
Scalable kNN Search on Vertically Stored Time Series∗

Shrikant Kashyap
School of Computing

National University of Singapore
shrikant@nus.edu.sg

Panagiotis Karras
Rutgers Business School

Rutgers University
karras@rutgers.edu

ABSTRACT
Nearest-neighbor search over time series has received vast research
attention as a basic data mining task. Still, none of the hitherto pro-
posed methods scales well with increasing time-series length. This
is due to the fact that all methods provide an one-off pruning capac-
ity only. In particular, traditional methods utilize an index to search
in a reduced-dimensionality feature space; however, for high time-
series length, search with such an index yields many false hits that
need to be eliminated by accessing the full records. An attempt to
reduce false hits by indexing more features exacerbates the curse
of dimensionality, and vice versa. A recently proposed alternative,
iSAX, uses symbolic approximate representations accessed by a
simple file-system directory as an index. Still, iSAX also encoun-
ters false hits, which are again eliminated by accessing records in
full: once a false hit is generated by the index, there is no second
chance to prune it; thus, the pruning capacity iSAX provides is also
one-off. This paper proposes an alternative approach to time series
kNN search, following a nontraditional pruning style. Instead of
navigating through candidate records via an index, we access their
features, obtained by a multi-resolution transform, in a stepwise
sequential-scan manner, one level of resolution at a time, over a ver-
tical representation. Most candidates are progressively eliminated
after a few of their terms are accessed, using pre-computed infor-
mation and an unprecedentedly tight double-bounding scheme, in-
volving not only lower, but also upper distance bounds. Our ex-
perimental study with large, high-length time-series data confirms
the advantage of our approach over both the current state-of-the-art
method, iSAX, and classical index-based methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—Data min-
ing; H.2.4 [Database Management]: Systems—Query process-
ing; H.3 [Information Storage and Retrieval]: Miscellaneous

General Terms
Algorithms, Experimentation, Theory, Performance

∗Work supported by Singapore’s MOE AcRF grant T1
251RES0807.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

1. INTRODUCTION
Similarity search among time series aims to retrieve records most

similar to a query record. It attracts consistent research attention
as a basic data mining task [21] with specific-domain applications
ranging from finance [51] to motion tracking [15].

A time series can be represented as a point p in a D-dimensional
space. A k-nearest-neighbor (kNN) query asks for the k records
in a data set most similar to a query point q, according to a dis-
tance metric DST (q, p). The conventional approach to this prob-
lem divides the search process in two components: First, a filtering
step retrieves candidates by navigating a reduced-dimensionality
feature space with an index; distance computations and object re-
trieval in this space, enabled by a dimensionality reduction tech-
nique, are less costly than in the full dimensionality, while the com-
puted distance metric, dst, lower-bounds the actual distance, i.e.
dst(q, p)≤DST (q, p); still, this step generates false hits, i.e. can-
didates not in the kNN result. A second, refinement step accesses
the full records and calculates exact DST -distances to eliminate
them and obtain the final results. The associated search algorithm,
arrived at by a sequence of efforts in [21, 42, 35, 26, 44], alter-
nates among these two steps, and is hence dubbed multi-step; in
this work, we use the name two-component framework.

Unfortunately, it is hard to contain the number of false hits gen-
erated by the filtering step in the two-component framework; this
curse of dimensionality is exacerbated with increasing time-series
length (i.e., dimensions), as the feature-space representation be-
comes then less accurate, hence distance calculations with it de-
grade. If we attempt to alleviate this problem by increasing the
feature-space dimensionality, then we render index-based search
more expensive, eventually deteriorating to worse than a sequen-
tial scan [25]; if we attempt to render the search more efficient by
indexing less features, the false-hit problem strikes back. Thus, a
tradeoff emerges. The best feature-space dimensionality d strongly
depends on the data set at hand and is hard to determine a priori.

Fe
at

ur
es

Records

Lower d

Higher d

Results and false hits

d

Component 2

Component 1

Fe
at

ur
es

Records

Results

Eliminated false hits

(a) Classical tradeoff (b) Stepwise approach
Figure 1: Accessed data in two approaches

Figure 1(a) visualizes the said tradeoff. The area under each of
the dotted lines represents the amount of data accessed, indicating

1334

the number of records along the x axis and the number of read fea-
tures of these records along the y axis. One line shows the case
for a lower feature-space dimensionality d, while the other for a
higher d. The two components (filtering and refinement) are de-
noted by the two rectangles below the dotted lines; with lower d,
fewer records are accessed by the index (Component 1), but more
false hits are read in full (Component 2); a higher d reduces false
hits at the cost of increasing index-accessed d-dimensional records.

An award-winning work [49, 9] observed that traditional index-
based methods are outperformed on average by a sequential scan
if the number of dimensions exceeds around 10. In response, [49]
proposed the VA-file, a vector approximation scheme that eschews
indexing. Its filtering step prunes candidates via a sequential scan
of bit-string representations. Still, this filtering fares poorly with
skewed data [43]; the VA-file performs worse than a sequential scan
even with uniform data in a main memory environment [18].

Recent research [46] has suggested iSAX, a method that con-
sists at once a simplification and an enhancement over this clas-
sical framework; the enhancement consists of using symbolic ap-
proximate representations; the simplification of using a directory
provided by the native file system as an index. Still, as classical ap-
proaches and the VA-file do, iSAX also uses a single approximate
representation for each record and provides no intermediate level
between this representation and the full record.

We argue that the main drawback of all these methods is the one-
off filtering step they employ: once a false-hit passes their filtering
process, however elaborate that process is, it has to be read in full
along with an expensive distance computation. No other chance is
given to prune it; filtering is an one-off affair. Even though the pur-
pose of the index is to provide robust filtering, its pruning capacity
is constrained by the accuracy of the approximate representation it
employs. We contend that, to overcome this problem and enable
length-scalable kNN search, one should provide ample, consecu-
tive opportunities for candidate pruning at multiple levels of reso-
lution; in other words, provide not a single filtering step, but many.
Then candidates would be eliminated gradually, after passing one
or more of these multiple filtering steps. To avoid confusion, we
emphasize that the multi-step character of the algorithm in [44] in-
volves the back-and-forth operation between false-hit elimination
and further candidate retrieval; insofar as distance calculations are
concerned, this classical algorithm carries out two steps.

In this paper, we propose a nontraditional, genuinely multi-step
framework for time-series kNN search; our approach eschews an
index and scans approximate representations instead, like the VA-
file does; still, unlike the VA-file and other methods, it uses a ver-
tical storage scheme and involves multiple filtering steps. Distance
computations are carried out in a stepwise fashion, involving pro-
gressively more feature terms but less records; false hits are thereby
gradually disqualified. Our methodology needs to employ a multi-
resolution transform. The question of which transform to choose
is orthogonal to it. For ease of exposition, we present our method
using the Discrete Haar Wavelet Transform (DHWT). Figure 1(b)
depicts data access with our method. The area below the dotted line
again denotes accessed data. False hits are eliminated in a step-by-
step manner, while gradually reading more features of remaining
candidates, until we arrive at the kNN result. We analyze our chief
contributions with respect to previous work as follows:

First, a vertical storage scheme that allows features to be read
not record-by-record, but by level of resolution. A similar scheme
has been proposed for image histograms in [19], storing the feature
coefficients of the same dimension, for all vectors in the reposi-
tory, in a separate table. This representation allows for the distance
between a query point and all data vectors to be accumulated in-

crementally, by scanning these projections one-by-one, and com-
puting lower and upper bounds on the employed similarity metric.
This fundamental intuition is common to our work and [19]. To the
best of our knowledge, such a storage scheme has not been applied
in the context of disk-based kNN search among time series before.

