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ABSTRACT

How can we efficiently and scalably cluster high-dimensional data?

The 𝑘-means algorithm clusters data by iteratively reducing intra-

cluster Euclidean distances until convergence. While it finds appli-

cations from recommendation engines to image segmentation, its

application to high-dimensional data is hindered by the need to re-

peatedly compute Euclidean distances among points and centroids.

In this paper, we proposeMarigold (𝑘-means for high-dimensional

data), a scalable algorithm for 𝑘-means clustering in high dimen-

sions.Marigold prunes distance calculations by means of (i) a tight

distance-bounding scheme; (ii) a stepwise calculation over a mul-

tiresolution transform; and (iii) exploiting the triangle inequality. To

our knowledge, such an arsenal of pruning techniques has not been

hitherto applied to 𝑘-means. Our work is motivated by time-critical

Angle-Resolved Photoemission Spectroscopy (ARPES) experiments,

where it is vital to detect clusters among high-dimensional spec-

tra in real time. In a thorough experimental study with real-world

data sets we demonstrate that Marigold efficiently clusters high-

dimensional data, achieving approximately one order of magnitude

improvement over prior art.
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1 INTRODUCTION

Data in very high-dimensional spaces arises in the health sciences,

astronomy, physics, finance, surveillance, bioinformatics, and via
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the datafication of human society [24, 25, 29]. To analyze such data,

we need to tailor data science methods for high-dimensional spaces.

A prominent data science method used to automatically discover

groupings in a raw data distribution and as an initial step before

further analysis is 𝑘-means clustering by Lloyd’s algorithm [30]. As

an unsupervised method, it does not necessitate any annotations on

the raw data as input; it partitions the data into 𝑘 disjoint groupings,

or clusters, such that each data record is closer to its allocated clus-

ter’s center or representative, by a given distance function, than to

others. The distance function is usually Euclidean distance [16, 47],

forming a Voronoi/Dirichlet tessellation among cluster centers [41].

While 𝑘-means clustering has been extensively applied and en-

hanced in terms of choosing the value of𝑘 [6, 26, 33, 39, 43], initializ-

ing cluster centers [44, 45, 48], and handling many small clusters [9],

such methods evade scaling up the exact 𝑘-means solution to very

high dimensions. The main bottleneck is calculating distances from

each data record to each candidate cluster center in each itera-

tion. For instance, a method focused on high-dimensional data

records deals with data of only up to 100 features per document [9].

Some methods aim to eschew calculating high-dimensional dis-

tances [16, 18, 46], yet fully calculate distances that pass a filtering

step. To our knowledge, no previous work aims to calculate high-

dimensional distances only partially for the sake of time-efficiency

without affecting the 𝑘-means clustering result.

In this paper we introduceMarigold: a pruning-intensive refor-

mulation of Lloyd’s algorithm that uses bounds based on the trian-

gle inequality, as in [16, 18], and, unprecedentedly, a lightweight

pre-processing and a tight double-bounding scheme along with a

stepwise distance calculation over an energy-concentrating trans-

formation to trim high-dimensional distance calculations during

iterations. Marigold delivers the exact result of Lloyd’s algorithm

in at least one order of magnitude less time.

Motivating application.Marigold addresses a real-world need in

time-critical Angle-Resolved Photoemission Spectroscopy (ARPES)

condensed-matter physics experiments, where the high-dimen-

sional spectra of a solid’s electronic structure need to be clustered in

real time, and even repetitively under modification of experimental

parameters. In this application, clustering in reduced dimension-

ality can miss important physical properties of materials, while

standard Lloyd’s takes a prohibitive amount of time.



2 BACKGROUND

A clustering partitions a set of 𝑁 -dimensional points X to disjoint

sets or clusters. In 𝑘-means, a cluster X𝑖 ⊆ X is represented by a

centroid c𝑖 being the mean of the points therein:

c𝑖 =
1

|X𝑖 |
∑︁

x∈X𝑖

x

The compactness of a cluster 𝑖 is the sum of the squared Euclidean

distances among points in a cluster and its centroid:

∑︁

x∈X𝑖

𝑑 (x, c𝑖 )2 =
∑︁

x∈X𝑖

∥x − c𝑖 ∥2 =
∑︁

x∈X𝑖

𝑁
∑︁

𝑗=1

(x𝑗 − c𝑖 𝑗 )2 (1)

The 𝑘-means problem is to find a clustering C of 𝑘 clusters that

minimizes total compactness.

Algorithm 1 Lloyd (X, 𝑘)

1: C ← Sample(𝑘,X) ⊲ sample 𝑘 points from X

2: while not 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do

3: for all x in X do ⊲ assign points to centroids

4: 𝛼 [x] ← arg minc{𝑑 (x, c)}
5: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← Recalculate (X, C, 𝛼 [X]) ⊲ Algorithm 2

6: return 𝛼 [X]

Algorithm 2 Recalculate (X, C, 𝛼 [X])
1: C𝑜𝑙𝑑 ← C
2: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← true

3: for all c in C do ⊲ recalculate centroid positions

4: c←Mean ({x ∈ X|𝛼 [x] = c}) ⊲ new centroid

5: 𝑑𝑖𝑣 [c] ← 𝑑 (c, c𝑜𝑙𝑑 ) ⊲ centroid divergence

6: if 𝑑𝑖𝑣 [c] > 𝜖 then 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← false

7: return 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑, 𝑑𝑖𝑣 [C]

2.1 Lloyd’s algorithm

As the 𝑘-means problem is NP-hard [30], it is addressed by heuris-

tics; Lloyd’s algorithm [17, 30], starting with a set of 𝑘 centroids,

repetitively assigns each point to the nearest centroid’s cluster by

Euclidean distance and recalculates each centroid as the mean of

its members’ positions until convergence. In effect, it repetitively

computes O(𝑘𝑛) distances between points and centroids; this com-

putation becomes prohibitive as dimensionality 𝑁 grows [32]. Al-

gorithm 1 presents the pseudocode, while Algorithm 2 presents the

subroutine that recalculates centroid positions until they converge.

Several enhancements on Lloyd’s algorithm have been proposed:

choosing an appropriate value of𝑘 [6, 33] by the Elbowmethod [26],

gap statistics [43], or the Silhouette method [39]; selecting initial

cluster centers [44, 48] by 𝑘-means++ [45]; addressing the problem

with many small clusters by nearest-neighbor search from cluster

centers, rather than from observation points [9]; avoiding distance

computations by utilizing the triangle inequality [16, 18]. We review

these triangle-inequality-based methods next.

