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ABSTRACT
Given a network in which a undesirable rumor, disease, or con-
tamination spreads, which set of network nodes should we block
so as to contain that spread? Past research has proposed sev-
eral methods to address this network immunization (NI) problem,
which is to find a set of k nodes, such that the undesirable dissem-
ination is minimized in expectation when they are blocked. As
the problem is NP-hard, some algorithms utilize solely features of
the network structure in a preemptivemanner, to others that take
into account the specific source of a contamination in a data-
aware fashion. This paper presents an experimental study on
NI algorithms and baselines under the independent cascade (IC)
diffusion model. We employ a variety of synthetic and real-world
networks with diverse graph density, degree distribution, and
clustering coefficients, under realistically calculated influence
probabilities. We conclude that data-aware approaches based on
the construct of dominator trees usually perform best; however,
in networks with a power-law degree distribution, preemptive
approaches utilizing spectral network properties shine out by
virtue of their efficiency in identifying central nodes.

1 INTRODUCTION
Real-world networks facilitate the spread of ideas, behaviors,
inclinations, or diseases via diffusion processes [10]. Oftentimes
a diffusion of malicious nature needs to be contained via coun-
termeasures [12]. One such countermeasure is the blocking of a
subset of network nodes. Network Immunization (NI) calls to find
an optimal set of nodes to block so as to arrest a diffusion.

Early works on NI were motivated by epidemiology [3, 13],
categorizing individuals as Susceptible S, Infected I, or Recovered
R. Those who are infected infect their susceptible neighbors
with a transition rate β , and become recovered (hence immune)
with transition rate γ . In the context of social networks [15], the
Independent Cascade (IC) model [4] generalizes the SIR model,
assigning an independent transition rate β to each edge. Kempe
et al. [7] formulated the Influence Maximization (IM) problem
under the IC model, where the goal is to select k seed nodes that
maximize the expected diffusion spread; since then, the problem
has been studied extensively [10, 15].

The NI problem is complementary to the IM problem. Certain
notions are useful in both. For example, eigenvalue centrality [13]
has been used to guide seed selection in IM. Similarly, Chen et
al. [2] employ the first eigenvalue λ as a proxy to the objective
of NI problem, scoring nodes by the eigen-drop ∆λ that their
removal causes, leading to a succession of techniques aiming to
to maximize the eigen-drop of immunized nodes [21].

We distinguish two variants on network immunization: pre-
emptive immunization finds a solution before the epidemic starts;
by contrast, data-aware immunization tailors the solution to a
particular diffusion seed [20]. The state-of-the-art data-aware
solution, Data-Aware Vaccination Algorithm (DAVA) [22] employs
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structures called dominator trees. Still, the experimental study
in [22] is limited to four datasets with synthetic propagation
probabilities; it is not clear how the topology of the network
influences the algorithm’s performance. At the same time, recent
preemtive immunization methods [12, 14] significantly outper-
form the baselines used in [22], yet have not been compared to
DAVA itself. Thus, to the best of our knowledge, no previous work
has studied how data-aware and and preemptive immunization
strategies fare under different graph topologies.

In this paper, we investigate the performance of state-of-the-
art data-aware and preemptive NI solutions on a variety of real-
world and synthetic network structures with diverse characteris-
tics, and under realistic influence probabilities with the IC model.
Our study features the first, to our knowledge, application of
the most recent algorithm for eigen-drop maximization and a
generic spectral method of activity shaping, to NI under the IC
model. We demonstrate that data-aware approaches are leading
in a majority of configurations, yet preemtive ones stand out
under particular settings of graph density, influence probabilities,
degree distribution, and clustering coefficients.

2 BACKGROUND
The classic approach to preemptive NI is the NetShield algo-
rithm [2]. NetShield greedily selects a set of nodes S , aiming to
maximize its Shield value:

Sv(S) =
∑
i ∈S

2λu(i)2 −
∑
i, j ∈S

A(i, j)u(i)u(j)

where λ and u are the largest eigenvalue and the corresponding
eigenvector of the network’s adjacency matrixA. A set S has high
Sv if its elements have high eigenscore u(i) and are not connected
to each other (zero A(i, j)). A high eigenscore implies that their
removal leads to a significant eigen-drop ∆λ. The algorithm has
a O(n |S |2) complexity, where n is the size of a network.

