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ABSTRACT
Given a set of locations in a city, on which ones should we place

ads on so as to reach as many people as possible within a limited

budget? Past research has addressed this question under the as-

sumption that dense trajectory data are available to determine the

reach of each ad. However, the data that are available in most in-

dustrial settings do not consist of dense, long-range trajectories;

instead, they consist of statistics on people’s short-range point-to-
point movements. In this paper, we address the natural problem

that arises on such data: given a distribution of population and

point-to-point movement statistics over a network, find a set of

locations within a budget that achieves maximum expected reach.

We call this problem geodemographic influence maximization (GIM).

We show that the problem is NP-hard, but its objective function is

monotone and submodular, thus admits a greedy algorithm with a

1

2
(1− 1

𝑒 ) approximation ratio. Still, this algorithm is inapplicable on

large-scale data for high-frequency digital signage ads. We develop

an efficient deterministic algorithm, Lazy-Sower, exploiting a novel,

tight double-bounding scheme of marginal influence gain as well

as the locality proprieties of the problem; a learning-based vari-

ant, NN-Sower, utilizes randomization and deep learning to further

improve efficiency, with a slight loss of quality. Our exhaustive

experimental study on two real-world urban datasets demonstrates

the efficacy and efficiency of our solutions compared to baselines.
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1 INTRODUCTION
Outdoor advertising in the form of printed posters and billboards,

as well as their digital counterparts [4], is gaining appeal due to its

proven effectiveness [24]; its revenue is in the order of 30 billion dol-

lars in the US alone [27]. The target audience of such out-of-home

advertising consists of people who notice printed and digital ads
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Figure 1: An Example of GIM.When k=2 steps, orange nodes
are the best solution (𝑢3𝑢4) with total influence 0.94.

while engaged in daily trips. With sparse motion pattern data gen-
erated by positioning devices, there is an opportunity to optimize

such advertising in terms of the amount of customers reached.

Existing works on outdoor advertisement placement [26, 27] aim

to maximize an influence function based on counting hits on trajec-

tories. This approach assumes a large number of precise and long

user trajectories with a high sampling rate are available, allowing

to estimate the number of trajectories in a location’s vicinity. How-

ever, such dense trajectory data are hard to obtain in real-world

industrial settings due to reasons pertaining to user privacy and

sampling fidelity [3, 7, 8]; on the other hand, it is realistic to work

with aggregate statistics on short-range point-to-point movements.

In this paper, we address the problem of geodemographic influ-
ence maximization (GIM): given data on point-to-point transition

probabilities and a distribution of population over a network, select

a set of outdoor locations within a budget to maximize the expected

reach over that population. Figure 1 illustrates a simple case of

GIM. Each row in the table calculates the probability of a path of

𝑘 steps between node 𝑢1 (where a member of population stands)

and any location, for 𝑘 = 1 and 𝑘 = 2. To maximize the aggregate

probability, contributed by all selected locations, of hitting such a

path under a budget of 5$, it suffices to chose locations 𝑢3 and 𝑢4,

with total probability 0.42 + 0.12 + 0.40 = 0.94. As paths 𝑢1𝑢2 and

𝑢1𝑢2𝑢5 are not affected by the solution, we strip a line over them.

While the problem is NP-hard, its objective function is mono-

tone and submodular. We propose a greedy algorithm that picks the

location of largest unit marginal influence value in each iteration,

with an
1

2
(1 − 1

𝑒 ) approximation ratio over the optimal solution.

Still, its time complexity is 𝑂 (𝑘𝑛2 (𝑛 +𝑚)), where 𝑛 is the number

of locations,𝑚 the number of network edges, and 𝑘 the maximum

number of moves a person may make; that is too high for large-

scale data. Nevertheless, the number of locations visited in a single

outdoor trip, according to real-world data, is small; it follows that

network locations influence each other locally. We exploit this lo-
cality to accelerate marginal influence calculations, only examining

those parts of the network that may affect calculated values. We
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also design a novel bounding scheme, LazyTag, which is indepen-

dent of the locality of the problem; LazyTag maintains upper and

lower bounds for the marginal influence of each network node so

as to avoid redundant calculations. By virtue of these techniques,

our algorithm, Lazy-Sower, reduces computational cost without

sacrificing quality.

Whereas printed ads last for a long time once placed, digital sig-

nage ads are updated every few seconds. A digital advertiser may

need to bid for ad locations within a short time span, hence an algo-

rithm that suggests such locations should be highly efficient. In such

a high-turnover scenario, it is worthwhile to sacrifice effectiveness

for efficiency. Thereby, we develop a randomized, learning-based

variant of our technique, NN-Sower. This variant trains a neural

network (NN) model to choose network regions likely to yield good

candidates. In each iteration, it chooses a region using the NN, ran-

domly generates a subset of candidate nodes therein, and returns

the one that maximizes unit marginal influence.

Our experiments on real-world data sets show that our model

can deal with hundreds millions of mobility data records. Lazy-

Sower achieves the same influence as CELF at 20% of the runtime,

while NN-Sower reaches up to 91% of the influence at only 2% of the

runtime, and a 55x speedup over a trivial randomized algorithm.