2.2 Applying the triangle inequality

To prune the O(𝑘𝑛) point-to-centroid Euclidean distance computa-

tions, Elkan [16] leverages the triangle inequality in a metric space,

by which, for any point x and centroids c𝑖 and c𝑗 , it holds that:

𝑑 (c𝑖 , c𝑗 ) ≤ 𝑑 (x, c𝑖 ) + 𝑑 (x, c𝑗 ) (2)

𝑑 (x, c𝑖 ) ≤ 𝑑 (c𝑖 , c𝑗 ) + 𝑑 (x, c𝑗 ) (3)

𝑑 (x, c𝑗 ) ≤ 𝑑 (c𝑖 , c𝑗 ) + 𝑑 (x, c𝑖 ) (4)

The following lemma follows directly from Equations (2) and (3):

Lemma 2.1. 𝑑 (x, c𝑗 ) ≥ |𝑑 (x, c𝑖 ) − 𝑑 (c𝑖 , c𝑗 ) |
By Lemma 2.1, if we know 𝑑 (x, c𝑖 ) and 𝑑 (c𝑖 , c𝑗 ), we can lower-

bound 𝑑 (x, c𝑗 ). Further, if 𝑑 (c𝑖 , x) ≤
𝑑 (c𝑖 ,c𝑗 )

2 , then, from Equa-

tion (2) it follows that 𝑑 (x, c𝑖 ) ≤ 1
2

[

𝑑 (x, c𝑖 ) + 𝑑 (x, c𝑗 )
]

, which im-

plies that 𝑑 (x, c𝑖 ) ≤ 𝑑 (x, c𝑗 ). Formally:

Lemma 2.2. If 𝑑 (x, c𝑖 ) ≤
𝑑 (c𝑖 ,c𝑗 )

2 , then 𝑑 (x, c𝑖 ) ≤ 𝑑 (x, c𝑗 )
By Lemma 2.2, if c𝑖 ’s distance from x is at most half its distance

from any other centroid, then c𝑖 is nearest to x. Thus, x may be

re-assigned from c𝑖 to c𝑗 only if 𝑑 (x, c𝑖 ) > 𝑑 (c𝑖 , c𝑗 )/2; in effect, these

lemmata prune recomputing point-to-centroid distances using inter-

centroid distances and prior point-to-centroid distances.

Hamerly [18] proposed two further conditions to eschew dis-

tance computations. The first condition utilizes a lower bound ℓ𝐻
on the distance to a point’s nearest non-assigned centroid. At any

iteration, if an upper bound for the distance to a point x’s currently

nearest centroid derived by Lemma 2.2 is no more than ℓ𝐻 , then

the nearest centroid to x remains unchanged. The second condition

uses centroid-to-centroid distances as in Lemma 2.2.

2.3 Other related work

We accelerate Lloyd’s algorithm in high dimensions by pruning its

calculations. Other works, which do not address the same problem,

render Lloyd more robust via seeding, accelerate it in low dimen-

sions via indexing, and provide guarantees on top of a presumed

approximation algorithm via dimensionality reduction. These goals

are orthogonal to ours as we explain in the following.

Seeding. 𝑘-means++ [45] boosts the stability of Lloyd through a

smart initialization, extended to a stream setting [2]; 𝑘-means∥ [4]
allows for parallelization of 𝑘-means++ via oversampling. These

are orthogonal works, as they cater to initialization only.

Index-based. Some techniques accelerate𝑘-means by indexing [35].

Others propose using cosine similarity and use an inverted index

to assign points to centroids [9]. However, such works require an

additional O(𝑛 log𝑛) pre-computation for index building, while

indexing in high dimensions is problematic in itself; thus, unfortu-

nately, such methods do not address high-dimensional 𝑘-means.

Sampling. Sampling methods [21, 40] select a fixed amount of

points to cluster. However, such techniques still require many sam-

ples when clusters are small. Kumar et al. [27] samples a fixed

number of points to devise a 1/𝜖-approximate solution linear in 𝑛

and 𝑁 but, unfortunately, exponential in 𝑘 . Our proposal are or-

thogonal to, and may be used along with, such sampling methods.

Dimensionality reduction. Several works study 𝑘-means on di-

mensionality reduced compared to the inherent dimensionality of



the data, and eventually independent thereof [5, 7, 12], leading

to the currently best (1 + 𝜖)-approximation with O(log(𝑘/𝜖)/𝜖2))
dimensions in [31]. However, such methods typically assume a pre-

existing 𝛾-approximation of the optimal k−𝑚𝑒𝑎𝑛𝑠 solution, yet re-

sort to the Lloyd’s algorithm to obtain a good solution in practice [8].

Further, the assumed reduced dimensionality is still high in practice;

it depends on 1/𝜖2, which corresponds at least to 𝑁 > 104 [8] to

achieve a 10% deviation from the optimal solution, even assuming

a 𝛾-approximation algorithm were available. Our work is orthog-

onal and complementary to such approaches, which still require

running Lloyd’s algorithm in a significant number of dimensions;

thus, improving the scalability of Lloyd’s algorithm would provide

a direct benefit on real-world data science applications and also

enhance the usability of such theoretical advances.
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Figure 1: 𝑘-means for nanoARPES: (a) a light pulse illumi-

nates a position on the sample surface to emit electrons of

variant energy and angle; (b) a high-dimensional photoemis-

sion intensity image represents electronic structure at each

position; (c) 𝑘-means detects electronic structure areas.

3 APPLICATION DOMAIN

The need to scale 𝑘-means to high-dimensional data arises in Angle-

Resolved Photo-Emission Spectroscopy (ARPES), an experimental

method in condensed-matter physics that studies the electronic

structure of materials [37]. In an ARPES experiment, electrons are

excited from a sample by means of ultraviolet light exploiting the

photoelectric effect. We focus on spatially-resolved ARPES, also

called nanoARPES due to its high resolution [19, 38]: as Figure 1

shows, a finely focused light spot is raster-scanned across a sam-

ple to yield, at each position, a photoemission intensity image, or

spectrum, that records photoemission intensity as a function of

electron energy 𝐸kin and emission angle 𝜃 ; such spectra encode the

material’s band structure and its electronic properties.

The development of photon sources and detectors has increased

the measurable parameter space, data dimensionality, and acqui-

sition rate. Machine learning methods have proven effective at

spotting differences in ARPES data [24, 34, 36], yet they resort to

dimensionality reduction that risks missing essential features. As

the cost of acquisition remains high and the time of access to the

required light sources such as synchrotrons or free-electron lasers

is limited, physicists need to quickly extract clusters from a stack

of photoemission images at high dimensionality to make real-time

decisions on how to proceed during an experimental data-collection

session; to this end, we aim at accelerating 𝑘-means clustering on

high-dimensional data as those arising in nanoARPES.

4 MARIGOLD

While Elkan’s and Hamerly’s methods [16, 18] reduce distance

calculations, their runtime is still prohibitive on high data dimen-

sionality. After all, by those methods, once a distance passes the

filtering step, it is fully calculated. Arguably, a method should prune

distance calculations even after a first filtering step, i.e., perform par-

tial distance calculations with early abandonment. Here we devise

Marigold, a method that utilizes a hierarchical energy-concen-

trating feature transformation to gradually calculate distances over

the feature hierarchy, on top of triangle-inequality-based pruning.

