An Experimental Study on Network Immunization

Alvis Logins Aarhus University

ABSTRACT

Given a network in which a undesirable rumor, disease, or contamination spreads, which set of network nodes should we block so as to contain that spread? Past research has proposed several methods to address this network immunization (NI) problem, which is to find a set of k nodes, such that the undesirable dissemination is minimized in expectation when they are blocked. As the problem is NP-hard, some algorithms utilize solely features of the network structure in a preemptive manner, to others that take into account the specific source of a contamination in a dataaware fashion. This paper presents an experimental study on NI algorithms and baselines under the independent cascade (IC) diffusion model. We employ a variety of synthetic and real-world networks with diverse graph density, degree distribution, and clustering coefficients, under realistically calculated influence probabilities. We conclude that data-aware approaches based on the construct of dominator trees usually perform best; however, in networks with a power-law degree distribution, preemptive approaches utilizing spectral network properties shine out by virtue of their efficiency in identifying central nodes.

1 INTRODUCTION

Real-world networks facilitate the spread of ideas, behaviors, inclinations, or diseases via *diffusion* processes [10]. Oftentimes a diffusion of malicious nature needs to be contained via countermeasures [12]. One such countermeasure is the *blocking* of a subset of network nodes. *Network Immunization* (NI) calls to find an optimal set of nodes to block so as to arrest a diffusion.

Early works on NI were motivated by epidemiology [3, 13], categorizing individuals as Susceptible \mathbb{S} , Infected \mathbb{I} , or Recovered \mathbb{R} . Those who are infected infect their susceptible neighbors with a transition rate β , and become recovered (hence immune) with transition rate γ . In the context of social networks [15], the *Independent Cascade* (IC) model [4] generalizes the SIR model, assigning an independent transition rate β to each edge. Kempe et al. [7] formulated the Influence Maximization (IM) problem under the IC model, where the goal is to select k seed nodes that maximize the expected diffusion spread; since then, the problem has been studied extensively [10, 15].

The NI problem is complementary to the IM problem. Certain notions are useful in both. For example, eigenvalue centrality [13] has been used to guide seed selection in IM. Similarly, Chen et al. [2] employ the first eigenvalue λ as a proxy to the objective of NI problem, scoring nodes by the eigen-drop $\Delta\lambda$ that their removal causes, leading to a succession of techniques aiming to to maximize the eigen-drop of immunized nodes [21].

We distinguish two variants on network immunization: *pre-emptive* immunization finds a solution before the epidemic starts; by contrast, *data-aware* immunization tailors the solution to a particular diffusion seed [20]. The state-of-the-art data-aware solution, *Data-Aware Vaccination Algorithm* (DAVA) [22] employs

Panagiotis Karras Aarhus University

structures called *dominator trees*. Still, the experimental study in [22] is limited to four datasets with synthetic propagation probabilities; it is not clear how the topology of the network influences the algorithm's performance. At the same time, recent preemtive immunization methods [12, 14] significantly outperform the baselines used in [22], yet have not been compared to DAVA itself. Thus, to the best of our knowledge, no previous work has studied how data-aware and and preemptive immunization strategies fare under different graph topologies.

In this paper, we investigate the performance of state-of-theart data-aware and preemptive NI solutions on a variety of realworld and synthetic network structures with diverse characteristics, and under realistic influence probabilities with the IC model. Our study features the *first*, to our knowledge, application of the most recent algorithm for eigen-drop maximization and a generic spectral method of activity shaping, to NI under the IC model. We demonstrate that data-aware approaches are leading in a majority of configurations, yet preemtive ones stand out under particular settings of graph density, influence probabilities, degree distribution, and clustering coefficients.

