point at position 𝑙𝑜𝑤
3 𝑥2 ← point at position ℎ𝑖𝑔ℎ
4 while (position (𝑥1) < position((𝑥2)):
5 if (value (𝑥1) < 𝑝):
6 𝑥1 ← point at next position
7 else :
8 while (value (𝑥2) ≥ 𝑝 &&
9 position (𝑥2) > position(𝑥1)):
10 𝑥2 ← point at previous position
11 exchange(𝑥1 , 𝑥2)
12 𝑥1 ← point at next position
13 𝑥2 ← point at previous position

Stochastic Cracking [4] adds data driven cracking actions
to standard query driven ones, which may perform poorly on
skewed workloads. The Data Driven Center (DDC) algorithm
cracks the partition where a query bound lies at the median recur-
sively, until obtaining a sufficiently small partition, whereupon
it cracks at the query bound. Data Driven Random (DDR) avoids
median-finding by choosing a random pivot. The DD1C and
DD1R variants perform only one median or random crack. Still,
these strategies retain the overhead of query-driven cracking. To
ameliorate it, Materialization-based DD1R (MDD1R) [4] cracks
the piece in which a query bound lies only on a single random
pivot and materializes the result. Progressive MDD1R [4] shares
the burden across queries, allowing crackin to be partially com-
pleted. Refined variants use the median of a sample set instead
of a single random pivot, with performance gains [18].

Adaptive Merging [2] splits the data into arbitrary initial
partitions, from which it progressively extracts query results into
to a final sorted partition by incremental mergesort; it achieves
faster convergence than cracking at the cost of high initialization
cost [8]. A hybrid combination of the two [8] applies cracking
on initial partitions and sorting on the final one to achieve both
lightweight initialization and quick convergence.

Multidimensional Cases. A first study in adaptive multidi-
mensional index structures [16] was about reorganizing, rather
building, data-oriented hierarchical indexes, in response to a
workload, so as to improve performance. Recently, QUASII [12]
and CKD [5] extended adaptive indexing to the multidimensional
case, by applying cracking on one dimension per tree level to con-
struct a KD-tree-like structure. To our knowledge, these works
have not been compared. Next, we discuss them in detail.

3 MULTI-D ADAPTIVE INDEXING
Augmented KD-tree. BothQUASII [12] andCKD [5] build their
indexes on top of an augmented KD-tree [1], progressively re-
distributing data from the root node to newly created children

EDBT 2021, March 23-26, 2021, Nicosia, Cyprus Aarup and Hammershøj, et al.

nodes while processing queries, allowing for a variable number
of children per node. As new children nodes are added irregularly,
the tree may lose the property of being balanced.

Listing 2: QUASII query [12].
1 def query(query 𝑞, data 𝐷 , slices 𝑆 , result 𝑅):
2 𝑆′ ← ∅ // to store newly created (refined) slices
3 𝑑𝑖𝑚 ← 𝑆 [0] .𝑙 // current level/dimension of slices in S
4 𝑖 ← binarySearch(𝑆 , 𝑙𝑜𝑤𝑒𝑟 (𝑞 [𝑑𝑖𝑚]))
5 while (𝑖 < |𝑆 | and 𝑙𝑜𝑤𝑒𝑟 (𝑆 [𝑖] .𝑏𝑜𝑥 [𝑑𝑖𝑚]) ≤ 𝑢𝑝𝑝𝑒𝑟 (𝑞 [𝑑𝑖𝑚])):
6 if 𝑞 ∩ 𝑆 [𝑖] .𝑏𝑜𝑥 = ∅ then continue
7 𝑆′′ = refine(𝑆 [𝑖], 𝑞, 𝐷)
8 for each 𝑠 ∈ 𝑆′′:
9 if 𝑞 ∩ 𝑠.𝑏𝑜𝑥 ≠ ∅:
10 if 𝑠.𝑙 is the bottom level :
11 for 𝑗 ∈ 𝑠.𝑖𝑑𝑠 :
12 if 𝐷 [𝑗] ∩ 𝑞 ≠ ∅ :
13 𝑅 ← 𝑅 ∪ 𝐷 [𝑗]
14 else :
15 if |𝑠.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 | == 0 :
16 createDefaultChild (𝑠)
17 query(𝑞, 𝐷 , 𝑠.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑅)
18 𝑆′ ← 𝑆′ ∪ 𝑆′′
19 𝑖 ← 𝑖 + 1
20 𝑆 ← 𝑆 ∪ 𝑆′
21 sort (𝑆)

QUASII [12] comprises a hierarchical index structure of depth
equal to the dimensionality 𝑑 ; the index starts off as a root node
containing all data objects, unsorted, and grows while process-
ing range select queries. A bottom-level node may be split if it
contains more than 𝜏 objects; thus, QUASII slices a space with
𝑛 objects up to 𝑟 =