We first show how to exploit the triangle inequality utilizing both

of [16, 18] and then illustrate the stepwise calculation of distances.

Algorithm 3 Triangle-based 𝑘-means (X, 𝑘)

1: C ← Sample(𝑘,X) ⊲ initial cluster centers

2: 𝛼 [X] = ∅ ⊲ null assignment

3: ℓ𝐸 (X, C)= ℓ𝐻 (X)=𝑛𝑒𝑎𝑟 [C]=0 ⊲ initialize lower bounds

4: 𝑢𝐸 (X)=∞ ⊲ initialize upper bounds

5: while not 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do ⊲ main loop

6: for all x in X do ⊲ assign points to centroids

7: if 𝑢𝐸 (x) > max{𝑛𝑒𝑎𝑟 [𝛼 [x]], ℓ𝐻 (x)} then ⊲ Hamerly

8: ℓ𝐸 (x, 𝛼 [x]) ← 𝑑 (x, 𝛼 [x]) ⊲ Elkan’s LB

9: 𝑢𝐸 (x) ← 𝑑 (x, 𝛼 [x]) ⊲ Elkan’s UB

10: for all {c ∈ C|c ≠ 𝛼 [x]} do ⊲ Elkan check

11: if 𝑢𝐸 (x)>max {ℓ𝐸 (x, c), 𝑑 (𝛼 [x], c)/2} then
12: ℓ𝐸 (x, c) ← 𝑑 (x, c) ⊲ calculate dist.

13: if 𝑑 (x, c) < 𝑢𝐸 (x) then
14: 𝛼 [x] ← c

15: 𝑢𝐸 (x) ← 𝑑 (x, c) ⊲ Elkan’s UB

16: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑, 𝑑𝑖𝑣 [C] ← Recalculate (X, C, 𝛼 [X]) ⊲ Alg. 2

17: if not 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 then

18: UpdateBounds (X, C, ℓ𝐸 , 𝑢𝐸 , ℓ𝐻 , 𝑑𝑖𝑣, 𝑛𝑒𝑎𝑟 ) ⊲ Alg. 4

19: return 𝛼 [X]

Algorithm 4 UpdateBounds (X, C, ℓ𝐸 , 𝑢𝐸 , ℓ𝐻 , 𝑑𝑖𝑣, 𝑛𝑒𝑎𝑟 )
1: for all x in X do ⊲ update bounds

2: for all c in C do ⊲ Elkan’s LB

3: ℓ𝐸 (x, c) ← max{0, ℓ𝐸 (x, c) − 𝑑𝑖𝑣 [c]}
4: 𝑢𝐸 (x) ← 𝑢𝐸 (x) + 𝑑𝑖𝑣 [𝛼 [x]] ⊲ Elkan’s UB

5: ℓ𝐻 (x) ← min{ℓ𝐸 (x, c ≠ 𝛼 [x])} ⊲ Hamerly’s LB

6: for all c in C do

7: 𝑛𝑒𝑎𝑟 [c] ← 1
2 minc′≠c{𝑑 (c, c′)} ⊲ nearest other centroid

8: return ℓ𝐸 , 𝑢𝐸 , ℓ𝐻 , 𝑛𝑒𝑎𝑟

4.1 Applying the triangle inequality

Both Elkan [16] and Hamerly [18] exploit the triangle inequality

to contain distance calculations, yet their methods have yet to be

combined. In Algorithm 3, we put together all opportunities, derived

from [16] and [18], to avoid distance calculations using bounds

derived from the triangle inequality, while assigning data points to

centroids. Algorithm 4 presents the bound update subroutine. We

use the following bounds to eschew distance calculations:

Elkan’s lower bound ℓ𝐸 (x, c) bounds the distance from x to cen-

troid c as the latter moves in one iteration so that 𝑑 (x, c) ≥ ℓ𝐸 (x, c).



Line 8 of Algorithm 3 resets ℓ𝐸 (x, 𝛼 [x]) to the distance from x to

its assigned centroid in each iteration (bar the first one), 𝑑 (x, 𝛼 [x]),
as soon as that distance is calculated. Thereafter, in Line 11, if

the distance from x to its currently assigned centroid 𝛼 [x] exceeds
both ℓ𝐸 (x, c) for a centroid c and the bound derived from Lemma 2.2,

we proceed to check whether x is closer to c than 𝛼 [x]. To do so,

Line 12 calculates 𝑑 (x, c) and also resets ℓ𝐸 (x, c) accordingly. In
each iteration, Line 3 of Algorithm 4 subtracts from each ℓ𝐸 (x, c)
the divergence of c, 𝑑𝑖𝑣 [c], according to Lemma 2.1.

Elkan’s upper bound 𝑢𝐸 (x) bounds the distance from x to its

currently assigned centroid 𝛼 [x], i.e., 𝑑 (x, 𝛼 [x]) ≤ 𝑢𝐸 (x). In Line 7

of Algorithm 3, if 𝑢𝐸 (x) does not exceed a bound derived from

Lemma 2.2 and Hamerly’s lower bound (discussed below) on the

distance from x to any other centroid c, then x remains closest

to 𝛼 [x] in that iteration, hence we eschew calculating distances

from x. Lines 9 and 15 reset 𝑢𝐸 (x) to the distance from x to its new

centroid. In each iteration, Line 4 of Algorithm 4 adds to each𝑢𝐸 (x)
the divergence of𝛼 [x],𝑑𝑖𝑣 [𝛼 [x]], following the triangle inequality.
Hamerly’s lower bound ℓ𝐻 (x) bounds the distance from x to

any centroid x is not assigned to; if 𝑢𝐸 (x) ≤ ℓ𝐻 (x), then x may

remain with its current centroid 𝛼 [x]. Line 7 of Algorithm 3 com-

pares ℓ𝐻 (x), alongwith the bound derived fromLemma 2.2, to𝑢𝐸 (x),
to decide on this matter, as discussed in the context of 𝑢𝐸 (x) above.
In each iteration, Line 5 of Algorithm 4 adjusts each ℓ𝐻 (x) to the

minimum ℓ𝐸 (x, c) among centroids other than 𝛼 [x].

4.2 Leveraging stepwise distance calculations

Pruning by the triangle inequality reduces the number of Euclidean

distance calculations in each iteration. However, it leaves the cost

of each such calculation intact: once a distance calculation passes

the pruning stage, it has to be executed at full cost. Unfortunately,

this cost grows prohibitively with dimensionality. More drastic

measures are needed to discard or contain distance calculations.

We might use dimensionality reduction [42] hoping to obtain a

data set that preserves the characteristics of the original. However,

such reduction incurs information loss, which may severely affect

the clustering result in critical applications where clustering aims to

discover unknown data properties, such as nanoARPES which aims

to unveil the electronic structure of materials [38]. Methods with

approximation guarantees [8] typically require high dimensions to

render their guarantees meaningful and are applied on top of the

Lloyd heuristic anyway. Therefore, an ability to scale up Lloyd to

high dimensions is imperative even to use such methods.