2 BACKGROUND

The classic approach to preemptive NI is the NetShield algorithm [2]. NetShield greedily selects a set of nodes S, aiming to maximize its *Shield value*:

$$Sv(S) = \sum_{i \in S} 2\lambda \mathbf{u}(i)^2 - \sum_{i,j \in S} \mathbf{A}(i,j)\mathbf{u}(i)\mathbf{u}(j)$$

where λ and \mathbf{u} are the largest eigenvalue and the corresponding eigenvector of the network's adjacency matrix \mathbf{A} . A set S has high Sv if its elements have high eigenscore $\mathbf{u}(i)$ and are not connected to each other (zero $\mathbf{A}(i,j)$). A high eigenscore implies that their removal leads to a significant eigen-drop $\Delta\lambda$. The algorithm has a $O(n|S|^2)$ complexity, where n is the size of a network.

NetShield defines an *epidemic threshold* β' such that any edge transition probability $\beta > \beta'$ would result in a significant portion of the network being contaminated. The algorithm utilizes the fact that the *epidemic threshold* is related to the first eigenvalue of the network adjacency matrix as $\beta' = 1/\lambda$ [17]. Thus, λ expresses the *vulnerability* of the network to an epidemic. Tariq et al. [14] improved upon NetShield by approximating the eigen-drop, relying on the fact that λ can be expressed as the limit trace of the p-exponential adjacency matrix \mathbf{A} , which equals the number of p-sized closed walks in the graph, cw_p :

$$\lim_{p \to \inf, p \text{ even}} (trace(\mathbf{A}^p))^{1/p} = \lambda$$

$$trace(\mathbf{A}^p) = cw_p(G)$$

The proposed method greedily selects a set of nodes to block based on their approximate contribution to closed walks. The published version suggested using p=6, yet in communication with the authors we confirmed that p=8 feasibly leads to improved results; we refer to this algorithm as *Walk8*; its complexity is $O(n^2 + \gamma(n + \alpha^3) + nk^2)$, where α is a number of node partitions and γ a number of employed hash functions.

DAVA [22] accepts the seed set of a network diffusion as input and builds its NI solution around *dominator trees*. A node

^{© 2019} Copyright held by the owner/author(s). Published in Proceedings of the 22nd International Conference on Extending Database Technology (EDBT), March 26-29, 2019, ISBN XXX-X-XXXXX-XX on OpenProceedings.org. Distribution of this paper is permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.

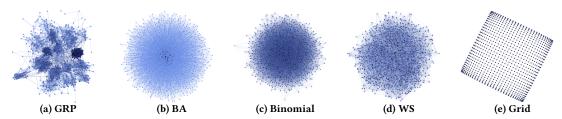


Figure 1: Generated Graph Examples. Darker color indicates higher degree, normalized per graph.

Graph Type	$ V [\cdot 10^3]$	$ E [\cdot 10^3]$	deg _{min/avg/med/max}	clust. coeff. cl	infl. prob. W	seed fract. sf	k fract. kf	Other Parameters
Binomial	1.0	14.7	4/15/15/30	0.012	0.2	0.05	0.05	edge exist. $p = 0.015$
GRP	1.0	14.6	2/30/26/90	0.325	0.1	0.01	0.05	shape param. $s = 20$, $v = 0.9$, intra-group prob. $p_{in} = 0.4$, inter-group $p_{out} = 0.001$
WS	1.0	7.0	18/28/28/44	0.237	0.2	0.05	0.05	neighbors in a ring $l = 15$, rewiring prob. $p = 0.3$
BA	1.0	29.4	28/59/40/498	0.103	0.1	0.05	0.05	prob. of triangle $p = 0.2$, density $m = 15$
Grid	1.0	39.7	4/8/8/8	0.000	0.7	0.05	0.05	
Stanford	9.9	36.9	0/7/5/555	0.392	0.2	0.2	0.2	
Gnutella	62.6	147.9	1/4/2/95	0.007	0.2	0.2	0.2	-
VK	2.8	40.9	1/29/14/288	0.235	-	0.2	0.2	

Table 1: Default parameters for graph types

u dominates a node w w.r.t. a seed node s if all paths from s to w pass through u. A dominator tree is a tree where each node is dominated by its ancestors. The benefit of removing a node depends on its position in the tree. DAVA iteratively removes the node of highest benefit and reconstructs the tree. In a DAVA variant, DAVA-fast, the tree is built only once and top-k nodes are selected based on their benefit in one go.