⌈
𝑑
√

𝑛/𝜏
⌉
times in each dimension; at level ℓ

above the bottom the threshold becomes 𝜏 [ℓ] = 𝑟 ℓ𝜏 . Listing 2
shows how QUASII processes a multidimensional range query
𝑞; it finds the first slice hitting 𝑞 by binary search (Line 4) along
dimension (tree level) 𝑑𝑖𝑚, on which slices are sorted along. It
then scans and refines (i.e., slices further) all slices intersecting 𝑞
(Lines 5–7), cracking them up to size 𝜏 , by both query bounds
and artificial cracks. If a resulting slice at the bottom level inter-
sects 𝑞 (Line 9), qualifying data objects therein are appended to
the result 𝑅 (Lines 10–13); in case the slice is at an internal level,
QUASII recursively queries that slice’s children (Lines 15–17).
After refining all relevant slices in level (dimension) 𝑑𝑖𝑚, QUASII
resorts the slices therein (Line 21) with respect to the lower bound
of their bounding boxes. After recursively traversing, cracking,
and resorting slices as needed, it returns the range query result 𝑅.

Listing 3: Refine [12].
1 def refine (slice 𝑠 , query 𝑞, data 𝐷):
2 if (|𝑠 | ≤ 𝜏 [𝑠.𝑙]):
3 return {𝑠}
4 𝑆 ← ∅
5 𝑡 ← determineSliceType(𝑠 ,𝑞)
6 switch(𝑡):
7 case both: 𝑆′ ← sliceThreeWay(𝑠 , 𝑞, 𝐷)
8 case one: 𝑆′ ← sliceTwoWay(𝑠 , 𝑞, 𝐷)
9 default: 𝑆′ ← sliceArtificial(𝑠 , 𝑞, 𝐷)
10 for each 𝑠 ∈ 𝑆′:
11 if (|𝑠 | > 𝜏 [𝑠.𝑙] and 𝑞 [𝑠.𝑙] ∩ 𝑠.𝑏𝑜𝑥 [𝑠.𝑙] ≠ ∅):
12 𝑆′′ ← sliceArtificial(𝑠 , 𝑞, 𝐷)
13 𝑆 ← 𝑆 ∪ 𝑆′′
14 else :
15 𝑆 ← 𝑆 ∪ 𝑠
16 return 𝑆

Listing 3 illustrates the process that refines each slice 𝑠 that
intersects the query 𝑞 along the examined dimension 𝑠 .𝑙 and
exceeds the size threshold 𝜏 [𝑠 .𝑙]. QUASII cracks on any bound
of 𝑞 along dimension 𝑠 .𝑙 that lies within 𝑠 (Lines 7–8); otherwise,
if𝑞 contains 𝑠 along 𝑠 .𝑙 (i.e., both bounds of𝑞 lie outside 𝑠), it slices
based on an artificially introduced coordinate 𝑐 = ⌊ (𝑥𝑙 + 𝑥𝑢)/2⌋
(Line 9), where 𝑥𝑙 (𝑥𝑢) is the lower (upper) bound of 𝑠 along 𝑠 .𝑙 ; it
recursively slices further each produced slice that exceeds the 𝜏
size threshold and overlaps with𝑞 (Lines 11–12), otherwise adds it
to the output (Line 15). Listing 4 presents the recursive procedure
for such artificial slicing, which configured to handle multiple
points having the same coordinate when cracking (Line 5).

Listing 4: Artificial slicing.
1 def sliceArtificial (slice 𝑠 , query 𝑞, data 𝐷):
2 if |𝑠 | ≤ 𝜏 [𝑠.𝑙]:
3 return [𝑠]
4 𝑐 = ⌊ (𝑥𝑙 + 𝑥𝑢)/2⌋
5 slices = crack(𝑠 , 𝑐 , 𝑠.𝑙)
6 𝑟𝑒𝑡 = []
7 for 𝑠′ ∈ slices:
8 𝑟𝑒𝑡 = 𝑟𝑒𝑡 ∪ sliceArtificial(𝑠′, 𝑞, 𝐷)
9 return 𝑟𝑒𝑡

QUASII represents each spatial data object using its lower
coordinate only along any dimension. A slice is first defined by
its cracking coordinates, or cuts, yet obtains its own minimum
bounding box (MBB) embracing the spatial extent of each object
therein, with overlapping among slice MBBs allowed. To avoid
the MBB computation overhead, QUASII computes MBB bounds
for a slice 𝑠 only on the dimensions 𝑠 has been fully refined
along. During slice refinement and binary search, to capture any
result whose representative corner point lies in an unrefined slice
outside the query range, QUASII extends the lower coordinate
of 𝑞 by the maximum object extent in each unrefined dimension,
as in [15]. QUASII was designed as an adaptive spatial index
for data in 2 or 3 dimensions; in our experiments we test its
performance on higher dimensionality too.

