
A Content Recommendation Policy for Gaining Subscribers
Konstantinos Theocharidis

University of the Peloponnese & Information Management
Systems Institute, Athena Research Center, Greece

Manolis Terrovitis
Information Management Systems Institute

Athena Research Center, Greece

Spiros Skiadopoulos
University of the Peloponnese, Greece

Panagiotis Karras
Aarhus University, Denmark

ABSTRACT
How can we recommend content for a brand agent to use over a
series of rounds so as to gain new subscribers to its social network
page? The Influence Maximization (IM) problem seeks a set of 𝑘
users, and its content-aware variants seek a set of 𝑘 post features,
that achieve, in both cases, an objective of expected influence in a
social network. However, apart from raw influence, it is also rele-
vant to study gain in subscribers, as long-term success rests on the
subscribers of a brand page; classic IM may select 𝑘 users from the
subscriber set, and content-aware IM starts the post’s propagation
from that subscriber set. In this paper, we propose a novel content
recommendation policy to a brand agent for Gaining Subscribers by
Messaging (GSM) over many rounds. In each round, the brand agent
messages a fixed number of social network users and invites them
to visit the brand page aiming to gain their subscription, while its
most recently published content consists of features that intensely
attract the preferences of the invited users. To solve GSM, we find,
in each round, which content features to publish and which users
to notify aiming to maximize the cumulative subscription gain over
all rounds. We deploy three GSM solvers, named RANDOM, SCAN,
and SUBSTITUTE, and we experimentally evaluate their performance
based on VKontakte (VK) posts by considering different user sets
and feature sets. Our experimental results show that SUBSTITUTE
provides the best solution, as it is significantly more efficient than
SCAN with a minor loss of efficacy and clearly more efficacious than
RANDOM with competitive efficiency.

CCS CONCEPTS
• Information systems→ Social networks;Recommender sys-
tems; Content match advertising; Content ranking; Texting.

KEYWORDS
content recommendation, subscription gain, messaging, ranking
ACM Reference Format:
Konstantinos Theocharidis,Manolis Terrovitis, Spiros Skiadopoulos, and Pana-
giotis Karras. 2022. A Content Recommendation Policy for Gaining Sub-
scribers. In Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’22), July

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’22, July 11–15, 2022, Madrid, Spain
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8732-3/22/07. . . $15.00
https://doi.org/10.1145/3477495.3531885

11–15, 2022, Madrid, Spain. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3477495.3531885

1 INTRODUCTION
The problem of Influence Maximization (IM) [7] is relevant and
useful to stakeholders (henceforward, brands) that pursue viral
marketing campaigns in social networks. The classic IM [4] seeks 𝑘
users that maximize the influence of a fixed post in a network; the
inverse variant of IM [3] seeks 𝑘 content features1 to form a viral
post that starts its diffusion from a fixed set of initial adopters.

Nowadays, most brands maintain social network pages for ad-
vertising purposes, since social network users choose to follow
pages they are interested in; these followers are the subscribers of
a brand. Yet, in the IM literature, subscribers are usually taken for
granted [3, 5] or ignored [4, 7]. In the former case, it is lucrative for
the content-aware IM techniques to apply in practice only when
several subscribers exist; yet, new brands having zero or limited
subscribers cannot benefit from such techniques. So, we provide a
concrete way for such brands to gain subscribers and take advan-
tage of works in [3, 5]. In the latter case, the classic IM problem
applies independently of subscribers but their loyalty capabilities
are not explored. For instance, it is more feasible and economic for
a brand to motivate 𝑘 influential loyal subscribers for promoting
its posts than searching for 𝑘 agnostic adopters that may not be
supporters of the brand and contribute loosely to its promotion. So,
even established brands with several subscribers, can benefit from
our gaining subscribers method so as to find even more influential
loyal users for classic IM purposes [4, 7]. Further, in the real world,
the network topology is usually not known on its whole [2, 6, 8],
whereas subscribers are always known, even if that knowledge
requires explicit on-demand retrieval. Therefore, the need arises to
focus on subscribers and study how brands can gain subscribers.

In this paper, we propose a novel multi-round content recom-
mendation policy that a brand agent/advertiser can use to Gain
Subscribers by Messaging (GSM). As the GSM problem takes place
over many rounds, we deploy three algorithms that solve GSM in a
non-adaptive way (beforehand) for all rounds. Our solutions recom-
mend to the advertiser, in each round, which 𝑘 content features to
publish and which𝑚 non-subscriber users to notify of those 𝑘 fea-
tures so as to maximize chances to gain the subscription of those𝑚
users. The notification is done by messaging (e.g., a short message
acting like an invitation to visit the brand page), and each user is
notified once; that user is never notified again for any reason. The
best GSM solver is the one that achieves the maximum subscription
gain over all rounds. We define subscription gain (henceforward,
𝑆𝐺) as a weighted sum depicting the aggregate preference of 𝑚
1We consider that each feature corresponds to a specific social network page.

Short Research Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2501

https://orcid.org/0000-0002-1725-1282
https://orcid.org/0000-0003-0784-8402
https://orcid.org/0000-0003-3465-8292
https://orcid.org/0000-0003-0509-9129
https://doi.org/10.1145/3477495.3531885
https://doi.org/10.1145/3477495.3531885
https://doi.org/10.1145/3477495.3531885