NetShape [12] immunizes a network via a convex relaxation approach, optimizing the eigen-drop of the network's Hazard matrix, whose first eigenvalue bounds the expected spread of an infection. The complexity is $O(\frac{1}{\epsilon^2}p_{max}^2E\ln E)$, where p_{max} is the maximum propagation probability, and ϵ is a parameter affecting a step of subgradient descent.

3 METHODOLOGY

Consider a directed graph G = (V, E) with set of nodes V and set of edges E. Each edge is associated with a probability of propagation. By the , independent cascade model, a diffusion occurs in discrete time steps. In step t_0 , a $seed\ set\ S \subset V$ becomes activated. Any node v activated in step t_i attempts to activate each of its inactive neighbors in step t_{i+1} , and succeeds by the probability associated with the edge from v to that neighbor. The process terminates when there are no more newly activated nodes. The $Network\ Immunization\ (NI)$ problem calls to block a select set of k nodes $R \subseteq V \setminus S$ so as to minimize the expected spread of activated nodes, by a given seed set S in a graph G.

3.1 Algorithms

We compare six solutions to the NI problem in three categories:

- Naïve: *Degree* selects the top-*k* nodes with highest degree; *Random* selects *k* nodes uniformly at random.
- Preemptive: NetShield [2] and Walk8 [14],
- Data-Aware: NetShape [12] and DAVA [22].

On NetShape, we use the default $\epsilon=0.2$. As exact spread computation is #P-hard, we estimate spread with any solution via 1000 Monte-Carlo IC simulations. We use the original Matlab code of Walk8. As seeds cannot be blocked, we fetch k+|S| nodes to be blocked with Walk8, ensuring that at least k nodes are blocked. We implemented all other algorithms in Python¹.

3.2 Data

We use both synthetic and real data obtained as follows.

3.2.1 Synthetic Data. We generated graphs of different properties using five models. By the *Erdős-Rényi model*, each edge is present with probability *p*; generated graphs have a low clustering coefficient and a binomial degree distribution. We refer to this generator as **Binomial**. We render the graph directed by selecting a random direction for each edge with 50% probability.

A **Gaussian Random Partition** (GRP) [1] selects edges as with Erdős-Rényi, but with a prior grouping, where group size follows a Gaussian distribution; it uses a probability value p_{in} for edges across nodes in the same group, and p_{out} otherwise, hence varying intra-group and inter-group density.

Watts Strogatz (WS) networks model self-organizing small-world systems [18], which have small average shortest path length, power-law degree distribution, and are highly clustered, hence susceptible to infectious spread. The generator employs two parameters: parameter l indicates how many nearest neighbors each node is joined with in a ring; p is a probability of edge rewiring, which induces disorder in the graph.

Barabási-Albert (BA) networks have both high clustering coefficients (as GRP graphs do) and power-law degree distribution (as WS graphs do), hence are better imitations of real-world social networks. We use the algorithm of Holme and Kim [6], which extends the original Barabási-Albert model, yet use the BA label as its basis; this algorithm randomly creates *m* edges for each node in a graph, and for created edge with a probability *p* adds an edge to one of its neighbors, thus creating a triangle.

Grid graphs have each node connected to four neighbors on a lattice. With this graph type, we explore the applicability of solutions on spatial graphs such as geosocial contact networks [23].

Table 1 lists the default parameters for all models, where fractions sf = |S|/|V| and kf = k/|V|. Figure 1 shows example graphs. All synthetic graphs have 1000 nodes, as in [17].

3.2.2 Real-World Datasets. We use 3 real-world graphs. Stanford and Gnutella, have been employed in related literature; a third, VK, provides a case of real-world propagation probabilities.