Cracking KD-Tree (CKD) [5] also lets an augmented KD-
Tree grow through queries, and uses a minimum node size thresh-
old 𝜏 . However, it assigns dimensions to tree levels in round-robin
fashion by amodulo operation, allowing for multiple levels crack-
ing on the same dimension. Listing 5 shows howCKD processes a
multidimensional range query 𝑞 on a slice 𝑠 ; if 𝑠 is fully contained
within 𝑞 (Line 2), it extracts the contents of the given slice 𝑠 , oth-
erwise traverses any children of 𝑠 (Lines 4–5); if 𝑠 has no children
and contains fewer than 𝜏 elements, a check of those vs. 𝑞 yields
the result (Lines 6–7). If none of the above is the case, CKD cracks
the slice; it further queries resulting slices lying outside the query
bounds on 𝑑𝑖𝑚, to refine the index on other dimensions (Line 13),
and those within the query bounds, to obtain results (Line 16).

Listing 5: CKD query.
1 def query(query 𝑞, slice 𝑠 , dimension 𝑑𝑖𝑚):
2 if (isIncluded (𝑠 , 𝑞)):
3 return extractPoints (𝑠 , 𝑞)
4 if (𝑠.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 > 0):
5 return traverseTree (𝑠 , 𝑞, 𝑑𝑖𝑚)
6 if (|𝑠 | ≤ 𝜏):
7 return extractPoints (𝑠 , 𝑞)
8 𝑠𝑙𝑖𝑐𝑒𝑠 ← crack(𝑠 , 𝑞, 𝑑𝑖𝑚)
9 𝑛𝑒𝑥𝑡𝐷𝑖𝑚 ← 𝑑𝑖𝑚 + 1 mod 𝑞.𝑚𝑎𝑥𝐷𝑖𝑚
10 for 𝑠′ in 𝑠𝑙𝑖𝑐𝑒𝑠 :
11 s . add_slice (𝑠′)
12 if (𝑠′ ∩ 𝑞 == ∅):
13 query(𝑞, 𝑠′, 𝑛𝑒𝑥𝑡𝐷𝑖𝑚)
14 else
15 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑆𝑙𝑖𝑐𝑒 ← 𝑠′
16 return query(𝑞, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑆𝑙𝑖𝑐𝑒 , 𝑛𝑒𝑥𝑡𝐷𝑖𝑚)

Listing 6 shows the tree taversal procedure. CKD finds the
first slice within the bounds of 𝑞 by binary search (Line 3) and
examines all slices within those bounds (Line 4–8), adjusting
query bounds for the current dimension to fit the data in the slice
(Line 6) and builds the result by querying those slices (Line 7).

Listing 6: CKD and LCKD traverse tree.
1 def traverseTree (slice 𝑠 , query 𝑞, dimension 𝑑𝑖𝑚):
2 𝑟𝑒𝑠 ← []
3 𝑖 ← binarySearch(𝑆 , 𝑙𝑜𝑤𝑒𝑟 (𝑞 [𝑑𝑖𝑚]))
4 while (𝑖 < |𝑠 | and 𝑙𝑜𝑤𝑒𝑟 (𝑠 [𝑖]) ≤ 𝑢𝑝𝑝𝑒𝑟 (𝑞 [𝑑𝑖𝑚])):
5 𝑠′ ← 𝑠 [𝑖]
6 𝑞′ ← adjustQueryToSliceBoundaries(𝑞, 𝑠′, 𝑑𝑖𝑚)
7 𝑟𝑒𝑠 ← 𝑟𝑒𝑠 ∪ query(𝑞′, 𝑠′, 𝑛𝑒𝑥𝑡𝐷𝑖𝑚)
8 𝑖 ← 𝑖 + 1
9 return 𝑟𝑒𝑠

Revisiting Multidimensional Adaptive Indexing EDBT 2021, March 23-26, 2021, Nicosia, Cyprus

4 DISCUSSION AND ENHANCEMENTS
Lazy Cracking KD-Tree. The CKD [5] gratuitously refines all
resulting slices after a crack on the query range according to
query bounds. This gratuitous refinement is redundant; as it suf-
fices to crack the pieces overlapping the query. We propose a
variant that does so, the Lazy Cracking KD-Tree (LCKD). List-
ing 7 displays how LCKD processes a query, the change seen
in Lines 10–13. In each dimension, LCKD only cracks partitions
between query bounds, rather than cracking all pieces in excess.