2 RELATEDWORK
The influence Maximization (IM) problem calls to find 𝑘 seed
nodes in a network that maximize the spread of influence initiated

therefrom by a certain diffusion model [13]. The IM problem is

NP-hard under popular diffusion models, such as the Independent

Cascade (IC) model [18, 20], yet the submodularity of the associated

influence function allows for a simple greedy algorithm with an

1−1/𝑒 approximation ratio. Several algorithms try to speed up the in-

fluence calculation process [1, 2], while some exploit the network’s

modularity via a community-based strategy [5, 11, 25]. Other works

extend the influence maximization problem in a manner that takes

user locations into consideration. In Location-Aware Influence Max-

imization (LAIM) [16] the aim is to maximize the expected number

of influenced users in a specific query region. Likewise, in Location-

Based Influence Maximization (LBIM) [31] users transit between an

online and an offline phase, while their offline decisions are affected

by their locations compared to product locations. However, loca-

tions are static. Neither the LAIM nor the LBIM problem consider

movement patterns as a means of exercising influence.

Overall, while the GIM problem resembles the IM problem and

its variants [12, 17, 19], it differs in the means of influence. In IM,

influence is exercised from one individual to another by means

of online or offline diffusion. Contrariwise, in GIM, influence is

exercised from locations to an audience by means of movements of
audience members. Thus, solutions to the IM problem, including

its location-oriented variants, are not applicable to GIM.

Other works use trajectory data to study location-oriented ad-

vertising problems. In [6], the aim is to select 𝑘 trajectories to be

attached with an advertisement so as to maximize the expected

influence over an audience. In the Trajectory-driven Billboard Place-

ment (TBP) problem [26], the aim is to select a set of locations, under

a budget constraint, so as to maximize the number of trajectories

that pass within a distance threshold from a chosen location. Under

this objective, overlap of influence from distinct locations on the

same trajectory is redundant. In a variation of TBP, the problem

of Optimizing Impression Counts (OIC) [27], the influence on a

trajectory grows as a logistic function of distinct impressions by
different billboards thereupon, hence overlaps bring benefit.

We emphasize that such trajectory-oriented solutions are in-

commensurable to our proposal. They presume the availability

of complete, dense, fine-grained, long-haul trajectories. This as-

sumption is unrealistic in real-world industrial settings, as such

long-haul trajectories are usually only available for vehicles [29, 30].

Real-world user checkpoints are, in the best case, coarse-grained,

and can only be utilized as aggregate statistics [28] due to privacy

concerns. We propose a problem that can be solved using available

data. Instead of expecting each user’s record to be an individual

long-haul trajectory, we use data on short-range point-to-point

movement patterns arising from any means of transportation, in-

cluding vehicular, pedestrian, and public transport, to calculate

the probability of movement from one point to another. Thereby,

individual user data are recombined to derive combinations that

are not explicitly recorded. This problem formulation is applicable

on sparse, privacy-constrained data.

Symbol Description
𝐺 A POI graph model.

𝐿 A given limited budget

𝑈 A spectator’s movement pattern

𝐾 The threshold of spectators’ movements

𝐹 (𝑆) The influence of a selected POI set 𝑆
𝐹𝑆 (𝑢) The marginal influence of𝑢 to 𝑆
𝐶 A partitioning of𝐺
𝑟 The number of samples we pick in each iteration

𝑚 The number of regions in𝐶
𝐻𝑡 The History of region selection at iteration 𝑡
𝐷 (𝐻𝑡 , 𝑛) The 𝑛-digest of𝐻𝑡 , an𝑚 × 𝑛 matrix

Table 1: Important Notations

3 PRELIMINARY
In this section, we define the problem and prove itsNP-hardness; we
show that the GIM objective function is submodular and monotonic,

and design a greedy approximation algorithm for GIM.

3.1 Problem Definition
A point-of-interest (POI) network is a graph 𝐺 = (𝑉 , 𝐸, 𝑐𝑜𝑠𝑡, 𝑐𝑜𝑜𝑟𝑑,
𝑠𝑝𝑒𝑐), where𝑉 is the vertex set with each vertex 𝑣 ∈ 𝑉 representing

a POI, 𝐸 the edge set, 𝑐𝑜𝑠𝑡 a vector denoting the cost of POIs at each

vertex, 𝑐𝑜𝑜𝑟𝑑 longitude-latitude pairs denoting the coordinates of

each POI, and 𝑠𝑝𝑒𝑐 a distribution of spectators, introduced later. In

the ensuing discussion, we use the terms POI, location, and place
interchangeably. Each edge 𝑒 ∈ 𝐸 is a triplet (𝑢, 𝑣, 𝑝), denoting that

a spectator moves from𝑢 to 𝑣 with probability 𝑝 ; these probabilities,

derived from real movement data, add up to 1 per node.

A spectator is a tuple (𝑢, 𝑘), where vertex 𝑢 denotes an initial

position and 𝑘 a number of moves along edges. A spectator (𝑢, 𝑘)
may move in𝐺 along any sequence of POIs𝑈 = {𝑢0, 𝑢1, 𝑢2, . . . , 𝑢𝑘 },
where 𝑢0 = 𝑢, 𝑢𝑖 ∈ 𝑉 , 𝑖 = 1, . . . , 𝑘 . We say that a POI set 𝑆 influences
a spectator’s movement pattern𝑈 if there is a 𝑣 ∈ 𝑆 ∩𝑈 ≠ ∅.