NetShield defines an epidemic threshold β ′ such that any edge
transition probability β > β ′ would result in a significant portion
of the network being contaminated. The algorithm utilizes the
fact that the epidemic threshold is related to the first eigenvalue of
the network adjacency matrix as β ′ = 1/λ [17]. Thus, λ expresses
the vulnerability of the network to an epidemic. Tariq et al. [14]
improved upon NetShield by approximating the eigen-drop, rely-
ing on the fact that λ can be expressed as the limit trace of the
p-exponential adjacency matrix A, which equals the number of
p-sized closed walks in the graph, cwp :

lim
p→inf,p even

(trace(Ap ))1/p = λ

trace(Ap ) = cwp (G)

The proposed method greedily selects a set of nodes to block
based on their approximate contribution to closed walks. The
published version suggested using p = 6, yet in communication
with the authors we confirmed that p = 8 feasibly leads to im-
proved results; we refer to this algorithm asWalk8; its complexity
isO(n2+γ (n+α3)+nk2), where α is a number of node partitions
and γ a number of employed hash functions.

DAVA [22] accepts the seed set of a network diffusion as in-
put and builds its NI solution around dominator trees. A node
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Figure 1: Generated Graph Examples. Darker color indicates higher degree, normalized per graph.

Graph Type |V | [·103] |E | [·103]deдmin/avg/med/max clust. coeff. cl infl. prob.W seed fract. sf k fract. kf Other Parameters
Binomial 1.0 14.7 4/15/15/30 0.012 0.2 0.05 0.05 edge exist. p = 0.015
GRP 1.0 14.6 2/30/26/90 0.325 0.1 0.01 0.05 shape param. s = 20, v = 0.9, intra-group prob. pin = 0.4, inter-group pout = 0.001
WS 1.0 7.0 18/28/28/44 0.237 0.2 0.05 0.05 neighbors in a ring l = 15, rewiring prob. p = 0.3
BA 1.0 29.4 28/59/40/498 0.103 0.1 0.05 0.05 prob. of triangle p = 0.2, densitym = 15
Grid 1.0 39.7 4/8/8/8 0.000 0.7 0.05 0.05 –

Stanford 9.9 36.9 0/7/5/555 0.392 0.2 0.2 0.2
Gnutella 62.6 147.9 1/4/2/95 0.007 0.2 0.2 0.2 –

VK 2.8 40.9 1/29/14/288 0.235 – 0.2 0.2

Table 1: Default parameters for graph types

u dominates a node w w.r.t. a seed node s if all paths from s to
w pass through u. A dominator tree is a tree where each node
is dominated by its ancestors. The benefit of removing a node
depends on its position in the tree. DAVA iteratively removes
the node of highest benefit and reconstructs the tree. In a DAVA
variant, DAVA-fast, the tree is built only once and top-k nodes
are selected based on their benefit in one go.

NetShape [12] immunizes a network via a convex relaxation
approach, optimizing the eigen-drop of the network’s Hazard
matrix, whose first eigenvalue bounds the expected spread of
an infection. The complexity is O( 1

ϵ 2p
2
maxE lnE), where pmax

is the maximum propagation probability, and ϵ is a parameter
affecting a step of subgradient descent.

3 METHODOLOGY
Consider a directed graph G = (V ,E) with set of nodes V and
set of edges E. Each edge is associated with a probability of
propagation. By the , independent cascade model, a diffusion
occurs in discrete time steps. In step t0, a seed set S ⊂ V becomes
activated. Any node v activated in step ti attempts to activate
each of its inactive neighbors in step ti+1, and succeeds by the
probability associated with the edge from v to that neighbor.
The process terminates when there are no more newly activated
nodes. The Network Immunization (NI) problem calls to block a
select set of k nodes R ⊆ V \ S so as to minimize the expected
spread of activated nodes, by a given seed set S in a graph G.

3.1 Algorithms
We compare six solutions to the NI problem in three categories:

• Naïve: Degree selects the top-k nodes with highest degree;
Random selects k nodes uniformly at random.

• Preemptive: NetShield [2] andWalk8 [14],
• Data-Aware: NetShape [12] and DAVA [22].