Listing 7: LCKD query.
1 def query(query 𝑞, slice 𝑠 , dimension 𝑑𝑖𝑚):
2 if (isIncluded (𝑠 , 𝑞)):
3 return extractPoints (𝑠 , 𝑞)
4 if (𝑠.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 > 0):
5 return traverseTree (𝑠 , 𝑞, 𝑑𝑖𝑚)
6 if (|𝑠 | ≤ 𝜏):
7 return extractPoints (𝑠 , 𝑞)
8 𝑠𝑙𝑖𝑐𝑒𝑠 ← crack(𝑠 , 𝑞, 𝑑𝑖𝑚)
9 𝑛𝑒𝑥𝑡𝐷𝑖𝑚 ← 𝑑𝑖𝑚 + 1 mod 𝑞.𝑚𝑎𝑥𝐷𝑖𝑚
10 for 𝑠′ in slices :
11 s . add_slice (𝑠′)
12 if (𝑠′ ∩ 𝑞 ! = ∅):
13 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑆𝑙𝑖𝑐𝑒 ← 𝑠′
14 return query(𝑞, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑆𝑙𝑖𝑐𝑒 , 𝑛𝑒𝑥𝑡𝐷𝑖𝑚)

Intuitive ComparisonWe now now have three strategies to
compare: QUASII, CKD, and LCKD. All start with a tree consist-
ing of a single node, and progressively build a hierarchical index
while answering queries. In QUASII, the tree height is equal to
the number of dimensions. In CKD and LCKD, the maximum
tree height is determined by the size threshold 𝜏 for cracking
a partition. Figure 1 sketches the tree structures resulting after
processing a single query under these strategies in the two di-
mensions; each tree layer corresponds to a different dimension.
In CKD, there is an initial three-way crack along dimension 𝑥 ,
followed by cracking all resulting pieces along query bounds on𝑦.
LCKD only cracks the 𝑥-partition relevant to the query along
the bounds on 𝑦. The tree LCKD builds is less balanced than that
of CKD, as successive queries may refine the index in the same
region. Lastly, QUASII fully refines the entire part of the index
relevant to the query in each dimension, making the tree wider,
down to the minimal partition size 𝜏 [12]; CKD cracks the chunk
relevant to the query, as well as pieces irrelevant to the query,
on all dimensions according to query bounds, yet not necessarily
down to final partitions; LCKD refines only the relevant part of
the data along the query bounds in each dimension.

X:

Y:

Cracking KD-Tree
l h

l h l h l h

X:

Y:

Lazy Cracking KD-Tree
l h

l h

X:

Y:

QUASII
l h

l h

Figure 1: Three cracking strategies in action.

X:

Y:

QUASII
2 5

4 7

(4, 2) (2,8)

Figure 2: QUASII rigidity; Q1[(2,4)–(5,7)], Q2[(3,6)–(6,9)]
Figure 2 illustrates the problem that would arise in caseQUASII

did not perform full refinement. Assume a query on the range
defined by lower left coordinates (2, 4) and upper right coordinate
(5, 7), triggering a cracking of the 𝑥 dimension on range [2, 5]

and the 𝑦 dimension on range [4, 7]. Consider two points, (4, 2)
and (2, 8), which belong in the 𝑥-range [2, 5], but get separated
by the𝑦-interval [4, 7]. If a subsequent query requested the range
from (3, 6) to (6, 9), we should crack the 𝑥 dimension at 3, hence
swap points (2, 8) and (4, 2), destroying the sorted order on 𝑦. To
prevent such an eventuality, QUASII cracks exhaustively upon
the first query on any data range. Given this rigidity of QUASII,
we discuss stochastic cracking on LCKD only.

X:

Y:

kd-R
l h r

r l h

Figure 3: kd-R in action.
Multidimensional stochastic crackingAs described in Sec-

tion 2, we may spur query-driven cracking via data-driven cracks,
to achieve faster convergence with a slight initialization over-
head [4]. In [4], the DD1R strategy emerged as most commend-
able. We mend LCKD using DD1R in the multidimensional case;
we call the resulting method kd-R, where R stands for random.
In each dimension, when cracking a data segment, kd-R cracks
at a random point in addition to the query bounds, as Figure 3
shows. Next, we examine other ways to improve upon LCKD.

Hybrid crackingWe propose kd-HR, a hybrid strategy that
aims to combine the fast convergence of QUASII and the low
initialization cost of LCKD; kd-HR initially behaves as kd-R, yet
switches to QUASII and stops creating new levels once the tree
reaches a specified threshold. We design two kd-HR variants,
depending on the nature of the threshold: kd-HR𝑠 , with a thresh-
old on node size, and kd-HRℓ , with a threshold on tree height.
Figure 4 shows the operation of kd-HR on the last level before
switching to QUASII. kd-HR postpones QUASII-like operation
until the data becomes sufficiently small (kd-HR𝑠) or the area in
question has been refined enough times (kd-HRℓ); this precaution
should bring about faster convergence, as the tree stops growing
further on branches switching to QUASII.

X:

Y:

kd-HR
l h r

r l h

X:

Y:

l h

l h

Figure 4: kd-HR in action.

5 EXPERIMENTAL STUDY
Here, we present our experimental study featuringQUASII, CKD,
and their stochastic and hybrid variants. We implemented all
methods1 in C++ and compiled in g++ 7.4.0, and conducted ex-
periments on a 10-core Intel Xeon CPU E5-2687W v3 machine at
3.10GHz with 396G RAM running Ubuntu 18.04.3 LTS.