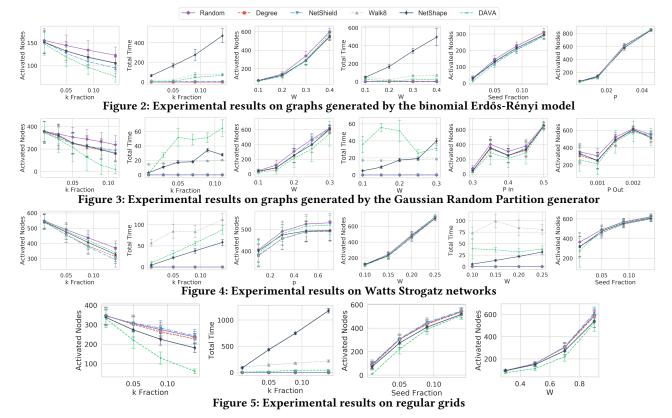
The **Stanford** data consists of pages and hyperlinks in the Stanford University website² [22]. The **Gnutella** peer-to-peer file sharing directed network is part of the SNAP dataset [9]. We use the biggest snapshot of 62586 nodes, with a diameter of 11 nodes and a clustering coeficient of 0.0055. It has been used in [12, 20, 22]. **vKontakte**³ (VK) is a Russia-based social network of more than 500 million users⁴. Its public API allows to

2

 $^{^{1}\ \} Available\ at\ https://github.com/allogn/Network-Immunization$

https://www.cise.ufl.edu/research/sparse/matrices/Gleich/ http://vk.com/

 $^{^4}$ https://en.wikipedia.org/wiki/VKontakte



download information about public profiles, subscriptions, and posts. We fetch public posts of users to train the IC model. To our knowledge, we are first to train the IC model on real posts. Previous works had trained the model on subscription actions in Flickr [5] and cross-references in online diaries [11].

3.3 Parameters

We consider **blocked node set size** *k* as a fraction of network size [16]. We employ random seed selection [3, 19, 22]; we pick 10 random seed sets, and show the mean and standard deviation of activated nodes. We choose influence probabilities uniformly at random from 0 to a maximum value W. In addition, we adopt the approach of [5] to learn influence probabilities, using user posts as actions. We download 100 latest posts at the moment of publishing per user, resulting in 21M posts. Most posts are short, hence we can apply the same Natural Language Processing methods as for short messages. After preprocessing, we collected 536,073 non-empty messages belonging to non-isolated nodes in the VK graph, with median length of 11 words, std 187 and max 2977, leaving us with 3% of the original dataset. We define the closeness of actions by comparing the content of text messages, as in [8], to learn vector embeddings of short messages. We define term proximity as $p(w_2|w_1) = \frac{1}{|M|} \frac{c(w_1, w_2)}{c(w_1)}$, where M is a set of all posts with non-zero text content, $c(w)_m$ is the number of messages with w, and $c(w_1, w_2)$ is the number of messages with w_1 and w_2 present together. We learn stemmed term proximities and enrich the term frequency-inverse document frequency vectors of messages by increasing the probability of any words similar to words present in the message, treating all term probabilities independently, as follows: $\text{tf-idf}_{w_2, m} = 1 - \prod_{w_1} (1 - \text{tf}_{w_1, m} \cdot \text{idf}_{w_1} \cdot p(w_2|w_1))$. We use the median similarity value as a threshold: all message pairs with similarity above the median are considered similar. After

learning message proximities in this manner, we scan the action log to calculate the influence probability from a node u to any nove v as the ratio of successful repost attempts: $p_{uv} = \frac{A_{v2u}}{A_v}$, where A_{v2u} is the number of similar actions made by users v and u sequentially in time. After filtering zero-probability edges, we select the largest component of 2.8K nodes and 40.9K edges as our VK network.