If a spectator is already at position 𝑢 ∈ 𝑆 , then it is definitely

influenced by 𝑆 . Otherwise, if it has 𝑘 = 0 moves to do, then it is

definitely not influenced by 𝑆 , while if it has 𝑘 > 0 steps to do, then

it may be influenced depending on whether it moves towards some



POI in 𝑆 . Thus, the probability that set 𝑆 influences spectator (𝑢, 𝑘)
is defined recursively:

𝑓 (𝑢, 𝑘, 𝑆) =



1, 𝑢 ∈ 𝑆

0, 𝑘 = 0 ∧ 𝑢 ∉ 𝑆∑
(𝑢,𝑣,𝑝) ∈𝐸

𝑝 · 𝑓 (𝑣, 𝑘 − 1, 𝑆), 𝑘 > 0

Spectator Distribution. Our analysis of real-world people’s

motion patterns indicates that most of the audience engage in a

small number of moves in one trip. Let 𝑠𝑝𝑒𝑐 (𝑢, 𝑘) denote the number

of spectators whose initial position is 𝑢 and number of moves is

exactly 𝑘 , 0 ≤ 𝑘 ≤ 𝐾 , where 𝐾 is a given threshold. Then we define

the influence of 𝑆 on a population of spectators as follows.

Definition 3.1. The influence of a POI set 𝑆 to all spectators is

the sum of influences from 𝑆 to each spectator:

𝐹 (𝑆) =
∑
𝑢∈𝑉

𝐾∑
𝑘=0

𝑠𝑝𝑒𝑐 (𝑢, 𝑘) · 𝑓 (𝑢, 𝑘, 𝑆)

We also denote themarginal influence of a location𝑥 with respect

to a POI set 𝑆 as 𝐹𝑆 (𝑥) = 𝐹 (𝑆 ∪{𝑥}) −𝐹 (𝑆). A location𝑢 ∈ 𝑉 incurs

cost 𝑐𝑜𝑠𝑡 (𝑢) if selected, while we have a budget 𝐿. The cost of a POI
set 𝑆 is the total cost of all POIs in the set, 𝑐𝑜𝑠𝑡 (𝑆) = ∑

𝑢∈𝑆 𝑐𝑜𝑠𝑡 (𝑢).
Eventually, we define the GIM problem as follows.

Geodemographic Influence Maximization (GIM). Given a

POI network 𝐺 = (𝑉 , 𝐸, 𝑐𝑜𝑠𝑡, 𝑐𝑜𝑜𝑟𝑑, 𝑠𝑝𝑒𝑐) and a budget 𝐿, select a

vertex subset 𝑆 ⊆ 𝑉 with cost within 𝐿 that maximizes the influence

of 𝑆 to all spectators. Formally:

argmax

𝑆⊆𝑉 , 𝑐𝑜𝑠𝑡 (𝑆) ≤𝐿
{𝐹 (𝑆)}

Theorem 3.2. GIM is NP-hard.

Proof. We reduce the Knapsack problem to GIM. In Knapsack,

given a budget 𝐿, we need to find a subset 𝑇 of a set of tuples

𝐼 = {(𝑐1,𝑤1), (𝑐2,𝑤2), · · · , (𝑐𝑛,𝑤𝑛)} that maximizes

∑
𝑖 𝑤𝑖 while∑

𝑖 𝑐𝑖 ≤ 𝐿. Given any instance of Knapsack, we map each tuple

(𝑐𝑖 ,𝑤𝑖 ) in 𝐼 to a vertex 𝑢𝑖 ∈ 𝑉 , with empty edge set 𝐸, budget 𝐿,

𝑐𝑜𝑠𝑡 (𝑢𝑖 ) = 𝑐𝑖 , and spectator distribution 𝑠𝑝𝑒𝑐 (𝑢𝑖 , 0) = 𝑤𝑖 , 0 else-

where. Then, a subset 𝑆 ⊆ 𝑉 thatmaximizes 𝐹 (𝑆) = ∑
𝑢∈𝑉 𝑠𝑝𝑒𝑐 (𝑢, 0)

with 𝑐𝑜𝑠𝑡 (𝑆) = ∑
𝑢∈𝑆 𝑐𝑜𝑠𝑡 (𝑢) ≤ 𝐿 corresponds to a subset 𝑇 that

maximizes

∑
(𝑐𝑖 ,𝑤𝑖 ) ∈𝑇 𝑤𝑖 with

∑
(𝑐𝑖 ,𝑤𝑖 ) ∈𝑇 𝑐𝑖 ≤ 𝐿, i..e, solves Knap-

sack optimally. Since themapping needs polynomial time, it follows

that GIM is NP-hard. □

We show that 𝐹 (𝑆) is monotone and submodular in the appendix.