ID Name Size Distribution
0 Random 240000 Uniform distribution
1 Skyserver full 722711000 Skyserver data
2 Neuroscience 1000000 Neuronal data

Table 1: Datasets
Data. Table 1 lists our data sets. Random is a synthetic con-

taining points distributed uniformly at random between 0 and
1 in each dimension; the default dimensionality is 2. The Sky-
server data are downloaded from [14], a public astronomical data
repository, by the CasJobs functionality. We chose two attributes,
declination, dec, and right ascension, ra. To experiment with data

1The code is available at https://github.com/MULTIDAI/MultiDAI

https://github.com/MULTIDAI/MultiDAI

EDBT 2021, March 23-26, 2021, Nicosia, Cyprus Aarup and Hammershøj, et al.

of varying size, we construct trunacted versions of this data, se-
lecting every 𝑖th point, 𝑖 ∈ {2, 4, 8, . . . , 512}. The Neuroscience
dataset consists of 3-dimensional model of a neocortical column
in a brain tissue with MBBs matched to neuronal axons.

Name Size Distribution
Random 10000 Random distribution
Sequential 1000 Queries along diagonal
Skyserver chronological 1000000 Skyserver workload
Random clusters 50000 Synthetic normal clusters

Table 2: Workloads
Workloads. Table 2 lists our query workloads. The first syn-

thetic workload, Random, issues range queries at locations se-
lected uniformly at random, with extent 1% of the value domain
per dimension. The second synthetic workload, Sequential, is-
sues a non-overlapping sequence of consecutive range queries
along the diagonal of the domain of celestial coordinates, again
with extent 1% of the value domain per dimension; as this work-
load explores the data space incrementally in small steps, the
index constructed under its guidance never gets an opportunity
to exploit previous indexing. Skyserver workloads derive from
the SqlLog table [14], containing queries executed by scientists
in nonrandom patterns, focusing on one sky area at a time [4].
We filtered the range selection predicates on declination dec
and right ascension ra. We use three versions of this workload:
chronological preserves the original order of queries; sorted on
x contains the same queries, sorted on lower dec coordinate;
sorted on size sorts them on total area of query range. The latter
two workloads present a skewed pattern resembling the skewed
sequential workload we apply on synthetic data. The Random
cluster workload is synthetically generated for use with the Neu-
roscience data; queries belong to Gaussian clusters surrounding 5
randomly chosen centers in the range of the data values, with a
maximum query volume of 0.01% of the whole data volume.

Compared methods. We juxtapose QUASII [12]; CKD [5];
LCKD; kd-R; kd-HR𝑠 switching to QUASII when nodes that are
smaller than 𝑠 = 1000; kd-HRℓ switching to QUASII after ℓ = 6
levels; kd-C, a variation of kd-R that performs data-driven cracks
on the center of the value domain; Static, a static implementation
of a KD-tree. Previous works have already comparedQUASII [12]
to a static R-tree [3] and CKD [5] to a static KD-tree [1].

Tree Synthetic Skyserver Neuroscience
QUASII 400 40 200
CKD 1000 170 400
LCKD 400 90 200
kd-R 400 80 200
kd-C 400 70 200
kd-HR 400 80 200

Table 3: Chosen 𝜏 values for synthetic and real data.
Parameter tuning. All methods require a 𝜏 parameter — the

minimal cardinality of a data slice thatmay be further cracked.We
conducted a series of experiments on the Random data (Table 1),
with the Random and Synthetic workloads (Table 2). For each
method, we chose as default the value of 𝜏 for which we observed
best performance. Table 3 presents those choices. In size-based
hybrid, kd-HR𝑠 , we chose 𝑠 through experimentation with several
values; 𝑠 = 1000 yielded the best performance.

Random workload.We first examine the Random data with
the Random workload. Figure 5a presents time per query. Eval-
uating the first query with Static counts for full index building.
CKD is the slowest among adaptive methods in the first query, as
it scans all data twice: once to crack on the first dimension, and
again to crack the three resulting slices on the second dimension.
QUASII comes second, while LCKD is the fastest. The initializa-
tion costs of stochastic and hybrid structures are almost identical,
and slightly lower than that of QUASII. After the first query,CKD

variants reduce time per query, yet LCKD converges faster than
CKD. The time of QUASII falls intermediately, yet keeps falling
further than LCKD. QUASII performs more work in early stages,
yet achieves fast response times later on, traversing a shallower
tree. As the workload evolves, fewer queries require additional
indexing actions in QUASII, letting time per query fall to even
less than that of Static. Figure 5b presents cumulative running
time; the divergence between QUASII and the others is conspicu-
ous; Static is much slower than the adaptive approaches; CKD
incurs higher cumulative runtime than other adaptive structures.