Second, a robust double-bounding scheme tailored for time-
series, which allows for the maximum benefits to be reaped from
our storage scheme. A similar, but looser, scheme was used in [52]
to reduce the communication cost among server and clients in a
distributed kNN-search setting; thus, in [52] the objective is not to
minimize local I/O at a client, but data transmission to the server.
Our scheme goes beyond the one in [52] by leveraging sign bitmap
information that renders the derived bounds much tighter.

Third, a multi-resolution search algorithm that leverages our
storage and bounding schemes. Apart from [52], similar algorithms
have been employed in [47] in the context of DNA sequences, and
in [38] in the context of stream time-series. Yet these works per-
form pruning based solely on loose lower distance bounds, hence
address ε-range similarity queries only; this methodology does not
apply to the more challenging kNN-search problem. Our method
applies to this problem, as it derives not only lower, but also upper
distance bounds, none of which has appeared in previous works.

2. RELATED WORK
The classical approach to time series similarity search uses a

dimensionality reduction technique along with a multidimensional
access method. The first dimensionality reduction technique sug-
gested for that purpose was the DFT [2]. Subsequent research pro-
posed several indexable transforms, such as PCA [50, 34, 29], the
DCT [37], the DWT [14, 41, 52], and Chebyshev Polynomials [11],
as well as segmentation methods, such as the PAA [53, 33], the
APCA [12], and the PLA [16]. A recent experimental compari-
son of diverse dimensionality reduction methods on the accuracy
of approximation they provide concluded that there is “very little
to choose” between them [20, 46]. Past research has also provided
a host of methods for high-dimensional search [24, 45, 5, 40, 8,
32, 17, 7, 49, 13, 6, 43, 54, 28, 18, 4]. Yet such methods have
not been tested on more than 64 dimensions, and are not immune
to the curse of dimensionality; their performance can deteriorate to
that of a sequential scan [25, 10, 18, 39, 9].

An alternative approach to time series indexing and search is
given by the indexable Symbolic Aggregate approXimation (iSAX)
[46], an indexable variant of SAX [39]. SAX transforms the data to
their PAA representation and then symbolizes the latter to a discrete
string, making better use of every available bit; a symbolic distance
measure lower-bounds the PAA distance itself. The symbolic rep-
resentation is then enhanced to a multi-resolution form and indexed
using a standard file system for disk access. iSAX is reported to
outperform sequential scan in exact time series NN search [46].
Thus, it provides a yardstick for other methods to be compared to.

BOND [19] proposes a physical organization of image histogram
feature vectors to facilitate kNN search over the images they rep-
resent. The feature coefficients of the same dimension, for all vec-
tors, are stored in a separate table. This representation allows for
the distance between a query point and all data vectors to be accu-
mulated incrementally, by scanning these projections one-by-one,
and computing both a lower and an upper bound on the employed
similarity metric. Our work shares a fundamental intuition with
[19], yet the involved storage schemes, similarity metrics, queried
objects, bounding methods, and application domains are different.

Our work also shares features with CoMRI [47], a grid-style
index structure that facilitates similarity search among DNA se-
quences with a multi-resolution search algorithm, and MSM [38],

1335

an incrementally computable representation for stream time-series
data using a multi-step filtering mechanism. However, these meth-
ods only address range queries, as the pruning they perform is
based only on loose lower bounds to distances, which are compared
to a range similarity threshold ε. Unfortunately, this methodology
does not apply to the more challenging kNN search problem.

Furthermore, several works have examined the problem of ap-
proximate high-dimensional similarity search, where exact answers
are not necessarily required [27, 23, 3, 48]. We study the exact
problem, where one needs to find the exact k most similar records.

Symbol Meaning
D (P, Q) Euclidean distance between series P and Q
�i Haar tree level of coefficient pi

d Haar tree depth
I� Coefficient indexes in level �

D� 2� P
i∈I�

|pi − qi|2
Dr

k

Pd
�=r D�

Dr
u

Pr−1
�=1 D�

Σr
�p

Pr−1
�=1

P
i∈I�

2�p2
i

Σr
�q

Pr−1
�=1

P
i∈I�

2�q2
i

Σr
pq

Pr−1
�=1

P
i∈I�

−2�piqi

Σ�p

P
� 2� P

i∈I�
p2

i

Σ�q

P
� 2� P

i∈I�
q2

i

O� {i ∈ I�|piqi < 0}
E� {i ∈ I�|piqi > 0}
Σr,o

pq

Pr−1
�=1

P
i∈O�

2�|piqi|
Σr,e

pq

Pr−1
�=1

P
i∈E�

2�|piqi|
Σp

P
i p2

i

Σr
p

Pr−1
�=1

P
i∈I�

p2
i

Σo
q

P
�

P
i∈O�

22�q2
i

Σe
q

P
�

P
i∈E�

22�q2
i

Σr,o
q

Pr−1
�=1

P
i∈O�

22�q2
i

Σr,e
q

Pr−1
�=1

P
i∈E�

22�q2
i

Dr
LB Dr

k + Σr
�p + Σr

�q − 2
q

Σr
pΣr,e

q

Dr
UB Dr

k + Σr
�p + Σr

�q + 2
q

Σr
pΣr,o

q

Table 1: Employed notation

3. STEPWISE SIMILARITY SEARCH
Our method exploits a multi-resolution transform and a double-

bounding scheme. This family of transforms offer a capability that
other dimensionality reduction techniques do not: they allow for a
distance can be computed at several levels of resolution. Previous
research has not fully exploited the potential arising from this prop-
erty. We explore this untapped potential. We present our method
using the Discrete Haar Wavelet Transform (DHWT). Table 1 gath-
ers all the notations and defining equations we introduce.

4
� �

8 5
� �

7 9
� �

1 2

3�� �

8

� � � �

� �

1�2�

0 0

4

5.0

5.5

Figure 2: Discrete Haar Wavelet Transform

3.1 Distance-Bounding Computations
In its simplified non-normalized form, the DHWT can be visu-

alized by a complete binary tree, the Haar tree [14, 31, 52]. The
root node coefficient contains the overall average value; each other
coefficient value ci adds +ci to data cells (leaves) in its left subtree
and −ci to those in its right subtree. These coefficients are com-
puted by a recursive process that extracts pairwise averages and
differences. The averages at one level serve as the input data for
the level above; the pairwise semi-differences are the coefficients

[30]. A data value is reconstructed by summing the (signed) terms
along a root-to-leaf path. We opt for this intuitive formulation for
the sake of clarity and conciseness; the normalized DWT definition
includes further factors in the computation, represented by a 2�i

term in the following. Figure 2 shows the Haar tree representing
the complete DHWT for the vector D = {4, 8, 5, 7, 9, 1, 2, 8}.