Nevertheless, dimensionality reduction methods typically rest

on an energy-preserving transform that unreels the data in a hierar-

chy of progressively finer levels of resolution [22] and concentrates

energy in lower-order coefficients. Full precision is available at the

finest level of resolution, yet cluster assignments can be decided at

coarser levels, without reading all features. We employ this property

of a multi-resolution transform and a tight bounding scheme to cal-

culate distances à la carte, as required to decide cluster membership;

therewith we accelerate Lloyd while preserving its output.

We use the Discrete Cosine Transform (DCT), extensively used

in image compression [11, 15]. Let [𝐹 ]2 be an 𝑀 × 𝑁 matrix rep-

resenting a 2-dimensional data set and [𝐺]2 be the matrix of its 2-

dimensional DCT coefficients. Element (𝑢, 𝑣) of [𝐺]2 is [28]:

𝑔(𝑢, 𝑣) =
𝑀−1
∑︁

𝑚=0

𝑁−1
∑︁

𝑛=0

𝑓 (𝑚,𝑛) cos
[

(𝑚+ 12 )𝑢𝜋
𝑀

]

cos

[

(𝑛+ 12 )𝑣𝜋
𝑁

]

(5)

while each element is normalized by 2𝑘𝑢𝑘𝑣√
𝑀𝑁

with 𝑘0 = 1/√2, 𝑘𝑖≠0 = 1.

DCT preserves Euclidean distance on the transformed space [3]

over DCT coefficient vectors x of raw data points; thus, the Eu-

clidean distance 𝑑 (x, c) of a point x from a centroid c is:

𝑑 (x, c) =
√︃

∑︁

𝑥2𝑖 +𝑐
2
𝑖 −2𝑥𝑖𝑐𝑖 =

√︃

∑︁

𝑥2𝑖 +
∑︁

𝑐2𝑖 −2
∑︁

𝑥𝑖𝑐𝑖 (6)

where the summation is over all relevant DCT (𝑢, 𝑣) pairs, identified
by 𝑖 . For any point x and centroid c, we may pre-compute

∑

𝑥2𝑖
and

∑

𝑐2𝑖 terms. However, we should still compute the dot-product

term
∑

𝑥𝑖𝑐𝑖 on the fly. Still, we can bound this term using the

Cauchy-Schwarz inequality [23] as follows:

(
∑︁

𝑥𝑖𝑐𝑖

)2
≤
∑︁

𝑥2𝑖

∑︁

𝑐2𝑖 ⇔
∑︁

𝑥𝑖𝑐𝑖 ≤
√︃

∑︁

𝑥2𝑖

∑︁

𝑐2𝑖 (7)

From Equations (6) and (7) it follows that:

𝑑 (x, c)2 ≥
∑︁

𝑥2𝑖 +
∑︁

𝑐2𝑖 − 2
√︃

∑︁

𝑥2𝑖

∑︁

𝑐2𝑖

𝑑 (x, c)2 ≤
∑︁

𝑥2𝑖 +
∑︁

𝑐2𝑖 + 2
√︃

∑︁

𝑥2𝑖

∑︁

𝑐2𝑖

(8)

All terms in Equation (8) involve sums of squares over the di-

mensions of x and c, which we only need to compute once. We

utilize these bounds to calculate point-to-centroid distances in step-

wise fashion, as in [23]: in each step, we derive exact distances up

to an increasing number of DCT features, the known part, along

with upper and lower bounds, by Equation (8), for the diminishing

remainder, unknown part. While doing so, we discard from consider-

ation, for each point, centroids whose lower bound gets higher than

the lowest upper bound among other centroids. Starting with DCT

term (0, 0), in level ℓ we extend the known DCT features from 4ℓ−1

to 4ℓ , ℓ > 0, spanning a square-shaped area from (0, 0) to (2ℓ , 2ℓ )
in 2d, doubling the square side in each step. We pre-compute sums

of
∑𝐿
ℓ′=ℓ 4

ℓ′
=

4𝐿+1−4ℓ
3 squared feature values in the range from 4ℓ

to 4𝐿 , for each ℓ , from the 2-dimensional DCT vector x of each data

point in each such area, yielding a list x𝑠𝑞 of size O(log𝑁 ).

Algorithm 5 Stepwise (X, 𝑘)

1: 𝐿← log4 𝑁 ⊲ levels for stepwise distances

2: X← Transform (X) ⊲ by DCT [1]

3: X𝑠𝑞 ← Sqared (X) ⊲ sums of 4ℓ
′
squares, ℓ ′ = ℓ, . . . , 𝐿

4: C ← Sample(𝑘,X) ⊲ initial cluster centers

5: while not 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do

6: C𝑠𝑞 ← Sqared (C) ⊲ recalculate C𝑠𝑞
7: for all x in X do ⊲ assign points to centroids

8: 𝛼 [x] ← SetLabel (x, C, x𝑠𝑞, C𝑠𝑞, 𝐿) ⊲ Algorithm 6

9: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← Recalculate (X, C, 𝛼 [X]) ⊲ Algorithm 2

10: return 𝛼 [X]

Algorithm 5 presents our 𝑘-means algorithm that leverages step-

wise distance calculations over DCT-transformed data. Algorithm 6

shows the subroutine that assigns a point to a centroid, where



level ℓ indicates the size of the square area of DCT features forming

the known part in calculations. Starting from one known feature

(ℓ = 0), in each iteration it discards candidate centroids with a lower

bound exceeding the lowest upper bound (Lines 7ś8), expands the

calculation for each candidate centroid (Line 11), and maintains

the centroid of lowest upper bound (Lines 12ś14). The iterations

terminate when, at Line 5, we reach the last level, where bounds

are exact distances, hence we select the centroid of lowest upper

bound, or only one candidate centroid remains, hence we select it.