On NetShape, we use the default ϵ = 0.2. As exact spread
computation is #P-hard, we estimate spread with any solution
via 1000 Monte-Carlo IC simulations. We use the original Matlab
code of Walk8. As seeds cannot be blocked, we fetch k+ |S | nodes
to be blocked with Walk8, ensuring that at least k nodes are
blocked. We implemented all other algorithms in Python1.

3.2 Data
We use both synthetic and real data obtained as follows.

1 Available at https://github.com/allogn/Network-Immunization

3.2.1 Synthetic Data. We generated graphs of different prop-
erties using five models. By the Erdős-Rényi model, each edge
is present with probability p; generated graphs have a low clus-
tering coefficient and a binomial degree distribution. We refer
to this generator as Binomial. We render the graph directed by
selecting a random direction for each edge with 50% probability.

A Gaussian Random Partition (GRP) [1] selects edges as
with Erdős-Rényi, but with a prior grouping, where group size
follows a Gaussian distribution; it uses a probability value pin
for edges across nodes in the same group, and pout otherwise,
hence varying intra-group and inter-group density.

Watts Strogatz (WS) networks model self-organizing small-
world systems [18], which have small average shortest path
length, power-law degree distribution, and are highly clustered,
hence susceptible to infectious spread. The generator employs
two parameters: parameter l indicates how many nearest neigh-
bors each node is joined with in a ring; p is a probability of edge
rewiring, which induces disorder in the graph.

Barabási-Albert (BA) networks have both high clustering
coefficients (as GRP graphs do) and power-law degree distribu-
tion (as WS graphs do), hence are better imitations of real-world
social networks. We use the algorithm of Holme and Kim [6],
which extends the original Barabási-Albert model, yet use the
BA label as its basis; this algorithm randomly createsm edges
for each node in a graph, and for created edge with a probability
p adds an edge to one of its neighbors, thus creating a triangle.

Grid graphs have each node connected to four neighbors on a
lattice. With this graph type, we explore the applicability of solu-
tions on spatial graphs such as geosocial contact networks [23].

Table 1 lists the default parameters for all models, where frac-
tions s f = |S |/|V | and k f = k/|V |. Figure 1 shows example
graphs. All synthetic graphs have 1000 nodes, as in [17].

3.2.2 Real-World Datasets. We use 3 real-world graphs. Stan-
ford and Gnutella, have been employed in related literature; a
third, VK, provides a case of real-world propagation probabilities.

The Stanford data consists of pages and hyperlinks in the
Stanford University website2 [22]. The Gnutella peer-to-peer
file sharing directed network is part of the SNAP dataset [9].
We use the biggest snapshot of 62586 nodes, with a diameter
of 11 nodes and a clustering coeficient of 0.0055. It has been
used in [12, 20, 22]. vKontakte3 (VK) is a Russia-based social
network of more than 500 million users4. Its public API allows to

2 https://www.cise.ufl.edu/research/sparse/matrices/Gleich/ 3 http://vk.com/
4 https://en.wikipedia.org/wiki/VKontakte
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Figure 2: Experimental results on graphs generated by the binomial Erdős-Rényi model

Figure 3: Experimental results on graphs generated by the Gaussian Random Partition generator

Figure 4: Experimental results on Watts Strogatz networks

Figure 5: Experimental results on regular grids

download information about public profiles, subscriptions, and
posts. We fetch public posts of users to train the IC model. To
our knowledge, we are first to train the IC model on real posts.
Previous works had trained the model on subscription actions in
Flickr [5] and cross-references in online diaries [11].

3.3 Parameters
We consider blocked node set size k as a fraction of network
size [16]. We employ random seed selection [3, 19, 22]; we pick
10 random seed sets, and show the mean and standard devi-
ation of activated nodes. We choose influence probabilities
uniformly at random from 0 to a maximum value W . In ad-
dition, we adopt the approach of [5] to learn influence prob-
abilities, using user posts as actions. We download 100 latest
posts at the moment of publishing per user, resulting in 21M
posts. Most posts are short, hence we can apply the same Natu-
ral Language Processing methods as for short messages. After
preprocessing, we collected 536,073 non-empty messages be-
longing to non-isolated nodes in the VK graph, with median
length of 11 words, std 187 and max 2977, leaving us with 3%
of the original dataset. We define the closeness of actions by
comparing the content of text messages, as in [8], to learn vec-
tor embeddings of short messages. We define term proximity
as p(w2 |w1) =