Given the DHWT of a time series, P = {pi}, and that of a
query record Q = {qi}, their squared (non-normalized) Euclidean
distance can be computed on the wavelet domain [14, 52] as:

D (P, Q) =
P

i 2�i |pi − qi|2 (1)

where �i = �log2 i� is the bottom-up DHWT level in which co-
efficients pi and qi belong [14, 52]; the top level consists of the top
two coefficients. In a Haar tree of depth d, with n=2d coefficients,
�i =d−�log2 i�, Eq. (1) can be written as:

D (P, Q) =
Pd

�=1 2�P
i∈I�

|pi − qi|2 =
Pd

�=1D� (P, Q) (2)

where d is the depth of trees for the DHWTs P and Q, � a tree
level, I� = {2d−�, . . . , 2d−�+1 − 1} the range of coefficient in-
dexes in level �, and D� = 2�P

i∈I�
|pi − qi|2 the distance con-

tribution by level � (we drop the determinant (P, Q) when it is im-
plied from context). This distance can be computed in a stepwise
manner, reading one level at a time, following Eq. (2). Assume
all DHWT levels from d to r have been read. Then the distance is
divided in a known element Dr

k, from the levels already read, and
an unknown element Dr

u, from the yet unread lower levels:

D =
Pd

�=r D� +
Pr−1

�=1 D� = Dr
k +Dr

u (3)

To progressively eliminate false hits, we need to derive tight dou-
ble (i.e., not only lower, but also upper) bounds for the unknown el-
ement Dr

u, and gradually refine them as the computation proceeds.
At a given level r, 1 ≤ r ≤ d, Dr

u is expressed as:

Dr
u =

r−1X
�=1

2�
X
i∈I�

|pi − qi|2 =

r−1X
�=1

2�
X
i∈I�

`
p2

i + q2
i − 2piqi

´
Let Σr

�p =
Pr−1

�=1 2�P
i∈I�

p2
i , Σr

�q =
Pr−1

�=1 2�P
i∈I�

q2
i , and

Σr
pq = −Pr−1

�=1 2�P
i∈I�

piqi. Then:

Dr
u = Σr

�p + Σr
�q + 2Σr

pq (4)

The first two terms in Eq. (4) can be derived using pre-computed
sums Σ�p =

P
� 2�P

i∈I�
p2

i for each time series record P , as well

as the sum Σ�q =
P

� 2�P
i∈I�

q2
i for the query record Q, and pro-

gressively subtracting the partial sums 2�P
i∈I�

p2
i and 2�P

i∈I�
q2

i ,
respectively, for each level �. The challenge we face is to bound the
term Σr

pq . We treat it as follows. Let O� be the set of indexes in I�

such that pi and qi have opposite signs: O� = {i ∈ I�|piqi < 0},
and E� the index-set such that pi and qi have equal signs: E� =
{i ∈ I�|piqi > 0}. Moreover, let Σr,o

pq =
Pr−1

�=1 2�P
i∈O�

|piqi|
and Σr,e

pq =
Pr−1

�=1 2�P
i∈E�

|piqi|. Then the critical term in Eq.
(4) can be expressed using these two non-negative terms:

Dr
u = Σr

�p + Σr
�q + 2Σr,o

pq − 2Σr,e
pq (5)

These two are bounded using the Cauchy-Schwartz inequality:

Σr,o
pq =

r−1X
�=1

X
i∈O�

2�|piqi| ≤
vuutr−1X

�=1

X
i∈O�

p2
i

r−1X
�=1

X
i∈O�

(2�qi)
2

Σr,e
pq =

r−1X
�=1

X
i∈E�

2�|piqi| ≤
vuutr−1X

�=1

X
i∈E�

p2
i

r−1X
�=1

X
i∈E�

(2�qi)
2

1336

A computation of the quantities in the above equations that in-
volve selected p2

i terms would require an explicit reading of the
coefficients of the record P . Thus, these quantities can only be
bounded using the pre-computed total sum Σp =

P
i p2

i and calcu-

lating Σr
p =

Pr−1
�=1

P
i∈I�

p2
i on demand by subtracting the partial

sum
P

i∈I�
p2

i at each level �. On the other hand, the quantities

involving selected q2
i terms can be derived using pre-computed co-

efficient sign bitmaps of Q and P . Based on such bitmaps, the
overall sums Σo

q =
P

�

P
i∈O�

22�q2
i and Σe

q =
P

�

P
i∈E�

22�q2
i

can be pre-computed, given Q. Then, Σr,o
q =

Pr−1
�=1

P
i∈O�

22�q2
i

and Σr,e
q =

Pr−1
�=1

P
i∈E�

22�q2
i can be calculated on demand by

subtracting the partial sums 22�P
i∈O�

q2
i and 22�P

i∈E�
q2

i , re-

spectively, at each level �. We group the 22� term along with the se-
lected q2

i terms instead of dividing the two 2� factors among p2
i and

q2
i . Thus, we reassure that a 2� factor enters the bounds’ calculation

only when necessary and avoid an overestimation. Eventually:

Σr,o
pq ≤

q
Σr

pΣr,o
q , Σr,e

pq ≤
q

Σr
pΣr,e

q (6)

By Eqs. (5) and (6), we can doubly-bound Dr
u as follows:

Σr
�p + Σr

�q − 2Σr,e
pq ≤Dr

u ≤Σr
�p + Σr

�q + 2Σr,o
pq ⇔

Σr
�p + Σr

�q − 2
q

Σr
pΣr,e

q ≤Dr
u ≤Σr

�p + Σr
�q + 2

q
Σr

pΣr,o
q

We thus specify a tight lower boundDr
LB, as well as a tight upper

bound Dr
UB, for D when all levels from d to r have been read:

Dr
LB = Dr

k + Σr
�p + Σr

�q − 2
q

Σr
pΣr,e

q (7)

Dr
UB = Dr

k + Σr
�p + Σr

�q + 2
q

Σr
pΣr,o

q (8)

Using these nontraditional bounds, we can prune a candidate P
from a kNN result, when there exist k records such that the Dr

LB

of P is larger than their k Dr
UB values. Thus, a pre-computation of

sign bitmaps and sums assists us towards more efficient search. We
emphasize the fact that this double-bounding scheme is tighter than
those used in previous works using either DHWT [14, 41, 52] or
elsewhere [21, 34, 29, 37, 53, 33, 12, 11, 16]. The previously best-
known lower distance bound, given in [14], consists of the first term
of Eq. (7) alone, while the previously best-known upper distance
bound, given in [52], uses Σr

q =
Pr−1

�=1

P
i∈I�

22�q2
i in Eq. (8),

which is an overestimation, as it does not take into consideration the
signs of coefficients as we do. Furthermore, we re-iterate that we
do not use these bounds in the same way as traditional index-based
methods, but in a nontraditional manner for progressive pruning.
However, in our experimental study (Section 4.2) we compare our
method to a modified variant of itself that uses these looser bounds
[14, 41, 52] instead of the tighter ones that we derive.

A similar tight analysis applies to other multi-resolution trans-
forms. We have used the DHWT only as an arbitrary choice for
ease of illustration. The tightness of the bounds we compute de-
rives from our analysis, not from any property of the transform.
Based on our preceding analysis and the notations we have intro-
duced, we now outline the operation of our model in more detail.

3.2 Similarity Search
Our kNN search algorithm first computes the DHWT of the query

series Q and precalculates Σ�q and its sign bitmap. It then reads
the appropriate pre-computed sum quantities Σ�p, Σp, as well as
the sign bitmap, of each record P in the full candidate set C. Hav-
ing these bitmaps, it derives Σo

q and Σe
q for each P ∈ C. Then it

progressively reads their coefficients level-by-level, in a stepwise

manner. After reading the coefficients of all still active candidates
at level r, it adjusts the values of Dr

k, Σr
�p, Σr

�q , Σr
p, Σr,o

q , Σr,e
q

to r, and updates the bounds Dr
LB and Dr

UB according to Eqs. (7)
and (8), for each candidate record in C. Candidates that assume a
Dr

LB higher than the running kth Dr
UB value are eliminated from C

at each step. The process terminates when |C| = k.
In more detail, assume a candidate record P ∈ C, still active

at level r. After reading the level-r coefficients of P , the values
of Dr

k, Σr
�p, and Σr

p at level r are effectively derived from their
previous values at r + 1, as follows.