Algorithm 6 SetLabel (x, C, x𝑠𝑞, C𝑠𝑞, 𝐿)
1: ℓ ← 0; 𝐿𝐵(C) ← 0; 𝑈𝐵min ←∞
2: for all {c ∈ C} do
3: 𝑑 [c] ← x𝑠𝑞 [0] + c𝑠𝑞 [0] ⊲ coarsest distance estimate

4: 𝑚𝑎𝑠𝑘 [c] ← 1 ⊲ candidate centroid c for x

5: while ℓ ≤ 𝐿 ∧∑c𝑚𝑎𝑠𝑘 [c] > 1 do ⊲ point undecided

6: for all {c ∈ C|𝑚𝑎𝑠𝑘 [c] = 1} do ⊲ active candidates

7: if 𝑈𝐵min < 𝐿𝐵(c) then
8: 𝑚𝑎𝑠𝑘 [c] ← 0 ⊲ prune centroid at previous level

9: else ⊲ move on to this level

10: A ← (x, c, x𝑠𝑞, c𝑠𝑞, ℓ, 𝑑 [c])
11: 𝐿𝐵(c),𝑈 𝐵(c), 𝑑 [c] ← DistToLevel (A) ⊲ Alg. 7

12: if 𝑈𝐵(c) < 𝑈𝐵min then

13: 𝛼 ← c

14: 𝑈𝐵min ← 𝑈𝐵(c) ⊲ keep lowest UB across c

15: ℓ ← ℓ + 1
16: return 𝛼

Algorithm 7 DistToLevel (x, c, x𝑠𝑞, c𝑠𝑞, ℓ, 𝑑)

1: 𝑑 ← 𝑑 − 2 · x[ℓ] · c[ℓ] ⊲ known distance with all squares

2: 𝑚𝑎𝑟𝑔𝑖𝑛 ← 2 ·
√︁

x𝑠𝑞 [ℓ + 1] · c𝑠𝑞 [ℓ + 1]
3: 𝐿𝐵 ← 𝑑 −𝑚𝑎𝑟𝑔𝑖𝑛 ⊲ lower bound

4: 𝑈𝐵 ← 𝑑 +𝑚𝑎𝑟𝑔𝑖𝑛 ⊲ upper bound

5: return 𝐿𝐵,𝑈𝐵,𝑑

Algorithm 7 updates the distance for a given pair in each level of

the stepwise distance computation; it updates the known distance

term to the current level ℓ and adds the Cauchy-Schwarz bounds

for the unknown margin, using pre-computed sums of squares of

the 4𝐿+1−4ℓ+1
3 features from level ℓ + 1 to level 𝐿. Lower and upper

bounds differ in one sign, as in Equation 8.

4.3 Putting it all together

Both triangle-inequality-based checks and stepwise calculations

prune distance calculations, the former by an one-off filtering, the

latter by progressively disqualifying centroid candidates in each

iteration. Here, we merge these two methods to craft an integrated

solution,Marigold (Algorithm 8).Marigold performs stepwise

distance calculations on DCT-transformed data using pre-computed

information by DistToLevel (Algorithm 7), as Stepwise (Algo-

rithm 5) does, using the same bounds as Triangle-based 𝑘-means

(Algorithm 3) and updating them by UpdateBounds (Algorithm 4),

and recalculates centroids by Recalculate (Algorithm 2).

Still, Marigold keeps track of the tightest among the bounds

obtained by stepwise calculations and those obtained by the triangle

inequality, as Algorithm 9 illustrates, hence it has stronger pruning

capacity than Stepwise (Algorithm 5).

Algorithm 8 Marigold (X, 𝑘)

1: 𝐿← log4 𝑁 ⊲ levels for stepwise distances

2: X← Transform (X) ⊲ by DCT [1]

3: X𝑠𝑞 ← Sqared (X) ⊲ sums of 4ℓ
′
squares, ℓ ′ = ℓ, . . . , 𝐿

4: C ← Sample(𝑘,X) ⊲ initial cluster centers

5: 𝛼 [X] = ∅ ⊲ null assignment

6: ℓ𝐸 (X, C)= ℓ𝐻 (X)=𝑛𝑒𝑎𝑟 [C]=0 ⊲ initialize lower bounds

7: 𝑢𝐸 (X)=∞ ⊲ initialize upper bounds

8: while not 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do ⊲ main loop

9: C𝑠𝑞 ← squared(C) ⊲ recalculate C𝑠𝑞
10: for all x in X do ⊲ assign points to centroids

11: if 𝑢𝐸 (x) > max{𝑛𝑒𝑎𝑟 [𝛼 [x]], ℓ𝐻 (x)} then ⊲ Hamerly

12: A ← (x, C, x𝑠𝑞, C𝑠𝑞, 𝐿, 𝛼 [x], ℓ𝐸 (x, C), 𝑢𝐸 (x))
13: SetLabelMG (A) ⊲ Algorithm 9

14: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑, 𝑑𝑖𝑣 [C] ← Recalculate (X, C, 𝛼 [X]) ⊲ Alg. 2

15: if not 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 then

16: UpdateBounds (X, C, ℓ𝐸 , 𝑢𝐸 , ℓ𝐻 , 𝑑𝑖𝑣, 𝑛𝑒𝑎𝑟 ) ⊲ Alg. 4

17: return 𝛼 [X]

Algorithm 9 SetLabelMG (x, C, x𝑠𝑞, C𝑠𝑞, 𝐿, 𝛼, ℓ𝐸 (C), 𝑢𝐸 )
1: ℓ ← 0

2: for all {c ∈ C} do
3: 𝑑 [c] ← x𝑠𝑞 [0] + c𝑠𝑞 [0] ⊲ coarsest distance estimate

4: 𝑚𝑎𝑠𝑘 [c] ← 1 ⊲ candidate centroid c for x

5: while ℓ ≤ 𝐿 ∧∑c𝑚𝑎𝑠𝑘 [c] > 1 do ⊲ point undecided

6: for all {c ∈ C|𝑚𝑎𝑠𝑘 [c] = 1} do ⊲ active candidates

7: if 𝑢𝐸 < max {ℓ𝐸 (c), 𝑑 (𝛼, c)/2} then ⊲ Elkan check

8: 𝑚𝑎𝑠𝑘 [c] ← 0 ⊲ prune centroid at previous level

9: else ⊲ move on to this level

10: A ← (x, c, x𝑠𝑞, c𝑠𝑞, ℓ, 𝑑 [c])
11: 𝐿𝐵(c),𝑈 𝐵(c), 𝑑 [c] ← DistToLevel (A) ⊲ Alg. 7

12: 𝐿𝐵(c) ←
√︁

𝐿𝐵(c); 𝑈𝐵(c) ←
√︁

𝑈𝐵(c)
13: if 𝐿𝐵(c) > ℓ𝐸 (c) then
14: ℓ𝐸 (c) ← 𝐿𝐵(c) ⊲ keep highest LB per c

15: if 𝑈𝐵(c) < 𝑢𝐸 then

16: 𝛼 ← c

17: 𝑢𝐸 ← 𝑈𝐵(c) ⊲ keep lowest UB across c

18: ℓ ← ℓ + 1
19: return 𝛼, ℓ𝐸 (C), 𝑢𝐸

Algorithm 9 follows the pattern of SetLabel (Algorithm 6),

yet introduces cardinal aspects of Triangle-based 𝑘-means (Al-

gorithm 3) therein. In each level of stepwise calculations, it uses

Elkan bounds to check, in Line 7, whether to retain each candidate

centroid; thereby it injects the comparison of Lemma 2.2 using

inter-centroid distances, into the bound comparison of Line 7, Al-

gorithm 6. Line 12 of SetLabelMG obtains square roots of step-

wise bounds to render them appropriate for triangle-inequality

Euclidean-distance comparisons. Last, Lines 13ś17 use stepwise

bounds to tighten, if possible, both the Elkan lower bound for the

examined centroid, used by Line 7 in the next iteration over cen-

troids, and the Elkan lowest upper bound across centroids, used by

Line 7 with the next centroid, maintaining the centroid of lowest

upper bound as the running assignment. Upon reaching the last



level, where bounds are exact distances, or if only one candidate

centroid remains (Line 5), we settle on the running assignment.