3.2 A Basic Greedy Algorithm
Algorithm 1 presents our basic greedy algorithm, Greedy, based

on the submodularity of 𝐹 (𝑆). In each iteration, we add to 𝑆 the

vertex𝑢 that maximizes the unit marginal influence,
𝐹𝑆 (𝑥)
𝑐𝑜𝑠𝑡 (𝑢) , unless

adding 𝑢 violates the budget, where 𝐹𝑆 (𝑥) = 𝐹 (𝑆 ∪ 𝑢) − 𝐹 (𝑆). Still,
a brute-force application of this strategy will lead to an unbounded

approximation ratio [10]. To avoid this disposition, we also consider

the best single-vertex solution (Lines 20–21). The following theorem

provides the approximation ratio of Greedy.

Theorem 3.3. Greedy achieves an approximation of 1

2
(1 − 1/𝑒).

Proof. 𝐹 (𝑆) is monotone and submodular according to The-

orems A.2 and A.4. Thus we have an approximation factor of

1

2
(1 − 1/𝑒) holds, according to [10, 14, 23]. □

In each round, Algorithm 1 computes the marginal influence of

each of 𝑂 ( |𝑉 |) vertices. The time complexity to compute 𝐹 (·) is
𝑂 (𝐾 |𝑉 | ( |𝑉 | + |𝐸 |)), hence the time complexity of Algorithm 1 is

𝑂 (𝐾 |𝑉 |2 ( |𝑉 | + |𝐸 |)). We use array 𝜙 , whose size is 𝐾 |𝑉 |, hence the
space complexity of Algorithm 1 is 𝑂 (𝐾 |𝑉 |).
Algorithm 1: Greedy(𝐺, 𝐿)
1 Function Comp_F(𝑉 ∗ , 𝐸∗ , 𝑆)
2 for k = 0 to 𝐾 do
3 foreach𝑢 ∈ 𝑉 ∗ do
4 if 𝑢 ∈ 𝑆 then 𝜙 [𝑢,𝑘 ] ← 1;

5 else if 𝑘 = 0 then 𝜙 [𝑢,𝑘 ] ← 0;

6 else
7 𝜙 [𝑢,𝑘 ] ← 0;

8 foreach (𝑢, 𝑣, 𝑝) ∈ 𝐸∗ do
9 𝜙 [𝑢,𝑘 ] ← 𝜙 [𝑢,𝑘 ] + 𝜙 [𝑣, 𝑘 − 1] × 𝑝 ;

10 𝑟𝑒𝑠𝑢𝑙𝑡 =
∑
𝑢∈𝑉

∑𝐾
𝑘=0

𝜙 [𝑢,𝑘 ] × 𝑠𝑝𝑒𝑐 (𝑢,𝑘) ;
11 return result

12 Initialize a matrix 𝜙 ;

13 𝑆 ← ∅;
14 𝑁 ← 𝑉 ;

15 while 𝑁 ≠ ∅ do
16 𝑥∗ ← argmax𝑥∈𝑁

𝐹𝑆 (𝑥 )
𝑐𝑜𝑠𝑡 (𝑥 ) ;

// 𝐹𝑆 (𝑥) = Comp_F(𝑉 ,𝐸,𝑆 ∪ {𝑥 }) - Comp_F(𝑉 ,𝐸,𝑆)
17 if 𝑐𝑜𝑠𝑡 (𝑆) + 𝑐𝑜𝑠𝑡 (𝑥∗) ≤ 𝐿 then
18 𝑆 ← 𝑆 ∪ {𝑥∗ };
19 𝑁 ← 𝑁 \{𝑥∗ };
20 𝑣∗ ← argmax𝑣∈𝑉 ,𝑐𝑜𝑠𝑡 (𝑣)≤𝐿 𝐹 ( {𝑣 }) ;
21 return argmax{𝐹 (𝑆), 𝐹 ( {𝑣∗ })

4 OVERVIEW
Here we outline the components of our solution: (i) an improved

greedy method that exploits the locality properties of the problem;

(ii) a partition-based framework; and (iii) amachine learning scheme

that further improves performance.

We first exploit a locality property in GIM: each location is only

influenced by, and influences, certain nearby locations. We propose

two ways to exploit this locality. First, we calculate marginal influ-
ence for a node 𝑣 by visiting only appropriate neighboring locations
rather than the whole vertex set. Second, in a proposed method we

call LazyTag, we derive upper and lower bounds so as to estimate

a location node’s marginal influence. Upon selecting a node, we

update the upper and lower bounds of influenced neighbors. We use

these bounds to avoid redundant marginal influence calculations

and hence reduce the computation cost. These improvements lead

to a novel greedy algorithm: Lazy-Sower. Section 5 presents the

details regarding the locality propriety in GIM and Lazy-Sower.

The second component of our framework, introduced in Sec-

tion 6, relies on a partitioning-based heuristic that facilitates the

selection of nodes from diverse network regions. We partition the

network into regions. Then, in each iteration, we employ a tailored

oracle mechanism to predict which region is likely to yield good

POIs; we select a random subset of POIs in the region the oracle

returns, and pick the best POI among this subset.