Dr
k = Dr+1

k + 2rP
i∈Ir

|pi − qi|2 (9)

Σr
�p = Σr+1

�p − 2rP
i∈Ir

p2
i (10)

Σr
p = Σr+1

p −Pi∈Ir
p2

i (11)

Likewise, the values of Σr
�q , Σr,e

q , and Σr,o
q at level r are adjusted

with respect to those at level r + 1 as follows.

Σr
�q = Σr+1

�q − 2rP
i∈Ir

q2
i (12)

Σr,o
q = Σr+1,o

q − 22rP
i∈O�

q2
i (13)

Σr,e
q = Σr+1,e

q − 22rP
i∈E�

q2
i (14)

While the same value of Σr
�q is used by each candidate record P ,

the values of Σr,o
q and Σr,e

q are specific for each P ∈C, as they de-
pend on the sign bitmap of P . Given the preceding computations,
the algorithm updates the values of Dr

LB and Dr
UB for each still ac-

tive candidate in C, and uses them to further prune this candidate set
C, until it reaches the desired cardinality. As all pruned candidates
have had a lower distance bound higher than the upper distance
bounds of at least k other candidates, the final result is correct.
The algorithm performs a significant amount of calculations for the
derivation of bounds. Thus, a careful implementation is important
to achieve its full potential. Section 3.3 provides a pseudo-code
and describes some critical implementation details. Our algorithm
requires that all time series to be stored in their full Haar wavelet
transform, and their sign bitmaps and sum-of-squares values to be
available. Our storage scheme is discussed in Section 3.6.

LB 1

LB 2
LB 3

LB 4

LB 6

LB 5

LB 7

UB 3

UB 5
UB 1

UB 2

UB 4

UB 6

UB 7

LB 4

 LB 2 LB 7

LB 3 LB 6

UB 1

LB 1 LB 5UB 6UB 3

UB 7UB 2

UB 5

UB 4

(a) unsorted candidate set C (b) C sorted by upper bound

Figure 3: Candidate Pruning
Figure 3 illustrates an example of our nontraditional pruning pro-

cess, where C contains 7 candidate records (Figure 3a), which are
sorted by upper bound (UB) in Figure 3b. If, for instance, k = 4,
then the two last candidates in Figure 3b are pruned, as their LB
values are higher than the 4th upper bound (UB3).

3.3 Pseudo-code and Implementation
Figure 4 presents a pseudo-code for our Stepwise algorithm.

Due to the large amount of calculations it performs, our algorithm
requires a careful implementation to perform at its full potential.
Our implementation pre-computes an array of q2

i values, to use
when adjusting sums in Step 7 (Eqs. (13) and (14)). During the
construction of this array, we also store sums of

P
i∈Ir

q2
i for each

level r, to be used when updating Σr
�q , which is computed once at

each level and used by all active candidates. Similar optimizations
are used in all calculations, avoiding redundancies and never com-
puting a quantity used in our equations more than once. At Step

1337

9, we maintain two priority queues of Dr
UB values: a max-heap of

the k smallest ones, and a min-heap of all the rest. During updates,
records can move between these two. Furthermore, we maintain
a linked-list of active candidate objects in C, with all associated
sum quantities. During pruning (Step 10), we delete disqualified
elements by sequentially scanning this list. We update the 2r and
22r values (in Equations (9), (10), (12)-(14)) by division at each
iteration. In terms of storage, we create multiple files per level at
deeper tree levels. Terms for 1000 time series are stored in one file
for each level. Each record occupies a new line in the file. We only
access files that contain at least one active candidate at each level.
We ensure each term occupies the same number of bytes on disk
and seek each term using its offset in the file. Thus, both files and
terms are accessed by ordered positional lookups.

Algorithm Stepwise(D, Q, k)
Input: Set of DWTs in data set D, query series Q

Required number of nearest neighbors k
Output: Set of k records in D closest to Q
1. transform Q to DWT, compute Σ�q , sign bitmap;
2. r = d; candidate set C = all records;
3. read Σ�p, Σp, sign bitmaps for records in C;
4. calculate Σo

q , Σe
q for each record in C;

5. while |C| > k
6. at level r, read terms of records in C;
7. adjustDr

k , Σr
�p, Σr

�q , Σr
p, Σr,o

q , Σr,e
q to level r;

8. updateDr
LB,Dr

UB for each candidate (Eqs. (7-8));

9. find kth Dr
UB value in C;

10. prune records havingDr
LB > kth Dr

UB from C
11. r = r − 1;
12. return C as result set;

Figure 4: Stepwise Similarity Search

3.4 Proof of Soundness
The correctness of our method is based on the assumption that

both calculated bounds become progressively tighter. We have hith-
erto assumed this to be the case. Still, this mathematical property
requires proof, which we offer in the following theorem. A similar
proof is given in [52], albeit for a looser bounding scheme.

THEOREM 1. The calculated lower bound of a distance calcu-
lation does not decrease from one level r + 1 to the successor level
r in the computation.

PROOF. We have to prove the difference between two consecu-
tively calculated lower distance bounds, from (upper) level r +1 to
(lower) level r, is non-negative, that is:

Dr
LB −Dr+1

LB ≥ 0

⇔
„
Dr

k + Σr
�p + Σr

�q − 2
q

Σr
pΣr,e

q

«
−„

Dr+1
k + Σr+1

�p + Σr+1
�q − 2

q
Σr+1

p Σr+1,e
q

«
≥ 0

⇔ 2r
X
i∈Ir

|pi − qi|2 −
X
i∈Ir

2rp2
i −

X
i∈Ir

2rq2
i

+ 2

„q
Σr+1

p Σr+1,e
q −

q
Σr

pΣr,e
q

«
≥ 0

⇔ 2

„q
Σr+1

p Σr+1,e
q −

q
Σr

pΣr,e
q

«
− 2 · 2r

X
i∈Ir

piqi ≥ 0

⇔
q

Σr+1
p Σr+1,e

q ≥
q

Σr
pΣr,e

q + 2r
X
i∈Ir

piqi (15)

By definition it is
P

i∈Ir
piqi =

P
i∈Er

piqi +
P

i∈Or
piqi,

where it holds that
P

i∈Er
piqi =

P
i∈Er

|piqi| ≥ 0, whileP
i∈Or

piqi =
P

i∈Or
−|piqi| ≤ 0. Thus, in order to prove Equa-

tion (15), it suffices to prove its stronger version:

q
Σr+1

p Σr+1,e
q ≥

q
Σr

pΣr,e
q + 2r

X
i∈Er

piqi (16)

Both sides of Eq. (16) are non-negative, hence it suffices to prove
the inequality of their squares. The square of the left-hand term is:

Σr+1
p Σr+1,e

q =

Σr

p +
X
i∈Ir

p2
i

!
·

Σr,e
q +

X
i∈Er

22rq2
i

!
=

Σr
pΣr,e

q + 22r
X
i∈Ir

p2
i

X
i∈Er

q2
i + 22rΣr

p

X
i∈Er

q2
i + Σr,e

q

X
i∈Ir

p2
i

(17)
Likewise, the square of the right-hand term is:

Σr
pΣr,e

q + 22r

 X
i∈Er

piqi

!2

+ 2 · 2r
q

Σr
pΣr,e

q ·
X
i∈Er

piqi (18)