(f1, f2) RANDOM SCAN SUBSTITUTE Early Termination of SUBSTITUTE for u5
u1: w1
u2: w2 (w1, w2, w3) * red and black (35 in total) * for (f1, f2) we have: w4 – w5 < w4 – w5 < w4 – w5
u3: w3 (w1, w2, w4) user combinations are checked order = u2 u1 u3 u4 u6 u5 u7 w2+w1+w5 w2+w3+w5 w1+w3+w5
u4: w4 . . . for each feature combination. userCombs = {(w1, w2, w3)} ^ ^ ^
u5: w5 . . . w3 – w5 < w3 – w5 < w3 – w5
u6: w6 (w4, w6, w7) * best match for (f1, f2): * u2 u1 u3 u6 u5 u7 w2+w1+w5 w2+w4+w5 w1+w4+w5
u7: w7 (w5, w6, w7) (w1, w2, w4) X u4 u4
 u4 substitutes u3 and u1, The above scheme shows that if only the
(f1, f3) * best match for (f1, f3): and is not marked invisible: first term is greater than d, then it is enough
u1: w1’ (w2’, w4’, w5’) order = u2 u1 u3 u4 u6 u5 u7 to confirm that u5 substitutes no user.
u2: w2’ (w1’, w2’, w3’) userCombs = {(w1, w2, w3), Based on such finding, the scheme below
u3: w3’ (w1’, w2’, w4’) * best match for (f2, f3): (w1, w2, w4), (w2, w3, w4)} also confirms that u7 substitutes no user.
u4: w4’ . . . (w3”, w5”, w6”) So, SUBSTITUTE reaches to early termination.
u5: w5’ . . . * u2 u1 u3 u4 u5 u7
u6: w6’ (w4’, w6’, w7’) * ((w1+w2+w4) – (w2’+w4’+w5’)) X u6 u6 u6 w4 – w5 < w4 – w5 < w4 – w5
u7: w7’ (w5’, w6’, w7’) / (w2’+w4’+w5’) > d u6 substitutes u4, u3, and u1, w2+w1+w5 w2+w3+w5 w1+w3+w5
 and but is marked invisible: ^ ^ ^
(f2, f3) ((w1+w2+w4) – (w3”+w5”+w6”)) order = u2 u1 u3 u4 (u6) u5 u7 w4 – w7 < w4 – w7 < w4 – w7
u1: w1” / (w3”+w5”+w6”) > d w2+w1+w7 w2+w3+w7 w1+w3+w7
u2: w2” (w1”, w2”, w3”) so: * u2 u1 u3 u4 (u6) u7
u3: w3” (w1”, w2”, w4”) features (f1, f2) selected in round t X When the first term is not greater than d,
u4: w4” . . . and users (u1, u2, u4) are notified. u5 substitutes no user, and then invisibility instances are checked by a
u5: w5” . . . this also holds for u7; the gene- condition that tries to predict the d-result
u6: w6” (w4”, w6”, w7”) * in next round t+1, the best match ration of new user combinations of next terms without many false misses.
u7: w7” (w5”, w6”, w7”) for (f2, f3) is not computed again. for (f1, f2) has ended. Invisibility check is part of early termination.

 (b) (c) (d) (e) (a)
Figure 1: An example that shows the basic execution components of GSM solvers for 𝑘 = 2 features and𝑚 = 3 users.

users for 𝑘 features. For any two (𝑘,𝑚) solutions that achieve simi-
lar 𝑆𝐺 , we consider the cumulative (no duplicates allowed) reach
of their respective𝑚 users to select the (𝑘,𝑚) solution with the
maximum reach; the reach (henceforward, 𝑅) of a user is equal to
her out-degree. 𝑅 acts as a second filter (when needed) that helps
to the selection of most influential new subscribers.

GSM naturally applies to social networks, such as VK2, which
constitutes the Russian version of Facebook in terms of usability
and scale. In social networks, the pages to which a user subscribes,
form the features (preferences) of user and in this work we consider
real VK posts to fine-tune with different weights such features for
our experiments. Moreover, VK strictly allows 20 messages per
12 hours to any user who has a VK account and wishes to send
a message to any other non-friend VK user. Thus, each message
is valuable for the advertiser and constitutes a single chance to
attract the attention of notified user. By solving GSM, the advertiser
prioritizes the publishing (as each round has priority over the next
round) of the right 𝑘-size content for the right𝑚 users to maximize
the gain of subscribers. If, alternatively, the advertiser were to apply
a random messaging policy, then she would gain subscribers at a
lower pace, and also face the danger of losing access to her page for
some period due to spam reports sent by notified users to the VK
company; a user invited to visit a page of no interest may report
spamming. To make motivation clear, we present the next example:

Example: Consider Figure 1. If advertiser has no algorithm to
solve GSM, then she randomly selects𝑚 users (e.g., 𝑣4, 𝑣6, 𝑣7) and
𝑘 features (e.g., 𝑓1, 𝑓3); this is a trivial approach and we do not use
it in this work. Yet, if she uses RANDOM algorithm, then for the
selected𝑚 users (e.g., same as previous) she finds the 𝑘 features
that give the maximum 𝑆𝐺 (e.g., 𝑓1, 𝑓2 with 𝑆𝐺 = 𝑤4 + 𝑤6 + 𝑤7),

2See https://vk.com/

where𝑤4 equals to the weighed sum of 𝑣4 in regards to 𝑓1 and 𝑓2.
Lastly, if she uses SCAN or SUBSTITUTE algorithm, then she finds a
(𝑘 ,𝑚) solution with much higher 𝑆𝐺 due to considering all possible
(𝑘 ,𝑚) combinations to optimally solve GSM instead of depending
on random selections. A higher 𝑆𝐺 expresses a higher probability3
that some of𝑚 invited users will become subscribers to brand’s
page. Algorithms in Figure 1 will be gradually discussed in paper.

We summarize our contributions as follows: (1) we propose the
GSM problem that applies to any social network; (2) deploy three
GSM solvers, named RANDOM, SCAN, and SUBSTITUTE; and (3) pro-
vide a rich experimental evaluation that verifies the superiority of
SUBSTITUTE over others; to the best of our knowledge, the problem of
gaining subscribers using content has not been studied previously.