10−6

10−5

10−4

10−3

10−2

10−1

100

101

100 101 102 103 104

Ti
m
e
(s
ec
)

Number of queries

(a) Time per query

0.1

1

10

0×100 2×103 4×103 6×103 8×103 1×104

Ti
m
e
(s
ec
)

Number of queries

(b) Cumulative time
Figure 5: Results on Random workload.

A main takeaway from this experiment is that, over time,
QUASII starts reaping the fruits of the index is has built more
than other methods. We found this trend to be the same regard-
less of dataset: LCKD outperforms QUASII in the first queries at
the expense of the quality of the index it builds, yet later queries
do not benefit as much from the work done previously as they do
with QUASII, and QUASII eventually outperforms LCKD. Unfor-
tunately, the kd-HR hybrids present response times worse than
LCKD, kd-R, and kd-C. We infer that the combination of kd-R
and QUASII leads to a poor structure. Stochastic variants, kd-R
and kd-C, present similar runtimes to LCKD, with an advantage
in the long term, as data-driven cracks show their benefit.

10−6

10−5

10−4

10−3

10−2

10−1

100

101

100 101 102 103

Ti
m
e
(s
ec
)

Number of queries

(a) Time per query

0.1

1

10

100

0×100 2×102 4×102 6×102 8×102 1×103

Ti
m
e
(s
ec
)

Number of queries

(b) Cumulative time
Figure 6: Results on sequential workload.

Sequential workload.Nowwe turn to the Random data with
the Sequential workload. Figure 6 shows our results. Unsurpris-
ingly, CKD performs poorly. More surprisingly, in contrast to the
preceding experiment, QUASII also performs poorly compared
to LCKD; the thorough index refinement QUASII performs is
a liability with the sequential workload. LCKD benefits from
its lazy nature. This experiment reveals that the order of query
execution has a significant effect on running time, due to the
query-driven nature of these data structures: on a sequential
workload, each new query processes an unindexed data region.
Notably, kd-R performs best; its data-driven operation confers
an advantage on this workload. The spikes in the plot arise when
entering a region refined by data-driven cracks to a lesser extent.
Interestingly, kd-C does not match the performance of kd-R: its
center-based cracks prove to be insufficiently robust, vindicating

Revisiting Multidimensional Adaptive Indexing EDBT 2021, March 23-26, 2021, Nicosia, Cyprus

our choice to build hybrids on top of kd-R rather than kd-C.
Yet those hybrids do not match the performance of kd-R either;
their QUASII component appears to be a liability; this effect is
apparent on kd-HR𝑠 and even more consequential in kd-HRℓ .

Effect of dimensionality. We now evaluate the impact of
data dimensionality on the Random dataset and the Random
workload. Figure 7 depicts our results in two plots for the sake
of readability. As dimensionality grows, the cumulative time of
QUASII rises drastically, due to the thorough refinement per-
formed on each dimension. CKD and LCKD are less affected by
dimensionality growth. LCKD presents a modest runtime growth
with dimensionality. Surprisingly, the cumulative runtime of the
KD-tree variants initially drops as dimensionality increases, as
they gain from the indexing they perform. In the global trend,
CKD incurs a heavier cumulative runtime burden, as additional
dimensions beget a higher overhead than the benefit of cracking.
QUASII, which performs well on random workloads on data of
dimensionality 2, forfeits this advantage in higher dimensions.
QUASII and QUASII-based hybrids, especially kd-HR𝑠 , are af-
fected by data dimensionality to a greater extent than LCKD,
kd-R, and kd-C. We deduce that the QUASII strategy is detrimen-
tal on an increasing number of dimensions. Interestingly, the
gap between LCKD and kd-R grows slightly with dimensionality,
due to the additional random cracks performed by kd-R. On a
random query workload, such random cracks bring little benefit,
while incurring an overhead that rises with dimensionality.

LCKD QUASII kd-R kd-CCKD kd-HR kd-HRs l Static

1

10

2 4 6 8 10 12 14 16 18 20

Ti
m
e
(s
ec
)

Dimensionality

(a) CKD, QUASII, Static.

1

10

2 4 6 8 10 12 14 16 18 20

Ti
m
e
(s
ec
)

Dimensionality

(b) Stochastic and hybrid.
Figure 7: Effect of dimensionality.

Henceforward, we use only LCKD and its stochastic and hy-
brid variants as representatives of cracking KD-trees and drop
Static from figures for the sake of readability.

LCKD QUASII kd-R kd-HR kd-Ckd-HRs l

10−6
10−5
10−4
10−3
10−2
10−1
100
101
102
103

100 101 102 103 104 105 106

Ti
m
e
(s
ec
)

Number of queries

(a) Time per query

5×103

103
0×100 2×105 4×105 6×105 8×105 1×106

Ti
m
e
(s
ec
)

Number of queries

(b) Cumulative time
Figure 8: Skyserver 1/4, chronological order.