4 EXPERIMENTAL RESULTS

Here we present the results of our study. We set a timeout of 1h for all experiments for a single solver instance.

4.1 Synthetic Data

Figure 2 shows results with **Binomial** graphs. As the number of blocked nodes grows, DAVA's advantage of knowing the seeds becomes evident. Surprisingly, NetShield achieves better results than NetShape and Walk8 in this graph type. As the graph has a uniform structure, spectral-based algorithms do not perform well. This uniformity results in performance of algorithms not being dependent on the number of seeds and influence probability W. Still, as Figure 2c shows, with large W DAVA is slightly worse than preemptive approaches. DAVA assumes that the influence probability between two successive dominators in the dominator tree is equal to the probability along the shortest path. When there are many paths between two dominators, this assumption fails, hence the accuracy of the algorithm drops. We observe that NetShape is the least scalable algorithm.

Figure 3 shows results with **GRP** graphs. Again, the gap increases as k grows. DAVA achieves the best results on all parameters, except for the largest p_{out} . We observe that, as the inter-group probability p_{out} grows, DAVA shows slightly worse performance; in other words, as the graph forfeits its clustered structure, DAVA provides less accurate probability estimates.

3

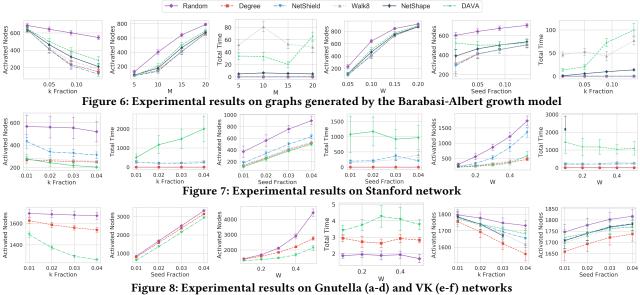


Figure 4 shows results with WS graphs. Here, preemptive algorithms perform significantly better than DAVA, while the difference is accentuated as the number of blocked nodes *k* grows.

Figure 5 shows results with **Grid** graphs. All algorithms except DAVA fail to isolate seeds. NetShape outperforms other spectral approaches thanks to its data-awareness. Runtimes are similar to those in the Binomial case, with DAVA being sufficiently scalable.

Last, Figure 6 shows results with BA graphs; the degree heuristic performs best, while DAVA does not fare well. This result indicates that there are limits to the versatility of DAVA.

4.2 **Real Data**

Figure 7 shows results on the **Stanford** network. We employ the fast DAVA that builds a dominator tree only once so as to scale. Exploring a larger range of parameters than [22] reveals that DAVA performs similarly to the Degree heuristic, and slightly worse as W grows, due to the scale-free data topology. NetShape and Walk8 could not scale to such size. Gnutella has a more random topology than the Stanford network. Running on the 62Knode Gnutella snapshot, only fast-DAVA and baselines terminated within the time limit. Figure 8 shows the results, with DAVA reasserting its advantage. Our VK graph has high clustering coefficient and power-law degree distribution. Figure 8 shows that, on this data, DAVA is outperformed by preemptive methods. We deduce that, in real-world social networks, isolating diffusion sources is less critical than immunizing influence hubs.

CONCLUSIONS 5

We conducted an exhaustive experimental study of network immunization methods. We conclude that, while data-aware approaches stand out on networks with uniform topologies, spectral structure-based approaches are competitive on networks with power-law topologies. This result calls for further research.

REFERENCES

- Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. 2003. Experiments on Graph Clustering Algorithms. In ESA. 568-579.
- Chen Chen, Hanghang Tong, B. Aditya Prakash, Charalampos E. Tsourakakis, Tina Eliassi-Rad, Christos Faloutsos, and Duen Horng Chau. 2016. Node Immunization on Large Graphs: Theory and Algorithms. IEEE Trans. Knowl. Data Eng. 28, 1 (2016), 113-126.