2 GSM SOLVERS
We define the GSM problem as follows: Given a social network𝐺 =

(𝑉 , 𝐸) with |𝑉 | users and |𝐸 | edges, a feature universe 𝐿, a weighted
feature set 𝐹𝑣 of size |𝐿 | capturing the preferences of each user 𝑣 , a
budget 𝑘 , a limited number of𝑚 notification messages, a similarity
threshold 𝑑 , and a number of rounds 𝑛, find in each round 𝑡 what 𝑘
content features to publish and which𝑚 users to notify so as to
maximize the cumulative subscription gain 𝑆𝐺 over 𝑛 rounds:

𝑆𝐺 = max
∑𝑛
𝑡=1 𝑆𝐺𝑡 (𝑘,𝑚)

2.1 The Solver RANDOM

RANDOM constitutes a baseline that solves GSM. In each round 𝑡 , it
uniformly at random selects𝑚 users from𝑉 not chosen in previous
rounds and focuses on selecting features. In more detail, RANDOM

3The sum of weights over features for each user equals to 1. So, the maximum 𝑆𝐺

value equals to𝑚 and each 𝑆𝐺 value divided by𝑚 belongs to range [0, 1].

Short Research Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2502

searches for the 𝑘-size feature set that yields the maximum gain
in round 𝑡 with regard to the selected𝑚 users, and increases the
cumulative 𝑆𝐺 and reach 𝑅. As a last step, it keeps track of all
notified users to avoid messaging them again. In Figure 1b, RANDOM
selects the users 𝑣4, 𝑣6, 𝑣7 and so it compares only the 3 black user
combinations to find which 𝑘 features are the best match (yield the
highest 𝑆𝐺) for selected users. Note that RANDOM overlooks all the
red user combinations and that depicts its crucial deficiency.

2.2 The Solver SCAN
Algorithm SCAN presents the solver SCAN. In a nutshell, SCAN com-
putes and stores in each round 𝑡 the best match (the𝑚-size user
combination that yields the maximum 𝑆𝐺) for each 𝑘-size feature
combination by examining all possible𝑚-size user combinations, so
as to find the 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 for 𝑡 , and skips in next rounds any feature
combinations that do not need to be processed again.

Algorithm SCAN
Input :𝐺 , 𝐿, 𝐹𝑣
Output :𝑆𝐺 , 𝑅 // cumulative subscription gain and reach over 𝑛 rounds in GSM

Param. :𝑘 ,𝑚, 𝑑 , 𝑛
// Each entry of 𝑓 𝐶 maps 𝑘 features to the𝑚 users who yield the maximum 𝑆𝐺

1 for each feature combination 𝑐 𝑓 from 𝑘 feature combinations of 𝐿 do 𝑓 𝐶 [𝑐 𝑓] = ∅;
// Each entry of𝑢𝐶 maps𝑚 users to their reach 𝑅 as computed in𝐺

2 for each user combination 𝑐𝑢 from𝑚 user combinations of𝑉 do𝑢𝐶 [𝑐𝑢] = −1;
3 𝑆𝐺 = 0; 𝑅 = 0; 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑉 = ∅;
4 for 𝑡 = 1, . . . , 𝑛 do
5 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑢𝑠𝑒𝑟𝑠 = ∅; 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = ∅; 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑆𝐺 = 0;

𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑅 = 0; // initialize the best solution for round 𝑡

6 for each feature combination 𝑐 𝑓 ∈ 𝑓 𝐶 do
// 1. Check to may skip computation of 𝑓 𝐶 [𝑐 𝑓] and Update 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡

7 if all users in 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑉 are not contained in 𝑓 𝐶 [𝑐 𝑓] then
8 𝑐 𝑓 .𝑆𝐺 = computeSG(𝑓 𝐶 [𝑐 𝑓], 𝑐 𝑓 , 𝐹𝑣);
9 if 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑆𝐺 ≥ 𝑐 𝑓 .𝑆𝐺 then
10 𝑑𝑖 𝑓 𝑓 = (𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑆𝐺 − 𝑐 𝑓 .𝑆𝐺) ÷ 𝑐 𝑓 .𝑆𝐺 ;

11 if 𝑑𝑖 𝑓 𝑓 > 𝑑 then continue;

12 else
13 𝑑𝑖 𝑓 𝑓 = (𝑐 𝑓 .𝑆𝐺 − 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑆𝐺) ÷ 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑆𝐺 ;

14 if 𝑑𝑖 𝑓 𝑓 > 𝑑 then
15 if 𝑢𝐶 [𝑓 𝐶 [𝑐 𝑓]] = −1 then
16 𝑢𝐶 [𝑓 𝐶 [𝑐 𝑓]] = computeReach(𝑓 𝐶 [𝑐 𝑓],𝐺);

17 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑢𝑠𝑒𝑟𝑠 = 𝑓 𝐶 [𝑐 𝑓];
𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑐 𝑓 ; 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑆𝐺 = 𝑐 𝑓 .𝑆𝐺 ;

𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑅 = 𝑢𝐶 [𝑓 𝐶 [𝑐 𝑓]]; continue;

18 Repeat lines 15-16 to compute𝑢𝐶 [𝑓 𝐶 [𝑐 𝑓]];
19 if 𝑢𝐶 [𝑓 𝐶 [𝑐 𝑓]] > 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑅 or (𝑢𝐶 [𝑓 𝐶 [𝑐 𝑓]] = 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑅

and 𝑐 𝑓 .𝑆𝐺 > 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑆𝐺) then Update 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 as in line 17;

// continue is executed either the condition in if is true or false

// 2. Compute 𝑓 𝐶 [𝑐 𝑓] with the examination of each 𝑐𝑢 ∈ 𝑢𝐶 (loop here!)