Line 19 returns, along with the assigned centroid, the (possibly

exact) Elkan lower bounds of distances to each centroid and Elkan

upper bound of the distance to the assigned centroid; subsequently,

Algorithm 2 recalculates centroid positions and Algorithm 4 up-

dates Elkan bounds based on centroid divergences and derives a

Hamerly bound to be used in Line 11 of Algorithm 8.

While Algorithm 3 derives Elkan and Hamerly bounds from

exact distances,Marigold (Algorithm 8) extracts then from step-

wise bounds. The earlierMarigold abandons a point-to-centroid

distance calculation, the looser the ℓ𝐸 (x, c) bound it derives. Still,
the next iteration tightens such a bound, if needed. Eventually,

Marigold performs fewer distance calculations than bothTriangle-

based 𝑘-means and Stepwise, at the cost of more inequality checks

than Stepwise (Line 11, Algorithm 8 and Line 13, Algorithm 9) and

more square-root operations than both (Line 12, Algorithm 9).

In short,Marigold prunes distance calculations effectively, in-

corporating Hamerly and Elkan bounds into bounds maintained

by stepwise distance calculations. We emphasize that Marigold

provides the same results as Lloyd’s algorithm.

5 EXPERIMENTAL RESULTS

We conduct an experimental study of 𝑘-means methods on data

from real-world nanoARPES experiments. To enhance the repro-

ducibility of our results, we provide an implementation-indepen-

dent measure, the number of feature distance calculations. We

measure runtime in two environments: by Python 3.10 implemen-

tation on a Windows 10, Intel Core i7-1165G7 machine @2.80GHz

with 64GB RAM, and by C++ implementation with -O3 flag on an

Ubuntu 20.04.4, Intel Core i7-10610U machine @1.8GHz with 48GB

RAM. We report runtimes including pre-computations, while we

run with five different initializations and report averages.

Methods. We juxtapose the following methods for 𝑘-means:

• Lloyd [30], the classical iterative 𝑘-means algorithm.

• Elkan [16], which uses Elkan bounds only as in Section 4.1.

• Hamerly [18], using the Hamerly bound only as in Section 4.1.

• Triangle-based 𝑘-means, as presented in Section 4.1.

• KMeans-G∗ [20], a state-of-the-art algorithm that exploits geo-

metric primitives to perform 𝑘-means in high dimensions.

• Stepwise, performing stepwise calculations as in Section 4.2.

• Marigold, which integrates stepwise calculationswith the bounds

of Elkan and Hamerly, as in Section 4.3.

Data sets. We run 𝑘-means on four data sets obtained from two

nanoARPES studies and four image datasets from other fields. To

illustrate the need to run 𝑘-means in high dimensions we juxta-

pose the results by clustering in reduced dimensionality and those

obtained in high dimensions to the physical ground truth [10, 13].

• gr_flake is amap of 49×39 = 1911 nanoARPES images, eachwith

resolution 256×256, on a graphene sample. Clustering with 𝑘 =

30 separates areas in a way very similar to a systematic fit of

the spectra. Figure 2(a) shows the original result of a fitted mo-

mentum (Figure 3(b) in [13]) whereas panels (b) and (c) show

clustering at DCT dimensionalities 8 × 8 and 64 × 64. Using a

higher DCT dimensionality gives a more accurate result.

• misfit comprises three maps of 12×14 = 168 nanoARPES images,

each with resolution 1024×1024.misfit_VB,misfit_Se3d, and

misfit_Bi5d, represent the same sample position observed at

different energies (Figure S1 in [10] with a reversed color scale for

misfit_Se3d). Figure 2(d)-(f) shows the photoemission intensity

in a manually selected characteristic region of interest for the

three data sets, while images (g)-(i) visualize 𝑘-means results

with 𝑘 =16 performed on entire spectra, confirming that high-

dimensional 𝑘-means is appropriate for such data analysis.

• MNIST [14] comprises 28×28 = 784-size handwritten digits, in a

training set of 60 000 images and a test set of 10 000 images. We

upscale the test set to size 128×128 = 16384 and 256×256 = 65536.

• Deep Globe Land Cover (DGLC) contains three collections of

RGB satellite images of land cover types, 1606 in DGLC Train,

171 in DGLC Validation and 172 in DGLC Test. We converted

the images to grayscale and normalized resolutions to 256×256
in the first and 1024×1024 in the other collections.
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Figure 2: Clustering results on gr_flake andmisfit data and

respective ground truth. gr_flake: (a) fit result shown by color

map and contour lines [13];𝑘-means result as colormap, with

the contours of (a) replicated, on (b) 8×8 and (c) 64×64 DCT
features with 𝑘 = 30.misfit: (d)-(f) photoemission intensity in

specific region of interest [10]; (g)-(i) clustering with 𝑘 = 16.

In 𝑘-means results, colors are ordered as in the ground truth.

5.1 Distance calculations

We first report results on the number of feature distance calculation

operations each method performs vs. the number of DCT features

representing the data and that of clusters 𝑘 .

Varying DCT features. Figure 3(a) shows how the number of fea-

tures entering distance calculations varies vs. the number of DCT

features representing the data with 𝑘 = 10 clusters. All methods

show linear growth, with a gap between Lloyd and Hamerly, on

the one hand, and other methods, on the other hand; this result

reconfirms that Hamerly falters [18] on dimensionality above 50.
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Figure 3: Features used vs. DCT features with 𝑘 =10 and vs. clusters 𝑘 with 214 DCT features.
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Figure 4: Total time vs. DCT features with 𝑘 = 10 and vs. clusters 𝑘 with 214 DCT features.
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Figure 5: Total time vs. DCT features with 𝑘 = 10 and vs. clusters 𝑘 with 214 DCT features, DGLC data.

Triangle-based 𝑘-means does well on lower dimensionality, paral-

leled by Elkan. As dimensionality grows, Stepwise andMarigold

become the best performers. Marigold performs best in lower

dimensions, but Stepwise covers the gap as dimensionality grows,

as its bounds compensate for the missing pruning capacity.

Varying clusters. Figure 3(b) shows how the number of features

used in distance calculations varies vs. 𝑘 with 128 × 128 = 214

DCT features. The pattern starts out matching Figure 3(a), but

gaps among methods are accentuated as 𝑘 grows. The overhead of

centroid-to-centroid distance calculations grows with 𝑘 ; Stepwise

outperforms methods subject to that overhead, especially onmisfit,

where that overhead is more significant as part of the total cost due

to fewer data points.Marigold performs the best overall.