The first terms in Eqs. (17) and (18) are identical, while the
second term of the former is not less than that of the latter, since:P

i∈Ir
p2

i

P
i∈Er

q2
i ≥

P
i∈Er

p2
i

P
i∈Er

q2
i ≥

“P
i∈Er

piqi

”2

where the last inequality is the Cauchy-Schwartz inequality. Thus,
to prove Equation (16), it suffices to prove that:

22rΣr
p

X
i∈Er

q2
i + Σr,e

q

X
i∈Ir

p2
i ≥ 2 · 2r ·

q
Σr

pΣr,e
q ·

X
i∈Er

piqi

(19)
From the inequality of arithmetic and geometric means we get:

22rΣr
p

X
i∈Er

q2
i + Σr,e

q

X
i∈Ir

p2
i ≥ 2 · 2r

q
Σr

pΣr,e
q

sX
i∈Ir

p2
i

X
i∈Er

q2
i

(20)
In addition, it holds that:sX
i∈Ir

p2
i

X
i∈Er

q2
i ≥

sX
i∈Er

p2
i

X
i∈Er

q2
i ≥

X
i∈Er

|piqi| =
X
i∈Er

piqi

(21)
where the latter inequality is, again, an application of the Cauchy-

Schwartz inequality. Eventually, the desired result (Eq. (19)) fol-
lows by putting Eqs. (20) and (21) together.

Along similar lines, it can be shown that the calculated upper
bound does not increase from one (upper) level r+1 to the (lower)
successor level r in the computation, i.e., the difference between
two consecutively calculated upper distance bounds is non-positive.

Quantity Level r = 3 Level r = 2
Dr

k(P1, Q) 4.0 24.0
Dr

k(P2, Q) 1.0 6.0
Σr

�p1
60.0 60.0

Σr
�p2

25.0 20.0

Σr
�q 28.0 8.0

Σr
p1

30.0 30.0

Σr
p2

11.25 10.0

Σr,o
q (P1) 8.0 8.0

Σr,e
q (P1) 8.0 8.0

Σr,o
q (P2) 0.0 0.0

Σr,e
q (P2) 96.0 16.0

Dr
LB(P1) 61.016 61.016

Dr
UB(P1) 122.984 122.984
Dr

LB(P2) 0.0 8.702
Dr

UB(P2) 54.0 34.0

Table 2: Calculation Example

3.5 Numerical Example
We offer a concrete numerical example of stepwise calculation of

the distance between a query time series and two candidate nearest
neighbors. Let P1 = {4, 8, 5, 7, 9, 1, 2, 8}, as in Figure 2, and

1338

P2 = {2, 6, 5, 7, 4, 6, 8, 4}. We wish to detect the nearest neighbor
to Q = {2, 4, 6, 8, 3, 5, 7, 5}. The DHWTs are:

W(P1) = {5.5, 0.5, 0, 0,−2,−1, 4,−3}
W(P2) = {5.25,−0.25,−1,−0.5,−2,−1,−1, 2}
W(Q) = {5, 0,−2,−1,−1,−1,−1, 1}

The actual distances between the candidates and the query are
DST (P1, Q) = 108 and DST (P2, Q) = 10. The stepwise cal-
culation of these distances starts out by reading the level-0 coeffi-
cients (i.e., the first two coefficients) of P1, P2 and Q. Thus, it ac-
cumulates the known distancesD3

k(P1, Q) = 8×(0.52+0.52) = 4
and D3

k(P2, Q) = 8 × (0.252 + 0.252) = 1. Furthermore, it ad-
justs the pre-computed sums of squares to derive the values that are
needed for the calculation of bounds. Table 2 depicts the calcula-
tion of these quantities for r = 3 and r = 2.

Apart from the conventional sum-of-squares quantities, we out-
line the computation of the sign-dependent quantities. For example,
Σ3,o

q (P1) consists of the sum of squares of coefficients in W(Q)

below level 3, weighted by 22�, which are opposite-signed to the re-
spective coefficients of P1, i.e., coefficients in the set O3(Q, P1)=
{−1, 1}, both in the (bottom) level 1, thus Σ3,o

q (P1)=22×(1+1)=
8. Likewise, Σ0,e

q (P1) consists of the sum of squares of weighted
coefficients inW(Q) below level 3 which are equally-signed to the
respective coefficients of P1, that is, bottom-level coefficients in
the set E3(Q, P1) = {−1,−1}, hence Σ3,o

q (P1) = 8. In a simi-

lar fashion, Σ3,o
q (P2) consists of the sum of 22�-weighted squares

of coefficients in W(Q) below level 3 which are opposite-signed
to the respective coefficients of P2, i.e., coefficients in the empty
set, thus Σ3,o

q (P1)=0. On the other hand, Σ3,e
q (P2) consists of the

sum of 22�-weighted squares of coefficients inW(Q) below level 3
that are equally-signed to the respective coefficients of P2, i.e., co-
efficients in the set E3(Q, P2)={−2,−1,−1,−1,−1,1}, in levels
2 and 1, hence Σ3,e

q (P2)=24×(4+1)+22×(1+1+1+1)=96.
Furthermore, Σ2,o

q (P1) limits itself to coefficients in W(Q) be-
low level 2 which are opposite-signed to the respective coefficients
of P1, that is, coefficients in the set O2(Q, P1), which is the same
as O3(Q, P1), thus Σ2,o

q (P1) = 8. In a similar fashion, the quan-
tities Σr

�p1 and Σr
p1 remain unchanged from level 3 to level 2,

since P1 has two zero coefficients in level 2, while Σ2,e
q (P1) = 8

also. Likewise, Σ2,o
q (P2) remain defined by the empty set, hence

Σ2,e
q (P1) = 0. Still, Σ3,e

q (P2) is now confined to set of coeffi-
cients in W(Q) below level 2 that are equally-signed to the re-
spective coefficients of P2, i.e., coefficients in the set E2(Q, P2)=
{−1,−1,−1,1}, in level 1, hence Σ3,e

q (P2)=22×(1+1+1+1)=16.
We can now compute the bounds at level r = 3 as:

D3
LB(P1, Q) = 4 + 60 + 28− 2

√
30× 8 = 61.016

D3
UB(P1, Q) = 4 + 60 + 28 + 2

√
30× 8 = 122.984

D3
LB(P2, Q) = 1 + 25 + 28− 2

√
11.25× 96 = −11.727

D3
UB(P2, Q) = 1 + 25 + 28 + 2

√
11.25× 0 = 54

The calculated value of −11.727 for D3
LB(P2, Q) is substituted

by 0 in Table 2, since a negative lower bound of distance is an
anomaly due to the loosened bound for the Σr,e

pq subtracted quan-
tity. The calculation of the boundsDr

LB(P1) andDr
UB(P1) does not

improve from level 3 to level 2, due to the zero values of P1 coef-
ficients at level 2 - the only difference in the calculation is that an
amount of energy of the Q signal is moved from Σr

�q toDr
k(P1, Q)

(see Table 2); thus, both of these bounds at level 3 are already as
tight as at level 2. Still, the calculations of the boundsDr

LB(P2) and
Dr

UB(P2) are refined at level r = 2 as below:

D2
LB(P2, Q) = 6 + 20 + 8− 2

√
10× 16 = 8.702

D2
UB(P2, Q) = 6 + 20 + 8 + 2

√
10× 0 = 34

The computation can proceed in this fashion at subsequent lev-
els. In our example, P1 is already pruned as a candidate 1st nearest
neighbor at level 3, since D3

LB(P1) = 61.016 > D3
UB(P2) = 54.