20 Let 𝑐𝑟𝑛𝑡_𝑐𝑢 be the current best user combination stored in 𝑓 𝐶 [𝑐 𝑓];
21 Let 𝑛𝑒𝑥𝑡_𝑐𝑢 be the next 𝑐𝑢 ∈ 𝑢𝐶 for examination to may update 𝑓 𝐶 [𝑐 𝑓];
22 Compare 𝑐𝑟𝑛𝑡_𝑐𝑢 with 𝑛𝑒𝑥𝑡_𝑐𝑢 by following a similar process to lines 8-19

so as to may update 𝑓 𝐶 [𝑐 𝑓] and 𝑐𝑟𝑛𝑡_𝑐𝑢 with 𝑛𝑒𝑥𝑡_𝑐𝑢 ;

// 3. Update 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡
23 Repeat lines 8-19 to update 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 ;

24 𝑆𝐺 = 𝑆𝐺 + 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑆𝐺 ; 𝑅 = 𝑅 + 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑅;
25 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑉 = ∅; for each user 𝑣 ∈ 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑢𝑠𝑒𝑟𝑠 do 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑉 .insert(𝑣);

26 Delete each 𝑐𝑢 ∈ 𝑢𝐶 that contains at least one user 𝑣 ∈ 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑉 ;

27 return 𝑆𝐺 , 𝑅;

We indicate the algorithm’s workflow by marking three execu-
tion steps with bold numbers above Line 7, Line 20, and Line 23.
In the first step (Lines 7–19), if all users notified in the previous
round are not contained in the best match for current feature set 𝑐 𝑓 ,
then the best match for 𝑐 𝑓 does not change and it is used again to
possibly update 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 based on similarity threshold 𝑑 . If the
first step is not executed (condition in Line 7 is false), then we move

to the second step (Lines 20–22). This step is the most costly part of
SCAN as it examines all sets of𝑚 users sequentially to find the best
match for 𝑐 𝑓 . After this processing, the third step (Line 23) possibly
updates 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 by using the found best match for 𝑐 𝑓 .

In Figure 1c, SCAN compares 35𝑚-size user combinations for each
one of (𝑓1, 𝑓2), (𝑓1, 𝑓3), and (𝑓2, 𝑓3) so as to find their best matches.
Then, SCAN compares those three best matches and finds that the
best match of (𝑓1, 𝑓2) yields the higher 𝑆𝐺 over others, and so the
features 𝑓1, 𝑓2 and users 𝑣1, 𝑣2, 𝑣4 are selected in current round. Note
that in next round, the best match of (𝑓2, 𝑓3) remains unchanged
since it does not overlap with notified users of previous round.

2.3 The Solver SUBSTITUTE

Algorithm SUBSTITUTE presents the solver SUBSTITUTE.

Algorithm SUBSTITUTE
Input :𝐺 , 𝐿, 𝐹𝑣
Output :𝑆𝐺 , 𝑅 // cumulative subscription gain and reach over 𝑛 rounds in GSM

Param. :𝑘 ,𝑚, 𝑑 , 𝑛
// Each entry of 𝑓 𝐶 maps 𝑘 features to the𝑚 users who yield the maximum 𝑆𝐺

1 for each feature combination 𝑐 𝑓 from 𝑘 feature combinations of 𝐿 do 𝑓 𝐶 [𝑐 𝑓] = ∅;
2 for each feature combination 𝑐 𝑓 ∈ 𝑓 𝐶 do
3 𝑣.𝑆𝐺 = computeSG(𝑣, 𝑐 𝑓 , 𝐹𝑣); 𝑎𝑙𝑙𝑉 [𝑐 𝑓].insert((𝑣, 𝑣.𝑆𝐺)) ; // 𝑣.𝑆𝐺 desc sort

4 Form 𝑠𝑒𝑙𝑉 [𝑐 𝑓] by taking the first𝑚 ∗ 𝑛 pairs of 𝑎𝑙𝑙𝑉 [𝑐 𝑓]; // plus 𝑑-extensions
5 𝑆𝐺 = 0; 𝑅 = 0; 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑉 = ∅;
6 for 𝑡 = 1, . . . , 𝑛 do
7 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑢𝑠𝑒𝑟𝑠 = ∅; 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = ∅; 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑆𝐺 = 0;

𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑅 = 0; // initialize the best solution for round 𝑡

8 for each feature combination 𝑐 𝑓 ∈ 𝑓 𝐶 do
// 1. Check to may skip computation of 𝑓 𝐶 [𝑐 𝑓] and Update 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡

9 Repeat lines 7-19 of SCAN with only difference that now 𝑐 𝑓 .𝑅 =

computeReach(𝑓 𝐶 [𝑐 𝑓],𝐺) is used and so 𝑐 𝑓 .𝑅 replaces𝑢𝐶 [𝑓 𝐶 [𝑐 𝑓]];
// 2. Create only the necessary𝑚-size user combinations (𝑢𝐶) for 𝑐 𝑓

10 Form the first 𝑐𝑢 by taking the first𝑚 pairs of 𝑠𝑒𝑙𝑉 [𝑐 𝑓] and set

𝑢𝐶 [𝑐𝑢] = −1; // each 𝑐𝑢 is a set of pairs (𝑣, 𝑣.𝑆𝐺) here
11 𝑜 𝑓 𝑓 𝑠𝑒𝑡 =𝑚; 𝑐 𝑓 .𝑖𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒 = ∅; // it contains each invisible 𝑣 ∈ 𝑠𝑒𝑙𝑉 [𝑐 𝑓]
12 for 𝑒2 = 𝑠𝑒𝑙𝑉 [𝑐 𝑓].get(𝑚 + 1), . . . , 𝑠𝑒𝑙𝑉 [𝑐 𝑓] .𝑙𝑎𝑠𝑡 () do
13 𝑠𝑢𝑏𝑠 = ∅; 𝑖𝑛𝑣𝑖𝑠 = 0; 𝑡𝑟𝑎𝑣𝑠 = 0;
14 for 𝑒1 = 𝑠𝑒𝑙𝑉 [𝑐 𝑓].get(𝑜 𝑓 𝑓 𝑠𝑒𝑡), . . . , 𝑠𝑒𝑙𝑉 [𝑐 𝑓] .𝑓 𝑖𝑟𝑠𝑡 () do
15 if 𝑒1.𝑣 ∈ 𝑐 𝑓 .invisible then { 𝑖𝑛𝑣𝑖𝑠 + +; 𝑡𝑟𝑎𝑣𝑠 + +; continue; }
16 𝑒1_𝑐𝑜𝑚𝑏 = ∅; 𝑒2_𝑐𝑜𝑚𝑏 = ∅; 𝑑𝑒𝑛𝑜𝑚.𝑆𝐺 = 𝑒2.𝑣.𝑆𝐺 ;