1
|M |

c(w1,w2)
c(w1)

, where M is a set of all posts with
non-zero text content, c(w)m is the number of messages withw ,
and c(w1,w2) is the number of messages withw1 andw2 present
together. We learn stemmed term proximities and enrich the term
frequency–inverse document frequency vectors of messages by
increasing the probability of any words similar to words present
in the message, treating all term probabilities independently, as
follows: tf-idfw2,m = 1 − Πw1 (1 − tfw1,m · idfw1 · p(w2 |w1)). We
use the median similarity value as a threshold: all message pairs
with similarity above the median are considered similar. After

learning message proximities in this manner, we scan the action
log to calculate the influence probability from a node u to any
nove v as the ratio of successful repost attempts: puv = Av2u

Av ,
where Av2u is the number of similar actions made by users v
and u sequentially in time. After filtering zero-probability edges,
we select the largest component of 2.8K nodes and 40.9K edges
as our VK network.

4 EXPERIMENTAL RESULTS
Here we present the results of our study. We set a timeout of 1h
for all experiments for a single solver instance.

4.1 Synthetic Data
Figure 2 shows results with Binomial graphs. As the number of
blocked nodes grows, DAVA’s advantage of knowing the seeds
becomes evident. Surprisingly, NetShield achieves better results
than NetShape and Walk8 in this graph type. As the graph has a
uniform structure, spectral-based algorithms do not perform well.
This uniformity results in performance of algorithms not being
dependent on the number of seeds and influence probabilityW .
Still, as Figure 2c shows, with largeW DAVA is slightly worse
than preemptive approaches. DAVA assumes that the influence
probability between two successive dominators in the dominator
tree is equal to the probability along the shortest path. When
there are many paths between two dominators, this assumption
fails, hence the accuracy of the algorithm drops. We observe that
NetShape is the least scalable algorithm.

Figure 3 shows results with GRP graphs. Again, the gap in-
creases as k grows. DAVA achieves the best results on all pa-
rameters, except for the largest pout . We observe that, as the
inter-group probability pout grows, DAVA shows slightly worse
performance; in other words, as the graph forfeits its clustered
structure, DAVA provides less accurate probability estimates.
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Figure 6: Experimental results on graphs generated by the Barabasi-Albert growth model

Figure 7: Experimental results on Stanford network

Figure 8: Experimental results on Gnutella (a-d) and VK (e-f) networks

Figure 4 shows results with WS graphs. Here, preemptive
algorithms perform significantly better than DAVA, while the
difference is accentuated as the number of blocked nodes k grows.

Figure 5 shows results withGrid graphs. All algorithms except
DAVA fail to isolate seeds. NetShape outperforms other spectral
approaches thanks to its data-awareness. Runtimes are similar to
those in the Binomial case, with DAVA being sufficiently scalable.

Last, Figure 6 shows results withBA graphs; the degree heuris-
tic performs best, while DAVA does not fare well. This result
indicates that there are limits to the versatility of DAVA.

4.2 Real Data
Figure 7 shows results on the Stanford network. We employ the
fast DAVA that builds a dominator tree only once so as to scale.
Exploring a larger range of parameters than [22] reveals that
DAVA performs similarly to the Degree heuristic, and slightly
worse asW grows, due to the scale-free data topology. NetShape
and Walk8 could not scale to such size. Gnutella has a more
random topology than the Stanford network. Running on the 62K-
nodeGnutella snapshot, only fast-DAVA and baselines terminated
within the time limit. Figure 8 shows the results, with DAVA
reasserting its advantage. Our VK graph has high clustering
coefficient and power-law degree distribution. Figure 8 shows
that, on this data, DAVA is outperformed by preemptive methods.
We deduce that, in real-world social networks, isolating diffusion
sources is less critical than immunizing influence hubs.

5 CONCLUSIONS
We conducted an exhaustive experimental study of network im-
munization methods. We conclude that, while data-aware ap-
proaches stand out on networks with uniform topologies, spectral
structure-based approaches are competitive on networks with
power-law topologies. This result calls for further research.
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