3.6 Storage Scheme
In our Stepwise algorithm, features of all records corresponding

to the same level of resolution need to be read at the same time.
Thus, I/O efficiency strongly depends on the availability of trans-
form terms for all records in a vertical fashion. A storage scheme
which allows the Stepwise method to take full advantage of its
bitmap-based double-bounding scheme is one in which features
(DHWT coefficients in our case) are stored grouped by level of res-
olution, instead of being grouped by record.

Thus, we store DWT coefficients level-by-level: level 0 for all
records, followed by level 1, level 2, and so on. In disk storage
terms, this scheme implies that in ‘higher’, lower-resolution Haar
tree levels, where there are less coefficients per record, more than a
single level of one record is stored per disk page. In ‘lower’, higher-
resolution levels, as the number of terms per record increases, a
single level of a single time series record can occupy more than
one disk page. Sums and sign bitmaps are stored independently.

In more detail, level � of the Haar tree (Figure 2) includes 2�

DWT terms (level 0 has 2 terms). Assuming a page size of B bytes
and b bytes per term, a page stores B

b
terms. Thus, level log B

b
of

a single record fits exactly in one disk page. Thereafter, level � of

each record occupies 2�−log B
b disk pages. For � < log B

b
, we store

the 2� level-� coefficients of 2log B
b
−� time series on the same disk

page. For example, if B = 1KB and b = 4bytes, then the 128
level-7 coefficients of 2 records are stored on the same page.

4. EXPERIMENTAL EVALUATION
In this section we experimentally evaluate the performance of

our Stepwise method compared to previous time-series kNN search
techniques. In Section 4.2, we compare to iSAX [46]. Then, in
Section 4.3, we compare to classical two-component methods; we
examine these techniques due to their long history, even though
their utility has been called into question [46]. Algorithms were
implemented in MS Visual C# 2005. Experiments ran on an Intel
Xeon 3Ghz server with 64GB of main memory and 150GB of hard
disk space running Windows Server 2003.

4.1 Description of Data
We used two synthetic data collections. The first, RandomWalk,

is created using the Random Walk time series generator available
in the iSAX package [1]. The seed of the generator was set at
1416. We produced data sets of 256-length time series, ranging
from 10, 000 to 10M . Each of these time series is z-normalized
(i.e., has mean 0 and standard deviation 1). The second collec-
tion, Patterns, is a synthetic data set created using the data gen-
eration algorithms in [22]; these generators were also used in [20]
and provided to us by those authors. The data consists of patterns
belonging to 4 classes. The positions and durations of the patterns
are randomized. Around the patterns, the signal is characterized by
independent Gaussian noise. We generated 1M records of length
1024, and used prefixes of them ranging from 10, 000 to 1M in
our experiments. The pattern range used by the process of [22]
was set at [80, 110]. To follow the conventions used in [46], we z-
normalized each time series of length 1024 (i.e., rendered the mean
of each record 0 and its standard deviation 1). We also generated

1339

0 1 2 3 4 5 6 7 8 9 10

x 106

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Size

In
de

xi
ng

 T
im

e
(S

ec
on

ds
)

iSAX
Stepwise

0 1 2 3 4 5 6 7 8 9 10

x 106

5

10

15

20

25

30

35

40

45

Size of random walk database

P
er

ce
nt

ag
e

of
 to

ta
l t

er
m

s
ac

ce
ss

ed

iSAX
Loose Stepwise
Stepwise

0 1 2 3 4 5 6 7 8 9 10

x 106

0

200

400

600

800

1000

1200

1400

Size of random walk database

Ti
m

e
(s

ec
on

ds
)

Sequential Scan
iSAX
Loose Stepwise
Stepwise
Stepwise I/O

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 106

Step

A
ct

iv
e

C
an

di
da

te
s

104

2X104

5X104

105

2X105

5X105

106

2X106

5X106

Data Sizes

(a) Indexing Time (b) Fraction of Data accessed (c) Search Time (d) Active Candidates per Step

Figure 5: Comparison to iSAX: Random Walk Data

records of length 256 and 512, 1024, with pattern range [16, 32] as
queries for our experiments with classical methods.

We also used two real world data sets characterized by diverse
features, originating from the UCR archive1, and created by sam-
pling a collection of constant-length subsequences from very large
time series. ECG, described in [36], results from concatenating 5
electrocardiograms to create a time series of length 144002; 10000
subsequences of length 256 were extracted as before. EEG derives
from the concatenation of 2 electroencephalogram signals of albin
rats, creating a series of length 10, 957, 312; 5000 subsequences of
length 256 were extracted at instances separated by 256 time in-
tervals (1 − 256, 257 − 512, . . .). For the purposes of evaluating
scalability versus length, we extracted 1000 time series of length
1024 from the ECG electrocardiogram data at instances separated
by 100 time intervals. Prefixes of the samples series were used to
evaluate performance for varying time series length.

4.2 Comparison to iSAX
We first compare our method to iSAX [46] on large data sets that

do not fit in main memory. We focus on examining how the two
methods scale with data set size. The word length for iSAX was
set at 10, while an iSAX file contained 100 time series, using the
settings of [46]. The storage scheme of Stepwise was configured to
store 1000 time series per file at each level. Separate files stored the
employed sums and sign bitmaps. We emphasize that the first two
experiments of this section are on z-normalized data, following the
standard set in [46], and the third on non-normalized real data.

Our first set of experiments is on the RandomWalk data. First,
we report the time required for indexing or creating all needed files,
with each method. Our results in Figure 5(a) show that this time is
more for iSAX. Next, we measure the ratio of accessed data to the
full amount of data on disk. As Stepwise employs no index, and
iSAX uses a minimal directory-based index with small overhead,
this benchmark allows for a fair comparison. The iSAX code is
configured to run for 1NN queries, hence we compare our methods
on such queries. Figure 5(b) presents our results averaged over 30
random query runs for both methods. Stepwise maintains a fairly
constant ratio of accessed data. This result indicates its reliability.
iSAX starts out with a clear disadvantage for small sizes; reduces
its percentage as size grows, but remains at a disadvantage.

We have emphasized that Stepwise owes its effectiveness to its
tight bitmap-based double-bounding scheme, much tighter than those
in previous works. To demonstrate its impact, we run a loose vari-
ant of Stepwise that employs the DHWT bounds calculated in [14,
41, 52] (see Section 3.1); this loose variant of Stepwise is not sug-
gested in these works; [14, 41] apply traditional index-based prun-
ing, while [52] conducts distributed time-series similarity search,
where the aim to reduce not the I/O cost, but the communication
cost among server and clients. Figure 5(b) shows that the loose

1
See http://www.cs.ucr.edu./˜eamonn/time_series_data

variant of Stepwise reads more terms than its tight counterpart, but
still less than iSAX. Thus, remarkably, not only the tight-bound
version of our Stepwise approach, but also its loose-bound vari-
ant, outperforms the state-of-the-art iSAX method in this experi-
ment. Figure 5(c) shows our wall-clock time results, including the
time for search by sequential scan. The data access advantage of
Stepwise translates to a wall-clock time advantage. We observe
that the time of iSAX grows linearly at the same rate as the time of
sequential scan, while that of stepwise grows more modestly.

Stepwise raises high computational demands. In order to gauge
their effect, we run a version of Stepwise that eschews all calcu-
lations, using precalculated quantities instead; it performs disk I/O
only. Figure 5(c) shows the time required by this I/O-only method.