17 for 𝑒𝑖 = 𝑠𝑒𝑙𝑉 [𝑐 𝑓].first(), . . . , 𝑠𝑒𝑙𝑉 [𝑐 𝑓].get(𝑚) do
18 if 𝑒𝑖 = 𝑒1 then continue;
19 𝑒1_𝑐𝑜𝑚𝑏 .insert(𝑒𝑖 .𝑣) ; 𝑒2_𝑐𝑜𝑚𝑏 .insert(𝑒𝑖 .𝑣) ;
20 𝑑𝑒𝑛𝑜𝑚.𝑆𝐺 = 𝑑𝑒𝑛𝑜𝑚.𝑆𝐺 + 𝑒𝑖 .𝑣.𝑆𝐺 ;

21 After𝑚 − 1 loop executions break;

22 𝑑𝑖 𝑓 𝑓 = (𝑒1.𝑣.𝑆𝐺 − 𝑒2.𝑣.𝑆𝐺) ÷ 𝑑𝑒𝑛𝑜𝑚.𝑆𝐺 ;

23 if 𝑑𝑖 𝑓 𝑓 > 𝑑 then break; else 𝑠𝑢𝑏𝑠 .insert(𝑒1) ; // 𝑒2 can sbst 𝑒1
24 𝑒1_𝑐𝑜𝑚𝑏 .insert(𝑒1.𝑣) ; 𝑒1.𝑅 = computeReach(𝑒1_𝑐𝑜𝑚𝑏 ,𝐺);

25 𝑒2_𝑐𝑜𝑚𝑏 .insert(𝑒2.𝑣) ; 𝑒2.𝑅 = computeReach(𝑒2_𝑐𝑜𝑚𝑏 ,𝐺);

26 𝑒1_𝑜𝑢𝑡 = 𝐺.outEdges(𝑒1.𝑣); 𝑒2_𝑜𝑢𝑡 = 𝐺.outEdges(𝑒2.𝑣);
27 if (𝑒1.𝑅 ≥ 𝑒2.𝑅 and |𝑒1_𝑜𝑢𝑡 | ≥ |𝑒2_𝑜𝑢𝑡 |) then 𝑖𝑛𝑣𝑖𝑠 + +;
28 𝑡𝑟𝑎𝑣𝑠 + +; // traversal of 𝑠𝑒𝑙𝑉 [𝑐 𝑓] proceeds with its previous 𝑒1

29 if |𝑠𝑢𝑏𝑠 | = 0 then break; // termination; no more𝑢𝐶 are created

30 𝑜 𝑓 𝑓 𝑠𝑒𝑡 + +; if 𝑡𝑟𝑎𝑣𝑠 = 𝑖𝑛𝑣𝑖𝑠 then 𝑐 𝑓 .𝑖𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒 .insert(𝑒2.𝑣) and
continue; // 𝑒2 marked as invisible for all traversed 𝑒1; no𝑢𝐶 for 𝑒2

31 For each 𝑒1 ∈ 𝑠𝑢𝑏𝑠 and for each 𝑐𝑢 ∈ 𝑢𝐶 where 𝑒1 ∈ 𝑐𝑢 , replace 𝑒1
with 𝑒2 to form 𝑐𝑢′ and set𝑢𝐶 [𝑐𝑢′] = −1; // each 𝑐𝑢′ is a new𝑢𝐶

// 3. Compute 𝑓 𝐶 [𝑐 𝑓] with the examination of each 𝑐𝑢 ∈ 𝑢𝐶 (loop here!)

32 Repeat lines 20-22 of SCAN; // 𝑐 𝑓 .𝑅 in place of𝑢𝐶 [𝑓 𝐶 [𝑐 𝑓]] as in line 9

// 4. Update 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡
33 Repeat line 23 of SCAN; // 𝑐 𝑓 .𝑅 in place of𝑢𝐶 [𝑓 𝐶 [𝑐 𝑓]] as in line 9

34 𝑆𝐺 = 𝑆𝐺 + 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑆𝐺 ; 𝑅 = 𝑅 + 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑅;
35 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑉 = ∅; for each user 𝑣 ∈ 𝑟𝑜𝑢𝑛𝑑𝐵𝑒𝑠𝑡 .𝑢𝑠𝑒𝑟𝑠 do 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑉 .insert(𝑣);

36 Delete from each 𝑠𝑒𝑙𝑉 [𝑐 𝑓] all pairs that contain a user 𝑣 ∈ 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑉 ;

37 return 𝑆𝐺 , 𝑅;

This solver addresses the main bottleneck of SCAN, which is
the examination of all user combinations in its second step. In

Short Research Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2503

particular, SUBSTITUTE adds an intermediate step (Lines 10–31) that
creates only the necessary 𝑚-size user combinations to find the
best match for current feature set 𝑐 𝑓 . To do that, it utilizes the
structure 𝑠𝑒𝑙𝑉 (initialized in Lines 2–4) that stores for each 𝑐 𝑓 a set
of pairs corresponding to users associated with their achieved 𝑆𝐺
in 𝑐 𝑓 , organized in descending order by their 𝑆𝐺 values.