Section 7 presents the Neural-Network oracle (NN-Oracle) for

our partition-based framework. While it is hard to predict which

specific POI is best by means of a neural network, it is more feasible



Figure 2: Left: Architecture of NN-Sower; details of NN-Oracle in the dotted box. Right: Lazy-Sower for V(𝑢2, 𝐾)={𝑢1, 𝑢2, 𝑢3}; (a)
bounds of 𝑢1, 𝑢2, 𝑢3, 𝑢4 in an iteration; since 𝐿𝐵(𝑥∗) < 𝑈𝐵(𝑦∗), we calculate 𝐹𝑆 (𝑥∗); (b) calculating 𝐹𝑆 (𝑥∗) by Marginal Influence
Improvement; we only need to visit shaded area instead of whole table; (c) in the next iteration, since 𝐿𝐵(𝑥∗) > 𝑈𝐵(𝑦∗), we
select 𝑥∗, (d) add 𝑥∗ into 𝑆 and update bounds for V(𝑥∗, 𝐾) by LazyTag; as 𝑢4 is not in V(𝑥∗, 𝐾), it is unnecessary to update it.

to effectively predict which region is best.We observe the historical

unit marginal influence of POIs selected in a region provide good in-

dications of the quality of that region. Thus, we collect information

on selected nodes and use them as features. Our NN-Sower algo-

rithm applies this NN-Oracle on top of the partitioning framework.

Figure 2 (Left) shows the full architecture of NN-Sower.

5 LAZY-SOWER
Analyzing people’s movement records, we find that people check-in

at a few POIs within each trip. It follows that each network location

may be influenced by, or exercise influence upon, nearby locations

only. Lazy-Sower exploits this locality with two key innovations,

Marginal Influence Improvement and LazyTag. Figure 2 (Right)

shows an example of Lazy-Sower in operation.

5.1 Marginal Influence Improvement
The most critical component of greedy variants is the calcula-

tion of the marginal influence of a POI 𝑥 on a set 𝑆 , 𝐹𝑆 (𝑥) =

𝐹 (𝑆 ∪ {𝑥}) − 𝐹 (𝑆). Comp_F in Algorithm 1 computes 𝐹𝑆 (𝑥) straight-
forwardly, incurring a high computational overhead. Here, we de-

velop a more efficient method to compute marginal influence, ex-

ploiting the locality of the influence function. Let𝑔(𝑢, 𝑘, 𝑥, 𝑆) denote
the probability gain, with respect to spectator (𝑢, 𝑘), effected by

adding 𝑥 to 𝑆 , i.e., 𝑔(𝑢, 𝑘, 𝑥, 𝑆) = 𝑓 (𝑢, 𝑘, 𝑆 ∪ {𝑥}) − 𝑓 (𝑢, 𝑘, 𝑆). Thus:

𝐹𝑆 (𝑥) =
∑
𝑢∈𝑉

𝐾∑
𝑘=0

𝑠𝑝𝑒𝑐 (𝑢, 𝑘) · (𝑓 (𝑢, 𝑘, 𝑆 ∪ {𝑥}) − 𝑓 (𝑢, 𝑘, 𝑆))

=
∑
𝑢∈𝑉

𝐾∑
𝑘=0

𝑠𝑝𝑒𝑐 (𝑢, 𝑘) · 𝑔(𝑢, 𝑘, 𝑥, 𝑆)

Due to the definition of 𝑓 , 𝑔 is recursively defined as:

𝑔(𝑢, 𝑘, 𝑥, 𝑆) =



1 − 𝑓 (𝑢, 𝑘, 𝑆), 𝑢 = 𝑥

0, 𝑢 ∈ 𝑆 ∨ 𝑘 = 0∑
(𝑢,𝑣,𝑝) ∈𝐸

𝑝 · 𝑔(𝑣, 𝑥, 𝑘 − 1, 𝑆), 𝑘 > 0

Let V(𝑥, 𝐾) denote the set of vertices that a spectator can reach

POI 𝑥 from them, or reach them from 𝑥 ,within K steps; E(𝑥, 𝐾) de-
notes the set of edges related to V(𝑥, 𝐾). POI networks constructed
from real-world data are sparse. Table 2 shows that, for 𝐾 = 5 in

Beijing data, the average of |V(𝑥, 𝐾) | and |E(𝑥, 𝐾) | is respectively
1/2997 and 1/2429 of |𝑉 | and |𝐸 |. By the definition of 𝑔(𝑢, 𝑘, 𝑥, 𝑆),
it follows that, if a spectator (𝑢, 𝑘) does not reach the added POI 𝑥

within 𝑘 steps, the marginal probability gain, with respect to (𝑢, 𝑘),
effected by adding 𝑥 to 𝑆 is zero, i.e., ∀𝑘 ∈ [0..𝐾], if 𝑢 ∉ V(𝑥, 𝑘),
then 𝑔(𝑢, 𝑘, 𝑥, 𝑆) = 0. Thus, if we have a record of 𝑓 (𝑢, 𝑘, 𝑆), we only
need to iterate over V(𝑥, 𝐾). We thus calculate 𝐹𝑆 (𝑥) as presented
in Line 1-10 of Algorithm 2. We store 𝑓 (𝑢, 𝑘, 𝑆) in 𝜙 [𝑢, 𝑘], which we

update in each iteration. The time complexity of Margin(𝑥, 𝑆), in-
cluding the update of 𝜙 , is𝑂 (𝐾 ( |V(𝑥, 𝐾) | + |E(𝑥, 𝐾) |)), a significant
improvement over the original 𝑂 (𝐾 ( |𝑉 | + |𝐸 |)).