1 2 3 4 5 6 7 8 9 10

x 105

0

20

40

60

80

100

Size of Two Pattern database

P
er

ce
nt

ag
e

of
 to

ta
l t

er
m

s
ac

ce
ss

ed

iSAX
Stepwise

104 105 106

101

102

103

Size of Two Pattern database

Ti
m

e
(s

ec
on

ds
)

iSAX
Stepwise
Stepwise I/O
Sequential Scan

(a) Fraction of Data accessed (b) Search Time

Figure 6: Comparison to iSAX: Two-Pattern Data

Our second set of experiments is on the Patterns data of length
1024. We issue (z-normalized) random-walk queries of the ap-
propriate length and average the results over 30 queries. Figure
6 shows the results on the fraction of data accessed and the wall-
clock time. The results reconfirm our previous findings, reveal-
ing a poorer performance for iSAX. Now iSAX needs to access
most of the data, while Stepwise accesses only a small fraction
thereof. This fraction is predictably higher with these length-1024
z-normalized data, but still safely low. Most significantly, we find
that the runtime of iSAX can be higher than that of a sequential
scan. Stepwise performs two orders of magnitude better than iSAX
in this experiment, as seen in Figure 6(b), which is in log-log axes.

0 1 2 3 4 5 6 7 8 9 10

x 104

40

50

60

70

80

90

100

110

Size of EEG database

P
er

ce
nt

ag
e

of
 to

ta
l t

er
m

s
ac

ce
ss

ed

iSAX
Loose Stepwise
Stepwise

0 1 2 3 4 5 6 7 8 9 10

x 104

0

5

10

15

20

25

Size of EEG database

Ti
m

e
(s

ec
on

ds
)

Sequential Scan
iSAX
Loose Stepwise
Stepwise
Stepwise I/O

(a) Fraction of Data accessed (b) Search Time

Figure 7: Comparison to iSAX: EEG (real data)

1340

We also compared to iSAX on non-uniform and non-normalized
real data. Figure 7 shows our results with different sizes of the EEG
data set, queried by time series extracted from the same electroen-
cephalogram series. The time of a sequential scan is also shown
in Figure 7(b). These results corroborate our previous findings.
Stepwise performs better than iSAX, which does not manage to ac-
cess significantly less than 100% of the data. This finding is even
more noteworthy, as it is observed with real data. Thus, we expect
that a full sequential scan will outperform iSAX in this experiment.
Figure 7(b) verifies our expectation. We also include measure-
ments for the loose variant of Stepwise, which reads much more
data than its tight counterpart. Still, their time difference is not so
pronounced; this result indicates that Stepwise poses a tradeoff be-
tween disk I/O and bounding computations: it takes more CPU time
to perform the distance-bounding computations that save I/O time.
The results with the I/O-only variant confirm this observation. We
expect that Stepwise will then have a still greater advantage over
less CPU-intensive methods on a faster CPU.

We have argued that Stepwise has an advantage over one-off
pruning methods thanks to its nontraditional progressive candidate
elimination. Still, this approach may not be worthwhile if candi-
dates are already eliminated in the first pruning step. To confirm its
worthiness, Figure 5(d) presents the number of active candidates
left after each pruning step in the experiments in Figure 5; each
line shows the average number of candidates per step for queries on
one data size. While the largest elimination is done in the first step
(which reads the four terms in the first two DHWT levels), a sub-
stantial number of candidates remains. Even if each new step elimi-
nates less candidates than its predecessor, this elimination may still
amount to a larger chunk of terms, as each subsequent DHWT level
involves twice the size of its predecessor. Thus, even when only a
few candidates are left, avoiding to read the next levels for some of
them is worth the pruning effort.

4.3 Comparison to Classical Techniques
We now compare our approach to the most advanced classical

kNN-search techniques, namely the methods based on APCA [12],
CP [11], and PLA [16], with an R-tree index. Existing implemen-
tations of these methods operate in main memory, simulating disk
page accesses, hence use data sets that fit in main memory. We
conduct our investigation using the same conventions as [12, 11,
16] in this respect. We do not compare to predecessor methods,
such as, e.g., the one using the DWT; the pruning power of the
two-component method with DWT is the same as with PAA [33],
which is in its turn superseded by the APCA method that we com-
pare to. Thus, any benefit that we observe for Stepwise cannot be
attributed to any assumed benefit of using the DWT. Our search al-
gorithm and pruning scheme are not the same as the ones employed
by these index-based methods, hence we cannot conduct our com-
parison using a pruning power metric; index-based method have
been traditionally compared in terms of such metrics to each other,
yet the rationale for this comparison does not apply in our case.

We measure the I/O cost in terms of page accesses necessitated
by each method for kNN query processing with respect to length.
Such I/O cost is measured in [12, 11, 16]. To create a level play-
ing field, we assume zero cache and measure the number of pages
faults, that is, page accesses. For Stepwise, we measure page ac-
cesses according to the disk storage scheme discussed in Section
3.6; by this scheme, pages are accessed in sequential order, while
some pages are skipped; no page is accessed more than once. With
all methods, we report data for 1KB disk page size and 4bytes per
coefficient. Our results for larger page size (as is common in mod-
ern machines) were less favorable to classical methods.

Previous research has usually set the dimensionality of the fea-
ture space for methods based on a spatial access index at a fixed
value, such as 12, with all the data it experimented with [12, 11,
16]. Yet a fixed dimensionality may not always represent the best
point in the tradeoff between filtering and refinement (Figure 1(a)).
We try dimensionality ranging from 3 to 20 with each index-based
method and data set, and select the one that achieves the best per-
formance; the optimal choice is strongly data-dependent.

10 15 20 25 30 35 40
0

50

100

150

200

250

300

k

pa
ge

s
ac

ce
ss

ed

CP(10)
PLA(8)
APCA(6)
Stepwise

300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

length

pa
ge

s
ac

ce
ss

ed

CP(8,8,10)
PLA(14,14,14)
APCA(4,12,14)
Stepwise

(a) I/O vs. k (b) I/O vs. length

Figure 8: Page accesses vs. k & length, ECG

In extensive experiments, Stepwise outperformed these classical
techniques. We also measured the preprocessing time required by
Stepwise to be negligible compared to the indexing time required
by these methods. We present two representative results. We first
show the I/O cost of kNN search operations on the ECG data as a
function of k. We create 100 query records of appropriate length
using the data generation algorithms in [22] (see Section 4.1), and
average the results over them on each data set. Figure 8(a) shows
our results. The numbers in parentheses in the legend show the
chosen dimensionality that exhibited best search performance with
the given method. We observe a clear advantage for Stepwise. In-
terestingly, the I/O cost of Stepwise does not grow monotonically
with k. A higher value of k may allow for lower cost, since the
search terminates as soon as a candidate set is reduced to k mem-
bers; on the other hand, the bound-based pruning potential is larger
for lower values of k; thus, the effect of k on the efficiency of
search is not straightforward. We also examine how our findings
scale with respect to time series length. We use different-length
versions of the ECG data on 100 queries of appropriate length cre-
ated and with results averaged as before. Figure 8(b) presents these
results, with k = 10. Again, the best-choice R-tree dimensionality
is shown in parentheses per method and length. The advantage of
Stepwise becomes more discernable with increasing length.

Overall, our results confirm our expectations, the comparison to
iSAX being most significant. They also indicate that Stepwise pro-
vides a viable solution for data sets of longer time series records,
with which the problem is more challenging.