Specifically, the first 𝑚 entries of 𝑠𝑒𝑙𝑉 [𝑐 𝑓] form the first user
combination (Line 10). Then, we compare each entry 𝑒2 (Line 12)
having a position greater than𝑚 in 𝑠𝑒𝑙𝑉 [𝑐 𝑓] with each previous
entry 𝑒1 of 𝑠𝑒𝑙𝑉 [𝑐 𝑓] (Line 14) to check whether 𝑒2 can substitute 𝑒1.
If a substitution happens (Line 23), there may exist a better solution
for 𝑐 𝑓 having 𝑒2 in place of 𝑒1. Otherwise, if 𝑒2 cannot substitute
the first compared 𝑒1, then 𝑒2 cannot substitute any 𝑒1, and also
this holds for any next 𝑒2, resulting in early termination (Line 29).
This termination is beneficial for two reasons: first, there is no need
to compare more (𝑒2, 𝑒1) pairs to find a better solution for 𝑐 𝑓 , and
second, it ends the generation of new user combinations for 𝑐 𝑓
thereby incurring less overhead in third step (Line 32). To further
enhance that termination, we add a condition in Line 27 that counts
instances of invisibility. A case of invisibility occurs when the cur-
rent combination that includes 𝑒1 has no less reach than the same
combination with 𝑒2 in place of 𝑒1, and also the atomic reach of 𝑒1
is no less than the atomic reach of 𝑒2; then, in most cases 𝑒1 is a
better option than 𝑒2. If such evidence is observed for all the 𝑒1 to
which we compare 𝑒2, then we mark 𝑒2 as invisible henceforward
(Line 30). Intuitively, the invisibility of 𝑒2 means that it is very
likely that no user combination derived by replacing any 𝑒1 with 𝑒2,
would constitute a better solution for 𝑐 𝑓 , so we opt to ignore them.

Figure 1d presents the execution logic of SUBSTITUTE for 𝑐 𝑓 =

(𝑓1, 𝑓2). The order represents 𝑠𝑒𝑙𝑉 and 𝑢𝑠𝑒𝑟𝐶𝑜𝑚𝑏𝑠 includes the𝑚-
size user combinations for 𝑐 𝑓 that can be seen as a gradually con-
structed knowledge base to find the best match for 𝑐 𝑓 . With blue
color we depict the not yet examined entries of 𝑠𝑒𝑙𝑉 , while with
green color we capture its currently examined entries for substi-
tution; the symbol X denotes no substitution after checking, and
when no green mark exists, it means no checking at all of respective
(𝑒2, 𝑒1) pair. In more detail, the first entry of 𝑢𝑠𝑒𝑟𝐶𝑜𝑚𝑏𝑠 comprises
users 𝑣1, 𝑣2, 𝑣3. Then, 𝑒2 = 𝑣4 is compared with all black 𝑒1 that also
they totally did not mark it as invisible, but 𝑣4 does not substitute
𝑒1 = 𝑣2, so 𝑢𝑠𝑒𝑟𝐶𝑜𝑚𝑏𝑠 extends with combinations derived after the
substitution of 𝑣4 with 𝑣3 and 𝑣1 to its current entries. After that,
𝑒2 = 𝑣6 can achieve three substitutions, but throughout checking, it
marked as invisible and so it does extend at all 𝑢𝑠𝑒𝑟𝐶𝑜𝑚𝑏𝑠 . Finally,
𝑒2 = 𝑣5 compares only with 𝑒1 = 𝑣4 and since it cannot substitute
it, it leads to early termination as it is sure that 𝑣5 cannot substitute
any 𝑒1 and this also holds for any entry after 𝑣5 (here, 𝑣7). So, al-
though SCAN examines 35 user combinations to find the best match
for (𝑓1, 𝑓2), SUBSTITUTE finds that best match by only examining 3
user combinations; the same logic applies for (𝑓1, 𝑓3) and (𝑓2, 𝑓3).

Figure 1e justifies why the aforementioned early termination is
possible when 𝑣5 cannot substitute 𝑣4. Since the first term is greater
than 𝑑 , namely 𝑤4−𝑤5

𝑤2+𝑤1+𝑤5
> 𝑑 , depicting the comparison result of

user combinations (𝑣2, 𝑣1, 𝑣4) and (𝑣2, 𝑣1, 𝑣5), and showing that 𝑣5
cannot substitute 𝑣4, we prove early termination based on red less
symbols. In the first (top) scheme, we show that each next term,
capturing a different 𝑑-comparison among 𝑣5 and 𝑣4 (first row)

and among 𝑣5 and 𝑣3 (second row), is even greater than 𝑑 if first
term is greater than 𝑑 ; this also holds inductively for respective
terms relative to 𝑣1 and 𝑣2. In the second (bottom) scheme, we apply
a similar logic and show that each next term of second row that
captures a different 𝑑-comparison among 𝑣7 and 𝑣4 is also greater
than 𝑑 if first term is greater than 𝑑 , and so 𝑣7 cannot substitute 𝑣4
as also no other user based on the inductive logic of first scheme.

3 EXPERIMENTAL EVALUATION
We wrote code in C++ and ran experiments on an AMD Ryzen 5
4600U CPU @2.1 GHz machine with 16GB RAM running Linux
Ubuntu 20.04.3 LTS 64-bit. For graph operations we used Lemon [1].

3.1 Setup
Datasets. As VK comprises 27 categories, we select the 1 and 2
most popular pages from each category, to form sets of 27 and 54
features. We uniformly at random select 10 different groups of 80
users for |𝐿 | = 27 and |𝐿 | = 54 (same groups for both 𝐿), and 10
different groups of 100 users for |𝐿 | = 27 and |𝐿 | = 54 (same groups
for both 𝐿); there is no relation among groups of 80 and 100 users.
So, all the experimental results in our figures are averaged by 10.
Tuning. For each selected user, we realistically tune her 𝐹𝑣 (𝑓) value
for each feature 𝑓 ∈ 𝐿 by taking the average of her like responses
in all posts of the years 2010-2017 of VK; as 𝑓 we considered only
the 𝑏𝑟𝑎𝑛𝑑 that published the relative post where user liked it. The
feature weight sum of each 𝐹𝑣 (𝑓) equals to 1, and for any 𝑓 where
no like found, we initialized 𝐹𝑣 (𝑓) with a dummy value.
Parameters. The number of content features (𝑘) is examined until
𝑘 = 3, as higher 𝑘 values were time-consuming for SCAN. The
other parameters are fixed; the number of𝑚 invited users is 3, the
similarity threshold 𝑑 is 0.001, and the number of 𝑛 rounds is 20.