5.2 LazyTag
The key idea behind the Lazy Greedy algorithm [21] as applied on

a network setting [15], is to avoid redundant marginal gain recalcu-

lations, focusing only one those vertices that have a potential to be

selected. The GIM problem presents a further opportunity to avoid

redundant computations, thanks to its locality. We take advantage

of this opportunity with the LazyTag method, presented in Line 30-

44 of Algorithm 2. Before computing the marginal influence 𝐹𝑆 (𝑥),
we estimate an upper bound𝑈𝐵(𝑥) and a lower bound 𝐿𝐵(𝑥) there-
for, 𝐿𝐵(𝑥) ≤ 𝐹𝑆 (𝑥) ≤ 𝑈𝐵(𝑥). In each iteration, we scan the vertex

set 𝑁 by decreasing upper bound per unit cost, until we arrive at

an 𝑥∗ such that, for all remaining 𝑦 ∈ 𝑁 ,
𝐿𝐵 (𝑥∗)
𝑐𝑜𝑠𝑡 (𝑥∗) ≥

𝑈𝐵 (𝑦)
𝑐𝑜𝑠𝑡 (𝑦) . We



then select 𝑥∗ into 𝑆 , and update the upper and lower bounds for

𝑥 ∈ V(𝑥∗, 𝐾). Trivial bound values to be used in this update are

0 ≤ 𝐹𝑆∪{𝑥∗ } (𝑦) ≤ 𝐹𝑆 (𝑦). We derive tighter nontrivial bounds of

𝐹𝑆∪{𝑥∗ } (𝑦) with attractive computational overhead compared to

computing the marginal influence 𝑀𝑎𝑟𝑔𝑖𝑛() for all 𝑦 ∈ V(𝑥∗, 𝐾)
from scratch.

Upper bounds.To update the upper bound𝑈𝐵(𝑣) for 𝐹𝑆∪{𝑥∗ } (𝑣),
we subtract from the previous value of that bound the marginal gain

contribution by all movements from𝑥∗ to 𝑣 ,𝑈 = {𝑥∗, 𝑢1, · · · , 𝑢𝑘−1, 𝑣},
that now contributes to 𝐹 (𝑆 ∪ {𝑥∗}) but did not contribute to 𝐹 (𝑆)
in the previous iteration, hence𝑈 ∩ 𝑆 = ∅, for each eligible length

𝑘 ; the subtracted value is:

Δ𝑆 (𝑥∗, 𝑣) =
𝐾∑
𝑘=0

𝑠𝑝𝑒𝑐 (𝑥∗, 𝑘)𝑃 (𝑥∗, 𝑣, 𝑘, 𝑆)

=

𝐾∑
𝑘=0

𝑠𝑝𝑒𝑐 (𝑥∗, 𝑘)
𝑢∉𝑆∑

(𝑣,𝑢,𝑝) ∈𝐸
𝑝 · 𝑃 (𝑥∗, 𝑢, 𝑘 − 1, 𝑆)

Where 𝑃 (𝑥∗, 𝑢, 𝑘, 𝑆) is the probability of movement along 𝑘 steps

from 𝑥∗ to 𝑢 on the induced subgraph 𝐺 (𝑉 \ 𝑆) (Lines 12–17 in

Algorithm 2). We calculate Δ𝑆 (𝑥∗, 𝑣) for all 𝑣 ∈ V(𝑥∗, 𝑘) in 𝑂 (𝐾 ·
( |V(𝑥, 𝐾) | + |E(𝑥, 𝐾) |)) times; Lines 18–19 subtract Δ𝑆 (𝑥∗, 𝑣) from
𝑈𝐵(𝑣) for every 𝑣 .

Lower bounds.To calculate a lower bound𝐿𝐵(𝑣) for 𝐹𝑆∪{𝑥∗ } (𝑣),
we selectively enumerate, for each eligible 𝑘 , contributing move-

ments𝑈 , with𝑢𝑘 = 𝑣 ,𝑈 ∩(𝑆∪{𝑥∗}) = ∅. To make this enumeration

selective, we introduce a threshold 𝑏, and only consider the top-𝑏

edges (𝑢𝑖−1, 𝑢𝑖 , 𝑝), in terms of probability 𝑝 , from each node 𝑢𝑖−1
along a movement. We iterate over all qualifying movements𝑈 by

brute force in 𝑂 (𝑏𝐾 ). In practice, we set 𝑏 = 1, so the total time

complexity of updating 𝐿𝐵(𝑦) is 𝑂 (𝐾 · |V(𝑥∗, 𝐾) |). Lines 20-29 in
Algorithm 2 show this method.

5.3 Analysis on Lazy-Sower
Approximation ratio. As the lower bound of 𝑥∗ should be larger

than the upper bounds of other POIs (Lines 36–40, Algorithm 2),

hence the unit marginal influence of 𝑥∗ is largest, and thus Lazy-

Sower picks up the POI with largest unit marginal influence in

each iteration, as the basic greedy does. Hence, it achieves the same

influence and approximation ratio as the basic greedy,
1

2
(1 − 1/𝑒).