5.2 Runtime

Having established the pattern of implementation-independent fea-

ture distance calculations, we examine wall-clock time, which is

affected by operations we have hitherto ignored, including inequal-

ity checks, table look-ups, and comparisons.

Varying DCT features. Figure 4(a) shows how the total runtime

varies vs. the number of DCT features used to represent the data

with 𝑘 = 10, with Python implementations. Performance follows

the previously observed pattern, with two cardinal differences. First,

gaps are now starker than before. Second, beyond the lowest di-

mensionality, the performance of Stepwise is consistently better

than that of triangle-inequality-based methods. Even if Stepwise

uses more features for point-to-centroid distance calculations, it

has a smaller overhead of comparisons and bound updates; bound

calculations involve calculating inter-centroid distances, used in

both Elkan and Hamerly checks. Hamerly comes very close to

Lloyd in terms of wall-clock time, as it is hard to compensate the

overhead of keeping track of the nearest non-assigned centroid to

each point, and nearest other centroid to each centroid. For the

same reason, methods using Elkan bounds, which involve inter-

centroid disances, fare worse then Stepwise.Marigold, benefiting

from both forms of bounds, performs best.

Varying clusters. Figure 4(b) shows the runtime, per iteration and

total, vs. the number of clusters 𝑘 while using 128 × 128 = 214 DCT

features. The results corroborate our previous observations. More-

over, the runtime of Hamerly approaches and even exceeds that of

Lloyd as the number of clusters grows; that is reasonable, as more
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Figure 6: Total time vs. DCT features with 𝑘 = 50 and vs. clusters 𝑘 with 216, 214, or 784 DCT features, C++.

clusters imply greater bound maintenance overhead. We occasion-

ally observe runtime non-increasing with 𝑘 , as a higher 𝑘 may be a

better fit to the data. Still, Stepwise andMarigold steadily present

an advantage over the next best-performing method. Among those

two, Marigold is preferable when the ratio of data points per

cluster is high, while Stepwise gains ground as that ratio falls.

DGLC data. Figure 5 presents runtime vs. the number of DCT

features representing the data with 𝑘 = 10 and vs. the number

of clusters 𝑘 using 128 × 128 = 214 DCT features on the DGLC

data with Python implementations. The pattern matches that in

Figure 4, while now the benefit of stepwise distance calculations in

Marigold and Stepwise is accentuated as 𝑘 grows.

Comparing implementations. Figure 6 shows runtime with the

C++ implementation, adding two more data sets in the comparison,

on two regimes: varyingDCT features with𝑘 = 50 clusters and vary-

ing clusters with 214 DCT features. Now Stepwise and Marigold

do not always have an advantage over Elkan and Triangle-based

𝑘-means on lower DCT dimensions, as overhead computations are

faster in C++; calculating stepwise bounds in the hope of eschew-

ing some distance calculations is an overkill in lower dimensions.

However, their advantage shines as dimensionality grows and is

highlighted with increasing clusters. Remarkably, Stepwise and

KMeans-G∗ gain ground vs.Marigold as the number of clusters

grows, particularly on the misfit datasets, which comprise 168 data

points each, as opposed to 1911 data points in gr_flake. KMeans-G∗

performs well on data sets of very few data points, such as misfit,

but misses out on data sets with many data points, such as MNIST.

These results indicate that geometry-based bounds are less helpful

in large high-dimensional data sets. The advantage of Marigold

is most pronounced on the gr_flake andMNIST data, which have

more data points, reconfirming thatMarigoldmanages high ratios

of data points per cluster well.

6 CONCLUSIONS

The need to cluster high-dimensional data by 𝑘-means arises often

in the natural sciences. Observing that the core 𝑘-means oper-

ation is a search for a point’s nearest centroid, we brought the

know-how of nearest-neighbor search in high dimensions into

𝑘-means. We devised Marigold, an efficient algorithm for high-

dimensional 𝑘-means that produces the same result as Lloyd’s

algorithm. Marigold integrates triangle-inequality-based pruning

with a powerful stepwise distance calculation method that progres-

sively refines the data-representation granularity while maintaining

tight upper and lower distance bounds to facilitate pruning cen-

troid candidates. Our results demonstrate that Marigold reduces

the volume of distance calculations and, consequently, runtime by

approximately one order of magnitude, while its Stepwise com-

ponent is also competitive when the data points per cluster ratio

is low. Our results pave the way to real-time 𝑘-means in critical

applications such as nanoARPES in condensed-matter physics.

ACKNOWLEDGMENTS

This research work was supported by VILLUM FONDEN (grant

VIL40558) and partially by the Danish Council for Independent

Research (grant DFF-1051-00062B). We also thank Bart Olsthoorn

and Alexander Balatsky for fruitful discussions on this topic.



REFERENCES
[1] Nasir Ahmed. 1991. How I came up with the discrete cosine transform. Digital

Signal Processing 1, 1 (1991), 4ś5.
[2] Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. 2009. Streaming 𝑘-means

approximation. NeurIPS 22 (2009).
[3] Harry C. Andrews and William K. Pratt. 1968. Fourier transform coding of

images. In Proc. Hawaii Int. Conf. System Sciences. 677ś679.
[4] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei

Vassilvitskii. 2012. Scalable 𝑘-means++. PVLDB 5, 7 (2012), 622ś633.
[5] Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris

Schwiegelshohn. 2019. Oblivious dimension reduction for 𝑘-means: beyond
subspaces and the Johnson-Lindenstrauss lemma. In STOC. 1039ś1050.

[6] Shai Ben-David, Dávid Pál, and Hans Ulrich Simon. 2007. Stability of 𝑘-means
clustering. In COLT. 20ś34.

[7] Christos Boutsidis, Anastasios Zouzias, and Petros Drineas. 2010. Random
projections for 𝑘-means clustering. NeurIPS 23 (2010).

[8] Christos Boutsidis, Anastasios Zouzias, Michael W Mahoney, and Petros Drineas.
2014. Randomized dimensionality reduction for 𝑘-means clustering. TIT 61, 2
(2014), 1045ś1062.

[9] Andrei Broder, Lluis Garcia-Pueyo, Vanja Josifovski, Sergei Vassilvitskii, and
Srihari Venkatesan. 2014. Scalable 𝑘-means by ranked retrieval. In WSDM. 233ś
242.

[10] Alla Chikina et al. 2022. One-dimensional electronic states in a natural misfit
structure. Physical Review Materials 6, 9 (2022), L092001.

[11] Renato J. Cintra and Fábio M. Bayer. 2011. A DCT approximation for image
compression. IEEE Signal Processing Letters 18, 10 (2011), 579ś582.

[12] Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. 2015. Dimensionality reduction for 𝑘-means clustering and low rank
approximation. In STOC. 163ś172.

[13] Davide Curcio et al. 2020. Accessing the Spectral Function in a Current-Carrying
Device. Physical Review Letters 125, 23 (2020), 236ś403.