3.2 Results
Figure 2 presents the subscription gain (𝑆𝐺) and running time
(measured in seconds) results per round of RANDOM, SCAN, and
SUBSTITUTE for 𝑘 = 1, 2, and 3, and for |𝐿 | = 27, |𝑉 | = 80; Figure 3
does the same for |𝐿 | = 27, |𝑉 | = 100, Figure 4 for |𝐿 | = 54, |𝑉 | = 80,
and Figure 5 for |𝐿 | = 54, |𝑉 | = 100. Besides the per round results,
in each 𝑆𝐺 figure there is in legend for each solver a pair (𝑋,𝑌),
where 𝑋 is the cumulative 𝑆𝐺 and 𝑌 is the cumulative reach 𝑅4

over all rounds. Similarly, in each time figure, the legend mentions
for each solver the cumulative running time over all rounds.

We observe that the general trend is the same in all figures;
SUBSTITUTE is almost equally effective to SCAN and competitively
efficient to RANDOM. It is evident that SUBSTITUTE achieves a slightly
less cumulative 𝑆𝐺 in regards to SCAN due to the poor 𝑆𝐺 result it
achieves in first round; that behavior depends on aggressive false
misses derived from true evaluation of condition in Line 27, but as
rounds evolve such false misses reduce due to skipping of each 𝑐 𝑓
having an unaffected best solution (Line 9). Except for first round,
the 𝑆𝐺 of both solvers is very close and diminishes as rounds grow
because promising subscription candidates are messaged from the
beginning. Yet, the 𝑆𝐺 of RANDOM is the lowest and can be seen as
fixed across rounds, as it does not apply messaging with priority as
previous solvers. Regarding running time, SUBSTITUTE is slower than

4We present 𝑅 results for completeness; their analysis is not critical for GSM.

Short Research Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2504

5 10 15 20
Round

0.5

1.0

1.5

2.0

Su
bs

cr
ip

tio
n

Ga
in Random (10.54, 4824)

Scan (16.54, 5736)
Subst. (16.48, 5693)

(a) 𝑘 = 1, SG

5 10 15 20
Round

0.0

0.5

1.0

1.5

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0011 sec)
Scan (2.75 sec)
Subst. (0.28 sec)

(b) 𝑘 = 1, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

2.5

Su
bs

cr
ip

tio
n

Ga
in Random (16.32, 4824)

Scan (20.76, 5696)
Subst. (20.78, 5828)

(c) 𝑘 = 2, SG

5 10 15 20
Round

0

5

10

15

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.003 sec)
Scan (32.25 sec)
Subst. (3.17 sec)

(d) 𝑘 = 2, Time

5 10 15 20
Round

1

2

Su
bs

cr
ip

tio
n

Ga
in Random (19.89, 4824)

Scan (24, 5691)
Subst. (23.93, 5818)

(e) 𝑘 = 3, SG

10 20
Round

0

50

100

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.018 sec)
Scan (376.72 sec)
Subst. (20.99 sec)

(f) 𝑘 = 3, Time

Figure 2: SG per round and Time per round results of RANDOM, SCAN, and SUBSTITUTE for |𝐿 | = 27, |𝑉 | = 80, and 𝑘 = 1, 2, and 3.

5 10 15 20
Round

0.5

1.0

1.5

2.0

Su
bs

cr
ip

tio
n

Ga
in Random (10.75, 6564)

Scan (20.68, 5655)
Subst. (20.52, 6201)

(a) 𝑘 = 1, SG

5 10 15 20
Round

0

1

2

3

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0013 sec)
Scan (4.97 sec)
Subst. (0.34 sec)

(b) 𝑘 = 1, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

2.5

Su
bs

cr
ip

tio
n

Ga
in Random (16.57, 6564)

Scan (25.62, 5660)
Subst. (25.54, 5712)

(c) 𝑘 = 2, SG

5 10 15 20
Round

0

10

20

30

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0029 sec)
Scan (67.81 sec)
Subst. (2.63 sec)

(d) 𝑘 = 2, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

2.5

Su
bs

cr
ip

tio
n

Ga
in Random (20.14, 6564)

Scan (28.91, 5708)
Subst. (28.58, 5694)

(e) 𝑘 = 3, SG

10 20
Round

0

100

200

300

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.019 sec)
Scan (850.1 sec)
Subst. (14.16 sec)

(f) 𝑘 = 3, Time

Figure 3: SG per round and Time per round results of RANDOM, SCAN, and SUBSTITUTE for |𝐿 | = 27, |𝑉 | = 100, and 𝑘 = 1, 2, and 3.

5 10 15 20
Round

0.5

1.0

1.5

Su
bs

cr
ip

tio
n

Ga
in Random (8.78, 4824)

Scan (13.53, 5910)
Subst. (13.43, 5877)

(a) 𝑘 = 1, SG

5 10 15 20
Round

0

1

2

3

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0013 sec)
Scan (4.99 sec)
Subst. (0.17 sec)

(b) 𝑘 = 1, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

Su
bs

cr
ip

tio
n

Ga
in Random (13.39, 4824)

Scan (17.37, 5481)
Subst. (16.96, 5561)

(c) 𝑘 = 2, SG

5 10 15 20
Round

0

20

40

60

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0075 sec)
Scan (112.25 sec)
Subst. (4.32 sec)

(d) 𝑘 = 2, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

2.5

Su
bs

cr
ip

tio
n

Ga
in Random (16.41, 4824)

Scan (20.24, 5659)
Subst. (20.1, 5681)

(e) 𝑘 = 3, SG

10 20
Round

0

500

1000

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.17 sec)
Scan (2635.76 sec)
Subst. (86.65 sec)

(f) 𝑘 = 3, Time

Figure 4: SG per round and Time per round results of RANDOM, SCAN, and SUBSTITUTE for |𝐿 | = 54, |𝑉 | = 80, and 𝑘 = 1, 2, and 3.