- [3] Wen Cui, Xiaoqing Gong, Chen Liu, Dan Xu, Xiaojiang Chen, Dingyi Fang, Shaojie Tang, Fan Wu, and Guihai Chen. 2016. Node Immunization with Time-Sensitive Restrictions. Sensors 16, 12 (2016), 2141.
- Jacob Goldenberg, Barak Libai, and Eitan Muller. 2001. Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth. Marketing Letters 12, 3 (2001), 211-223.
- Amit Goyal, Francesco Bonchi, and Laks V.S. S Lakshmanan. 2010. Learning influence probabilities in social networks. In WSDM. ACM, 241-250.
- Petter Holme and Beom Jun Kim, 2002. Growing scale-free networks with tunable clustering. Physical review E 65, 2 (2002), 026107.
- David Kempe, Jon M. Kleinberg, and Éva Tardos. 2003. Maximizing the spread of influence through a social network. In KDD. 137-146.
- Ricardo Lage, Peter Dolog, and Martin Leginus. 2013. Vector Space Models for the Classification of Short Messages on Social Network Services. WEBIST (2013), 209-224.
- Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Network Analysis and Graph-Mining Library. ACM Transactions on Intelligent Systems and Technology (TIST) 8, 1 (2016), 1
- Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. 2018. Influence Maximization on Social Graphs: A Survey. IEEE TKDE 30, 10 (2018), 1852-1872.
- Kazumi Saito, Ryohei Nakano, and Masahiro Kimura, 2008, Prediction of information diffusion probabilities for independent cascade model. In Knowledgebased intelligent information and engineering systems. Springer, 67-75
- Kevin Scaman, Argyris Kalogeratos, Luca Corinzia, and Nicolas Vayatis. 2017. A Spectral Method for Activity Shaping in Continuous-Time Information Cascades. CoRR abs/1709.05231 (2017)
- Paulo Shakarian, Abhinav Bhatnagar, Ashkan Aleali, Elham Shaabani, and Ruocheng Guo. 2015. The independent cascade and linear threshold models. In Diffusion in Social Networks. Springer, 35-48.
- Juvaria Tariq, Muhammad Ahmad, Imdadullah Khan, and Mudassir Shabbir. 2017. Scalable Approximation Algorithm for Network Immunization. In 21st Pacific Asia Conference on Information Systems, PACIS 2017. 200.
- V. Tejaswi, P. V. Bindu, and P. Santhi Thilagam. 2016. Diffusion models and approaches for influence maximization in social networks. ICACCI (2016), 1345-1351.
- [16] Biao Wang, Ge Chen, Luoyi Fu, Li Song, and Xinbing Wang. 2017. DRIMUX: Dynamic rumor influence minimization with user experience in social networks. IEEE Trans. Knowl. Data Eng. 29, 10 (2017), 2168-2181.
- Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. 2003. Epidemic Spreading in Real Networks: An Eigenvalue Viewpoint. Technical Report. 25–34 pages.
- Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of "smallworld" networks. Nature 393, 6684 (1998), 440.
- Arie Wahyu Wijayanto and Tsuyoshi Murata. 2018. Pre-emptive spectral graph protection strategies on multiplex social networks. Applied Network Science 3, 1 (2018), 5,
- Dingda Yang, Xiangwen Liao, Huawei Shen, Xueqi Cheng, and Guolong Chen. 2018. Dynamic node immunization for restraint of harmful information diffusion in social networks. Physica A 503 (2018), 640-649
- Yao Zhang. 2017. Optimizing and Understanding Network Structure for Diffusion. Ph.D. Dissertation. Virginia Tech.
- Yao Zhang and B. Aditya Prakash. 2015. Data-Aware Vaccine Allocation Over Large Networks. TKDD 10, 2, 20:1-20:32.
- Yao Zhang, Arvind Ramanathan, Anil Vullikanti, Laura L. Pullum, and B. Aditya Prakash. 2017. Data-Driven Immunization. In ICDM. 615–624.