Skyserver workload, chronological. Now we apply the
Skyserver chronologically ordered workload on Skyserver data.
Figure 8 shows our results with the Skyserver 1/4 dataset. In the
first 500 queries, QUASII occasionally reaches response times
comparable to the other methods, which should correspond to
accessing already indexed data areas; progressively expensive

queries become rarer, and eventually QUASII converges to re-
sponse times lower than those of other methods. This converged
response time of QUASII does not render its cumulative time
lower than those of others for the entire workload in this configu-
ration; kd-C and kd-R achieve the best cumulative times. Still, as
Figure 9 shows, as we reduce the data size (10 for full, 1 for 1/512)
under the same workload so as to render the workload to data
ratio larger, eventually QUASII becomes the fastest.

LCKD QUASII kd-R kd-CCKD kd-HR kd-HRs l

10

100

1000

10000

2 4 6 8 10

Ti
m
e
(s
ec
)

Dataset

(a) QUASII, CKD, LCKD.

10

100

1000

10000

2 4 6 8 10

Ti
m
e
(s
ec
)

Dataset

(b) Stochastic and Hybrid.
Figure 9: Skyserver; regular workload, variable data sizes.

Figure 11 presents cumulative times with the same workload
and four different Skyserver sizes. As data size falls, the time of
QUASII approaches and supersedes, those of kd-HR, kd-R, and
LCKD; still, kd-R and kd-C remain better options than QUASII
for workloads reasonably large compared to the data.

LCKD QUASII kd-R kd-HR kd-Ckd-HRs l

10−6
10−5
10−4
10−3
10−2
10−1
100
101
102

100 101 102 103 104 105 106

Ti
m
e
(s
ec
)

Number of queries

(a) Time per query

101

102

103

104

0×100 2×105 4×105 6×105 8×105 1×106

Ti
m
e
(s
ec
)

Number of queries

(b) Cumulative time
Figure 10: Skyserver 1/64, sequential workload.

Skyserver workload, sequential. We now assess perfor-
mance on the Skyserver 1/64 data against the sequential Sky-
server workload, sorted by the dec celestial coordinate. Figure 10
presents our results. Despite the smaller data size compared to
those we examined previously, the sequential nature of the work-
load bears uponQUASII, which presents the worst result in cumu-
lative time. LCKD achieves better cumulative time than QUASII,
yet its response time does not converge as well; the tree it builds
grows progressively higher in a lopsided manner. The stochastic
variants, kd-C and kd-R, eschew the deficiencies of query-driven
methods and attain best performance, while kd-HR𝑠 follows suit.
On the other hand, kd-HRℓ , which resorts to QUASII quite early,
inherits the liability of QUASII. This result reconfirms that the
QUASII strategy is a liability more than an asset in hybrids.

Skyserver workload sorted by size Now we apply the Sky-
server workload ordered by query size on the Skyserver 1/4 data.
Figures 12 and 13 show the results for ascending and descending
order, respectively. On the ascending order, as expected, QUASII
is initially slower, but achieves better query response times later.
In cumulative time, kd-C performs best, closely followed by kd-R;
kd-HR𝑠 does not gain from its hybrid character, while kd-HRℓ has
a clear disadvantage. LCKD is superseded by kd-Rand kd-HR. On

EDBT 2021, March 23-26, 2021, Nicosia, Cyprus Aarup and Hammershøj, et al.

LCKD QUASII kd-R kd-HR kd-Ckd-HRs l

102

103

0×100 2×105 4×105 6×105 8×105 1×106

Ti
m
e
(s
ec
)

Number of queries

3×102

102

0×100 2×105 4×105 6×105 8×105 1×106
Number of queries

3×102

102

0×100 2×105 4×105 6×105 8×105 1×106
Number of queries

101

102

0×100 2×105 4×105 6×105 8×105 1×106
Number of queries

Figure 11: Skyserver, regular workload, datasets: 1/8, 1/16, 1/32, 1/64.
the descending order, time per query is initially higher, as queries
of larger extent require more indexing work; cumulative time
grows more steeply in the early stage than with the ascending
order, yet performance resembles the ascending case.

LCKD QUASII kd-R kd-HR kd-Ckd-HRs l

10−6
10−5
10−4
10−3
10−2
10−1
100
101
102
103

100 101 102 103 104 105 106

Ti
m
e
(s
ec
)

Number of queries

(a) Time per query

5×102

103

0×100 2×105 4×105 6×105 8×105 1×106

Ti
m
e
(s
ec
)

Number of queries

(b) Cumulative time
Figure 12: Skyserver 1/2, workload sorted on size (asc.).