5. CONCLUSIONS
This paper revisited the time-series kNN search problem and

provided a solution that can effectively and scalably handle high-
length time series. Instead of utilizing an index, we search in a step-
wise manner, whereby records are progressively read and pruned at
multiple levels of resolution; thus false hits are eliminated with-
out being read in their full length. Our method could be used with
any multi-resolution transform that allows for the computation of
distance bounds at multiple levels of resolution; for ease of presen-
tation, we opted for the Discrete Haar Wavelet Transform. Using
pre-computed information, we provide double (i.e., not only lower,
but also upper) bounds, tighter than those calculated in previous
works. We utilize these bounds in a nontraditional, efficient grad-
ual pruning of candidates facilitated by a vertical storage scheme
where features are stored grouped by level of resolution. Thus,

1341

we build a novel solution to the problem. Our experimental study
shows that our method has an advantage over the state-of-the-art
iSAX method and classical index-based methods.

Acknowledgments
We are grateful to Eamonn Keogh, who provided us with the iSAX
code, data sets, and data generators, and to Lei Chen, who shared
with us codes for the classical methods. We also thank Stavros
Papadopoulos and Yin Yang for occasional musings on this topic.

6. REFERENCES
[1] iSAX page. http://www.cs.ucr.edu/ eamonn/iSAX/iSAX.html.

[2] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity
search in sequence databases. In FODO, 1993.

[3] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for
approximate nearest neighbor searching. J. ACM, 57(1), 2009.

[4] I. Assent, R. Krieger, F. Afschari, and T. Seidl. The TS-tree: efficient
time series search and retrieval. In EDBT, 2008.

[5] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R∗-tree: an efficient and robust access method for points and
rectangles. In SIGMOD, 1990.

[6] S. Berchtold, C. Böhm, H. V. Jagadish, H.-P. Kriegel, and J. Sander.
Independent quantization: An index compression technique for
high-dimensional data spaces. In ICDE, 2000.

[7] S. Berchtold, C. Böhm, and H.-P. Kriegal. The pyramid-technique:
towards breaking the curse of dimensionality. In SIGMOD, 1998.

[8] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An index
structure for high-dimensional data. In VLDB, 1996.

[9] S. Blott and R. Weber. What’s wrong with high-dimensional
similarity search? PVLDB, 1(1):3–3, 2008.

[10] C. Böhm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for improving the
performance of multimedia databases. ACM Computing Surveys,
33(3):322–373, 2001.

[11] Y. Cai and R. Ng. Indexing spatio-temporal trajectories with
Chebyshev polynomials. In SIGMOD, 2004.

[12] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally
adaptive dimensionality reduction for indexing large time series
databases. ACM TODS, 27(2):188–228, 2002.

[13] K. Chakrabarti and S. Mehrotra. The hybrid tree: An index structure
for high dimensional feature spaces. In ICDE, 1999.

[14] K.-P. Chan and A. W.-C. Fu. Efficient time series matching by
wavelets. In ICDE, 1999.

[15] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search
for moving object trajectories. In SIGMOD, 2005.

[16] Q. Chen, L. Chen, X. Lian, Y. Liu, and J. X. Yu. Indexable PLA for
efficient similarity search. In VLDB, 2007.

[17] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access
method for similarity search in metric spaces. In VLDB, 1997.

[18] B. Cui, B. C. Ooi, J. Su, and K.-L. Tan. Indexing high-dimensional
data for efficient in-memory similarity search. IEEE TKDE,
17(3):339–353, 2005.

[19] A. P. de Vries, N. Mamoulis, N. Nes, and M. Kersten. Efficient kNN
search on vertically decomposed data. In SIGMOD, 2002.

[20] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh.
Querying and mining of time series data: experimental comparison
of representations and distance measures. PVLDB, 1(2), 2008.

[21] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In SIGMOD, 1994.

[22] P. Geurts. Pattern extraction for time series classification. In PKDD,
2001.

[23] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In VLDB, 1999.

[24] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In SIGMOD, 1984.

[25] J. M. Hellerstein, E. Koutsoupias, and C. H. Papadimitriou. On the
analysis of indexing schemes. In PODS, 1997.

[26] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM TODS, 24(2):265–318, 1999.

[27] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In STOC, 1998.

[28] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance:
An adaptive B+-tree-based indexing method for nearest neighbor
search. ACM TODS, 30(2):364–397, 2005.

[29] K. V. R. Kanth, D. Agrawal, and A. Singh. Dimensionality reduction
for similarity searching in dynamic databases. In SIGMOD, 1998.

[30] P. Karras and N. Mamoulis. One-pass wavelet synopses for
maximum-error metrics. In VLDB, 2005.

[31] P. Karras and N. Mamoulis. The Haar+ tree: a refined synopsis data
structure. In ICDE, 2007.

[32] N. Katayama and S. Satoh. The SR-tree: an index structure for
high-dimensional nearest neighbor queries. In SIGMOD, 1997.

[33] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra.
Dimensionality reduction for fast similarity search in large time
series databases. Knowl. Inf. Syst., 3(3):263–286, 2001.

[34] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad
hoc queries in large datasets of time sequences. In SIGMOD, 1997.

[35] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas.
Fast nearest neighbor search in medical image databases. In VLDB,
1996.

[36] A. Koski, M. Juhola, and M. Meriste. Syntactic recognition of ECG
signals by attributed finite automata. Pattern Recognition,
28(12):1927–1940, 1995.

[37] J.-H. Lee, D.-H. Kim, and C.-W. Chung. Multi-dimensional
selectivity estimation using compressed histogram information. In
SIGMOD, 1999.

[38] X. Lian, L. Chen, J. X. Yu, J. Han, and J. Ma. Multiscale
representations for fast pattern matching in stream time series. IEEE
TKDE, 21(4):568–581, 2009.

[39] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a novel
symbolic representation of time series. Data Min. Knowl. Discov.,
15(2):107–144, 2007.

[40] K. I. Lin, H. V. Jagadish, and C. Faloutsos. The TV-tree: an index
structure for high-dimensional data. The VLDB Journal,
3(4):517–542, 1994.

[41] I. Popivanov and R. J. Miller. Similarity search over time-series data
using wavelets. In ICDE, 2002.

[42] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. In SIGMOD, 1995.

[43] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-tree:
An index structure for high-dimensional spaces using relative
approximation. In VLDB, 2000.

[44] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor
search. In SIGMOD, 1998.

[45] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A
dynamic index for multi-dimensional objects. In VLDB, 1987.

[46] J. Shieh and E. Keogh. iSAX: indexing and mining terabyte sized
time series. In KDD, 2008.

[47] H. Sun, Ö. Öztürk, and H. Ferhatosmanoğlu. CoMRI: A compressed
multi-resolution index structure for sequence similarity queries. In
CSB, 2003.

[48] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high
dimensional nearest neighbor search. In SIGMOD, 2009.

[49] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces. In VLDB, 1998.

[50] D. Wu, A. Singh, D. Agrawal, A. El Abbadi, and T. R. Smith.
Efficient retrieval for browsing large image databases. In CIKM,
1996.

[51] H. Wu, B. Salzberg, and D. Zhang. Online event-driven subsequence
matching over financial data streams. In SIGMOD, 2004.

[52] M.-Y. Yeh, K.-L. Wu, P. S. Yu, and M.-S. Chen. LEEWAVE:
Level-wise distribution of wavelet coefficients for processing kNN
queries over distributed streams. In VLDB, 2008.

[53] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary
Lp norms. In VLDB, 2000.

[54] C. Yu, B. C. Ooi, K.-L. Tan, and H. V. Jagadish. Indexing the
distance: An efficient method to kNN processing. In VLDB, 2001.

1342