5 10 15 20
Round

0.5

1.0

1.5

Su
bs

cr
ip

tio
n

Ga
in Random (8.26, 6564)

Scan (16.57, 5971)
Subst. (16.26, 5827)

(a) 𝑘 = 1, SG

5 10 15 20
Round

0

2

4

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0015 sec)
Scan (8.27 sec)
Subst. (0.2 sec)

(b) 𝑘 = 1, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

Su
bs

cr
ip

tio
n

Ga
in Random (12.93, 6564)

Scan (20.83, 5681)
Subst. (20.68, 5781)

(c) 𝑘 = 2, SG

10 20
Round

0

50

100

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0073 sec)
Scan (241.79 sec)
Subst. (3.68 sec)

(d) 𝑘 = 2, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

2.5

Su
bs

cr
ip

tio
n

Ga
in Random (15.96, 6564)

Scan (24.1, 5418)
Subst. (23.89, 5363)

(e) 𝑘 = 3, SG

10 20
Round

0

1000

2000

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.17 sec)
Scan (5888.4 sec)
Subst. (40.95 sec)

(f) 𝑘 = 3, Time

Figure 5: SG per round and Time per round results of RANDOM, SCAN, and SUBSTITUTE for |𝐿 | = 54, |𝑉 | = 100, and 𝑘 = 1, 2, and 3.

RANDOM but constant, while SCAN performs better as rounds evolve
but has a clear scalability issue when any of 𝑉 , 𝐿, or 𝑘 increases.

Moreover, we remark that in all figures as 𝑘 grows all solvers
achieve higher efficacy (𝑆𝐺) and lower efficiency (time). This is
logical as a higher 𝑘 yields a higher feature weight sum of𝑚 users
to 𝑘 features, but also it incurs more feature combinations for pro-
cessing. Another interesting result is to see what happens when 𝑉
increases over a fixed 𝐿, and what happens when 𝐿 increases over a
fixed 𝑉 . In the former case, by comparing the Figs. 2 and 3, as also
the Figs. 4 and 5, we note that the 𝑆𝐺 of RANDOM is constant, while
the 𝑆𝐺 of other two solvers clearly improves; a larger selection pool
of users is always more beneficial for prioritized solvers. Yet, with
more candidate user combinations present for processing, only
SUBSTITUTE improves its performance on running time (e.g., see
Figs. 2f, 3f, and Figs. 4f, 5f), whereas SCAN heavily deteriorates its
performance; more users offer more chances for early termination
cases to occur in Line 29 of SUBSTITUTE since it is more likely that
some users clearly separate over others. In the latter case, by com-
paring Figs. 2 and 4, as well as Figs. 3 and 5, we observe that both
the efficacy and efficiency of all solvers worsen. The 𝑆𝐺 deteriorates
as a heavier feature weight segmentation in 𝐹𝑣 (due to larger 𝐿)

decreases the feature weights of each user and so incurs lower fea-
ture weight sums of𝑚 users to 𝑘 features. Further, a more intense
segmentation strengthens the similarity of feature weights in 𝐹𝑣 ,
and so increases the (𝑘,𝑚) candidates not filtered by threshold 𝑑 .
Lastly, the inferior running time is expected due to processing a
larger pool of candidate feature combinations.

4 CONCLUSION
We proposed that brands can use a content recommendation policy
to gain subscribers to their social network pages via messaging. We
deployed three algorithms, RANDOM, SCAN, and SUBSTITUTE to this
task using a realistic tuning of VK posts. Our thorough experimental
study on different user and feature sets verified that SUBSTITUTE
outperforms other solvers. To our knowledge, this is the first work
to study how brands can gain subscribers using content. In the
future, we intend to solve GSM on larger user and feature sets.

ACKNOWLEDGMENTS
This work is supported by the Horizon 2020 Framework Programme,
grant agreement No. 957345: “MORE”; by the Operational Program
Peloponnesus 2014-2020, SodaSense project; and by the Danish
Council for Independent Research, Research Project 9041-00382B.

Short Research Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2505

REFERENCES
[1] Balázs Dezső, Alpár Jüttner, and Péter Kovács. 2011. LEMON – an Open Source

C++ Graph Template Library. ENTCS 264, 5 (2011), 23–45.
[2] Thibaut Horel and Yaron Singer. 2015. Scalable Methods for Adaptively Seeding a

Social Network. InWWW. 441–451.
[3] Sergei Ivanov, Konstantinos Theocharidis, Manolis Terrovitis, and Panagiotis

Karras. 2017. Content Recommendation for Viral Social Influence. In SIGIR. 565–
574.

[4] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the Spread of
Influence through a Social Network. In KDD. 137–146.

[5] Ansh Khurana, Alvis Logins, and Panagiotis Karras. 2020. Selecting Influential Fea-
tures by a Learnable Content-Aware Linear Threshold Model. In CIKM. 635–644.

[6] Paul Lagrée, Olivier Cappé, Bogdan Cautis, and Silviu Maniu. 2019. Algorithms
for Online Influencer Marketing. TKDD 13, 1 (2019), 1–30.

[7] Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. 2018. Influence Maximization
on Social Graphs: A Survey. TKDE 30, 10 (2018), 1852–1872.

[8] Lior Seeman and Yaron Singer. 2013. Adaptive Seeding in Social Networks. In
FOCS. 459–468.

Short Research Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2506

	Abstract
	1 Introduction
	2 GSM Solvers
	2.1 The Solver RANDOM
	2.2 The Solver SCAN
	2.3 The Solver SUBSTITUTE

	3 Experimental Evaluation
	3.1 Setup
	3.2 Results

	4 Conclusion
	Acknowledgments
	References