[14] Li Deng. 2012. The MNIST database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141ś142.

[15] Kamil Dimililer. 2022. DCT-based medical image compression using machine
learning. Signal, Image and Video Processing 16, 1 (2022), 55ś62.

[16] Charles Elkan. 2003. Using the triangle inequality to accelerate 𝑘-means. In
ICML. 147ś153.

[17] Edward W. Forgy. 1965. Cluster analysis of multivariate data : efficiency versus
interpretability of classifications. Biometrics 21, 3 (1965), 768ś769.

[18] Greg Hamerly. 2010. Making 𝑘-means even faster. In SDM. 130ś140.
[19] Philip Hofmann. 2021. Accessing the spectral function of in operando devices

by angle-resolved photoemission spectroscopy. AVS Quantum Science 3, 2 (2021),
021101.

[20] Hassan Ismkhan and Mohammad Izadi. 2022. K-means-G*: Accelerating k-means
clustering algorithm utilizing primitive geometric concepts. Information Sciences
618 (2022), 298ś316.

[21] Ruoming Jin, Anjan Goswami, and Gagan Agrawal. 2006. Fast and exact out-of-
core and distributed 𝑘-means clustering. Knowledge and Information Systems 10,
1 (2006), 17ś40.

[22] Panagiotis Karras and Nikos Mamoulis. 2008. Hierarchical synopses with optimal
error guarantees. ACM Trans. Database Syst. 33, 3 (2008), 18:1ś18:53.

[23] Shrikant Kashyap and Panagiotis Karras. 2011. Scalable 𝑘NN search on vertically
stored time series. In KDD. 1334ś1342.

[24] Younsik Kim et al. 2021. Deep learning-based statistical noise reduction for
multidimensional spectral data. Review of Scientific Instruments 92, 7 (2021),
073901.

[25] Juris Klonovs, Mohammad Ahsanul Haque, Volker Krüger, Kamal Nasrollahi,
Karen Andersen-Ranberg, Thomas B. Moeslund, and Erika Geraldina Spaich.
2016. Distributed Computing and Monitoring Technologies for Older Patients.

Springer.
[26] Pavel V. Kolesnichenko, Qianhui Zhang, Changxi Zheng, Michael S. Fuhrer,

and Jeffrey A. Davis. 2021. Multidimensional analysis of excitonic spectra of
monolayers of tungsten disulphide: toward computer-aided identification of
structural and environmental perturbations of 2D materials. Machine Learning:
Science and Technology 2, 2 (2021), 025021.

[27] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. 2004. A simple linear-time
(1+𝜀)-approximation algorithm for 𝑘-means clustering in any dimensions. In
FOCS. 454ś462.

[28] Ju-Hong Lee, Deok-Hwan Kim, and Chin-Wan Chung. 1999. Multi-dimensional
Selectivity Estimation Using Compressed Histogram Information. In SIGMOD.
205ś214.

[29] Sabina Leonelli. 2020. Scientific Research and Big Data. In The Stanford Ency-
clopedia of Philosophy (Summer 2020 ed.). Metaphysics Research Lab, Stanford
University.

[30] Stuart P. Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theory
28, 2 (1982), 129ś136.

[31] Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. 2019. Perfor-
mance of Johnson-Lindenstrauss transform for 𝑘-means and 𝑘-medians cluster-
ing. In STOC. 1027ś1038.

[32] Norsyela Muhammad Noor Mathivanan, Nor Azura Md Ghani, and Roziah Mohd
Janor. 2019. A comparative study on dimensionality reduction between principal
component analysis and 𝑘-means clustering. IJEECS 16, 2 (2019), 752ś758.

[33] Arshad M. Mehar, Kenan Matawie, and Anthony Maeder. 2013. Determining an
optimal value of 𝑘 in 𝑘-means clustering. In BIBM. 51ś55.

[34] Charles N. Melton et al. 2020. 𝐾 -means-driven Gaussian Process data collection
for angle-resolved photoemission spectroscopy. Machine Learning: Science and
Technology 1, 4 (2020), 045015.

[35] Dan Pelleg and Andrew Moore. 1999. Accelerating exact 𝑘-means algorithms
with geometric reasoning. In KDD. 277ś281.

[36] Han Peng et al. 2020. Super resolution convolutional neural network for feature
extraction in spectroscopic data. Review of Scientific Instruments 91, 3 (2020).

[37] Earl W. Plummer and William Eberhardt. 1982. Angle-resolved photoemission
as a tool for the study of surfaces. Advances in Chemical Physics 49 (1982), 533.

[38] Eli Rotenberg and Aaron Bostwick. 2014. microARPES and nanoARPES at
diffraction-limited light sources: opportunities and performance gains. Journal
of Synchrotron Radiation 21, 5 (2014), 1048.

[39] Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53ś65.

[40] David Sculley. 2010. Web-scale 𝑘-means clustering. In TheWebConf. 1177ś1178.
[41] Zekai Sen. 2016. Spatial Modeling Principles in Earth Sciences. Springer, Chapter

2.8.1, 57ś59.
[42] Michela Testolina and Touradj Ebrahimi. 2021. Review of subjective quality

assessment methodologies and standards for compressed images evaluation. In
Applications of Digital Image Processing XLIV, Vol. 11842. SPIE, 302ś315.

[43] Robert Tibshirani, Guenther Walther, and Trevor J. Hastie. 2000. Estimating
the number of clusters in a data set via the gap statistic. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 63 (2000).

[44] Aurora Torrente and Juan Romo. 2021. Initializing 𝑘-means clustering by boot-
strap and data depth. Journal of Classification 38, 2 (2021), 232ś256.

[45] Sergei Vassilvitskii and David Arthur. 2006. 𝑘-means++: The advantages of
careful seeding. In SODA. 1027ś1035.

[46] Sheng Wang, Yuan Sun, and Zhifeng Bao. 2020. On the Efficiency of 𝑘-Means
Clustering: Evaluation, Optimization, and Algorithm Selection. PVLDB 14, 2
(2020), 163ś175.

[47] Ian H.Witten, Eibe Frank, andMark A. Hall. 2011. Data Mining: Practical Machine
Learning Tools and Techniques (3rd ed.). Morgan Kaufmann Publishers Inc., USA.

[48] Yan Zhu, Jian Yu, and Caiyan Jia. 2009. Initializing 𝑘-means clustering using
affinity propagation. In HIS, Vol. 1. 338ś343.


	Abstract
	1 Introduction
	2 Background
	2.1 Lloyd's algorithm
	2.2 Applying the triangle inequality
	2.3 Other related work

	3 Application Domain
	4 MARIGOLD
	4.1 Applying the triangle inequality
	4.2 Leveraging stepwise distance calculations
	4.3 Putting it all together

	5 Experimental Results
	5.1 Distance calculations
	5.2 Runtime

	6 Conclusions
	Acknowledgments
	References