Complexity. In the first iteration, Lazy-Sower computes the

marginal influence for 𝑂 ( |𝑉 |) POIs at most. Due to LazyTag, in

each iteration, 𝑂 ( |V(𝑥, 𝐾) |) POIs are put in LazyTag. Since only

POIs with LazyTag are processed, there are only𝑂 ( |V(𝑥, 𝐾) |) POIs
to compute in each subsequent iteration. Thus, the number of

times computing marginal influence is 𝑂 ( |𝑉 | + |𝑉 | |V(𝑥, 𝐾) |) =

𝑂 ( |𝑉 | |V(𝑥, 𝐾) |). The time complexity to compute marginal influ-

ence and update bounds is 𝑂 (𝐾 ( |V(𝑥, 𝐾) | + |E(𝑥, 𝐾) |)), yielding
total time complexity 𝑂 (𝐾 |𝑉 | |V(𝑥, 𝐾) | · ( |V(𝑥, 𝐾) | + |E(𝑥, 𝐾) |)).
The size of the arrays is 𝐾 |𝑉 |, hence space complexity is 𝑂 (𝐾 |𝑉 |).

Comparison to CELF. CELF [15] assigns to each POI a flag

and stores the previous value (marginal influence or unit marginal

influence) for each POI. In each iteration, CELF sets all flags to false,

and then iteratively checks the flag of the POI with largest value.

If that flag is false, it updates the related value and sets the flag to

true, until its finds a POI with true flag.

LazyTag differs from CELF. First, CELF utilizes trivial bounds

of marginal gain (i.e., lower bound 0 and upper bound the previ-

ous marginal gain). Contrariwise, LazyTag employs much tighter

bounds. CELF has to calculate marginal gain at least once, while

LazyTag may, in an extreme case, directly pick the top candidate if

its lower bound is larger than all upper bounds of others. Besides,

CELF updates the flags of all candidates in each iteration, while

LazyTag only updates some bounds. Many problems present locality

properties, whereby picking one candidate only effects the marginal

gain of some other candidates instead of all. In such applications,

LazyTag is drastically more powerful than CELF.

Algorithm 2: Lazy-Sower(𝐺, 𝐿)
1 Function Margin(𝑥 ,𝑆)
2 Initialize matrix 𝑔;

// 𝜙 [𝑢,𝑘 ] stores current 𝑓 (𝑢,𝑘, 𝑆)
// 𝑔 [𝑢,𝑘 ] stores current 𝑔 (𝑢,𝑘, 𝑥, 𝑆)

3 for 𝑘 = 0 to 𝐾 do
4 foreach𝑢 ∈ V(𝑥,𝐾) do
5 if 𝑢 = 𝑥 then 𝑔 [𝑢,𝑘 ] ← 1 − 𝜙 [𝑢,𝑘 ];
6 else if 𝑢 ∈ 𝑆 ∨ 𝑘 = 0 then 𝑔 [𝑢,𝑘 ] ← 0;

7 else
8 foreach (𝑢, 𝑣, 𝑝) ∈ E(𝑥,𝐾) do
9 𝑔 [𝑢,𝑘 ] ← 𝑔 [𝑢,𝑘 ] + 𝑝 · 𝑔 [𝑣, 𝑘 − 1];

10 return 𝑟𝑒𝑠𝑢𝑙𝑡 =
∑
𝑢∈𝑉

∑𝐾
𝑘=0

𝑔 [𝑢,𝑘 ] × 𝑠𝑝𝑒𝑐 (𝑢,𝑘)
11 Function UpdateUB(𝑥∗ , 𝑆)
12 Initialize matrix 𝜋 ;

// 𝜋 [𝑢,𝑘 ] is used to store 𝑃 (𝑥∗,𝑢, 𝑘, 𝑆)
// initially, 𝜋 [𝑥∗, 0] = 1, others are 0

13 for 𝑘 = 0 to 𝐾 − 1 do
14 foreach𝑢 ∈ V(𝑥,𝐾) \ 𝑆 do
15 foreach (𝑢, 𝑣, 𝑝) ∈ E(𝑥,𝐾) do
16 if 𝑣 ∈ 𝑉 \ 𝑆 then
17 𝜋 [𝑢,𝑘 + 1] ← 𝜋 [𝑢,𝑘 + 1] + 𝑝 × 𝜋 [𝑣, 𝑘 ];

18 foreach 𝑣 ∈ V(𝑥∗, 𝐾) \ (𝑆 ∪ {𝑥∗ }) do
19 𝑈𝑝𝑝𝑒𝑟 [𝑣 ] ← 𝑈𝑝𝑝𝑒𝑟 [𝑣 ] −∑𝐾

𝑘=0
𝑠𝑝𝑒𝑐 (𝑥∗, 𝑘)𝜋 [𝑣, 𝑘 ];

20 Function UpdateLB(𝑥∗ , 𝑆)
21 foreach 𝑣 ∈ V(𝑥∗, 𝐾) \ 𝑆 do
22 𝑢 ← 𝑣; 𝑝 ← 1;

23 𝑠𝑢𝑚 ← 𝑠𝑝𝑒𝑐 (𝑣, 0) ;
24 for 𝑘 = 1 to 𝐾 do

// only select edge with largest probability since 𝑏 = 1

25 (𝑢′,𝑢, 𝑝) ← argmax
𝑢′∉𝑆∪{𝑥∗}
(𝑢′,𝑢,𝑝 )∈𝐸 𝑝 ;