LCKD QUASII kd-R kd-HR kd-Ckd-HRs l

10−6
10−5
10−4
10−3
10−2
10−1
100
101
102
103

100 101 102 103 104 105 106

Ti
m
e
(s
ec
)

Number of queries

(a) Time per query

5×102

103

0×100 2×105 4×105 6×105 8×105 1×106

Ti
m
e
(s
ec
)

Number of queries

(b) Cumulative time
Figure 13: Skyserver 1/2, workload sorted on size (desc.).

Figure 14: Neuroscience data, random cluster workload.

Neuroscience data.We now assess performance on the Neu-
roscience data with the random clustered workload. This dataset
contains objects with spatial extent rather than points; thus, we
employ query window extension [15], as in [12]: we represent
shapes by their lower coordinates per dimension and extend
query ranges by the maximum object extent towards the lower
side of each dimension, to hit the lower coordinates of any object

overlapping the query’s range; we filter false hits in a refinement
step. Figure 14 presents our results. No method converges as
robustly as with point data, due to the overhead caused by query
extension. Still, QUASII converges more robustly than others.

6 CONCLUSION
We conducted a comparative experimental evaluation of works
on multidimensional adaptive indexing and enhancements lever-
aging stochastic and hybrid strategies. We found that adaptations
of the Cracking KD-tree achieve better performance compared
to QUASII in terms of initialization and with short workloads,
while QUASII yields attractive performance with long-running
workloads. We combined the Cracking KD-Tree with stochastic
measures that ameliorate the sensitivity to the order in which
queries are posed. Further research is needed on multidimen-
sional adaptive indexing of objects with spatial extent and ac-
commodating updates; we also aim to investigate the adaptive
indexing of graph structures with privacy constraints [11, 17]
and adaptive multidimensional synopses [9].

REFERENCES
[1] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for

Associative Searching. Commun. ACM 18, 9 (1975), 509–517.
[2] Goetz Graefe and Harumi A. Kuno. 2010. Self-selecting, self-tuning, incre-

mentally optimized indexes. In EDBT. 371–381.
[3] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial

Searching. In SIGMOD. 47–57.
[4] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap. 2012.

Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-
Memory Column-Stores. PVLDB 5, 6 (2012), 502–513.

[5] Pedro Holanda, Matheus Nerone, Eduardo Cunha de Almeida, and Stefan
Manegold. 2018. Cracking KD-Tree: The First Multidimensional Adaptive
Indexing (Position Paper). In DATA. 393–399.

[6] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Crack-
ing. In CIDR. 68–78.

[7] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2009. Self-organizing
tuple reconstruction in column stores. In SIGMOD. 297–308.

[8] Stratos Idreos, Stefan Manegold, Harumi A. Kuno, and Goetz Graefe. 2011.
Merging What’s Cracked, Cracking What’s Merged: Adaptive Indexing in
Main-Memory Column-Stores. PVLDB 4, 9 (2011), 585–597.

[9] Panagiotis Karras and Nikos Mamoulis. 2008. Hierarchical synopses with
optimal error guarantees. ACM Trans. Database Syst. 33, 3 (2008), 18:1–18:53.

[10] Panagiotis Karras, Artyom Nikitin, Muhammad Saad, Rudrika Bhatt, Denis
Antyukhov, and Stratos Idreos. 2016. Adaptive Indexing over Encrypted
Numeric Data. In SIGMOD. 171–183.

[11] Sadegh Nobari, Panagiotis Karras, HweeHwa Pang, and Stéphane Bressan.
2014. L-opacity: Linkage-Aware Graph Anonymization. In EDBT. 583–594.

[12] Mirjana Pavlovic, Darius Sidlauskas, Thomas Heinis, and Anastasia Ailamaki.
2018. QUASII: QUery-Aware Spatial Incremental Index. In EDBT. 325–336.

[13] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. 2013. The Un-
cracked Pieces in Database Cracking. PVLDB 7, 2 (2013), 97–108.

[14] DR16 Sloan Digital Sky Survey. 2018. http://cas.sdss.org/.
[15] Emmanuel Stefanakis, Yannis Theodoridis, Timos K. Sellis, and Yuk-Cheung

Lee. 1997. Point Representation of Spatial Objects and Query Window Exten-
sion: A New Technique for Spatial Access Methods. IJGIS 11, 6 (1997).

[16] Yufei Tao and Dimitris Papadias. 2002. Adaptive Index Structures. In VLDB.
[17] Mingqiang Xue, Panagiotis Karras, Chedy Raïssi, Panos Kalnis, and Hung Keng

Pung. 2012. Delineating Social Network Data Anonymization via Random
Edge Perturbation. In CIKM. 475–484.

[18] Fatemeh Zardbani, Peyman Afshani, and Panagiotis Karras. 2020. Revisiting
the Theory and Practice of Database Cracking. In EDBT. 415–418.

http://cas.sdss.org/

	Abstract
	1 Introduction
	2 1D Adaptive Indexing
	3 Multi-D Adaptive Indexing
	4 Discussion and Enhancements
	5 Experimental Study
	6 Conclusion
	References