26 𝑝 ← 𝑝 × 𝑝 ;
27 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑠𝑝𝑒𝑐 (𝑢′, 𝑘) × 𝑝 ;
28 𝑢 ← 𝑢′;

29 𝐿𝑜𝑤𝑒𝑟 [𝑣 ] ← 𝑠𝑢𝑚;

30 foreach 𝑣 ∈ 𝑉 do
31 𝑈𝑝𝑝𝑒𝑟 [𝑣 ] ← ∑

𝑢∈𝑉
∑𝐾
𝑘=0

𝑠𝑝𝑒𝑐 (𝑢,𝑘) ;
32 𝐿𝑜𝑤𝑒𝑟 [𝑣 ] ← 0 ;

33 Initialize a matrix 𝜙 ;

34 𝑆 = ∅; 𝑁 = 𝑉 ;

35 while 𝑁 ≠ ∅ do
36 𝑥∗ ← argmax𝑥∈𝑁

𝑈𝑝𝑝𝑒𝑟 [𝑥 ]
𝑐𝑜𝑠𝑡 (𝑥 ) ;

37 𝑦∗ ← argmax𝑦∈𝑁 \{𝑥∗}
𝑈𝑝𝑝𝑒𝑟 [𝑦 ]
𝑐𝑜𝑠𝑡 (𝑦) ;

38 if 𝑈𝑝𝑝𝑒𝑟 [𝑦
∗ ]

𝑐𝑜𝑠𝑡 (𝑦∗ ) >
𝐿𝑜𝑤𝑒𝑟 [𝑥∗ ]
𝑐𝑜𝑠𝑡 (𝑥∗ ) then

39 𝑈𝑝𝑝𝑒𝑟 [𝑥∗ ] = 𝐿𝑜𝑤𝑒𝑟 [𝑥∗ ] = Margin(𝑥∗ , 𝑆) ;

40 continue ;

41 if 𝑐𝑜𝑠𝑡 (𝑆) + 𝑐𝑜𝑠𝑡 (𝑥∗) ≤ 𝐿 then
42 UpdateUB(𝑥∗ , 𝑆); UpdateLB(𝑥∗ , 𝑆);
43 𝑆 ← 𝑆 ∪ {𝑥∗ } ;
44 Call Comp_F(V(𝑥∗, 𝐾) , E(𝑥∗, 𝐾) ,𝑆) to update array 𝜙 ;

45 𝑁 ← 𝑁 \{𝑥∗ } ;
46 𝑣∗ ← argmax𝑣∈𝑉 ,𝑐𝑜𝑠𝑡 (𝑣)≤𝐿 𝐹 ( {𝑣 }) ;
47 return argmax{𝐹 (𝑆), 𝐹 ( {𝑣∗ })



6 PARTITION-BASED HEURISTIC
Here we present our partition-based framework.

Definition 6.1. (Partitioning) Let 𝐶 = {𝐶1,𝐶2, · · · ,𝐶𝑚} denote
a partitioning of the POI graph𝐺 with𝑚 regions, where

⋃𝑚
𝑘=1

𝐶𝑘 =

𝑉 and ∀𝑖 ≠ 𝑗,𝐶𝑖 ∩𝐶 𝑗 = ∅. We call every 𝐶𝑖 ∈ 𝐶 a region.

Figure 3 shows an example partitioning: we divide the graph

into a 𝑡 × 𝑡 grid, so that each POI belongs to one grid cell.

Assume we had some oracle functions from a partitioning 𝐶

of 𝐺 to a region 𝐶∗, that returns, in each iteration, the region 𝐶∗

that contains the optimal POI selection. Algorithm 3 presents this

modification. In each iteration, we inquire Oracle for the best

region 𝐶∗; then we sample a POI subset 𝑅 from 𝐶∗. Each time we

pick a POI 𝑥 from 𝐶∗ with probability
𝑐𝑜𝑠𝑡 (𝑥)
𝑐𝑜𝑠𝑡 (𝐶∗) , and repeat 𝑟 times

(Line 6, Sample() is defined in Algorithm 5). Eventually, we add

into 𝑆 the POI 𝑥∗ that maximizes
𝐹𝑆 (𝑥)
𝑐𝑜𝑠𝑡 (𝑥) .

Algorithm 3: Random-Partition(𝐺, 𝐿,𝐶, 𝑟 )
1 𝑆 = ∅;
2 𝑁 =𝑉 ;

3 Initialize the digest matrix 𝐷𝑖𝑔;

// 𝐷𝑖𝑔 is an 𝑛-digest matrix in shape of 𝑚 × 𝑛.
4 while N ≠ ∅ do
5 𝐶𝑖 = NN-Oracle(𝐶,𝐷𝑖𝑔) ;

6 𝑅 = Sample(𝐶∗ , 𝑟 );

7 𝑥∗ = argmax𝑥∈𝑅
𝐹𝑆 (𝑥 )
𝑐𝑜𝑠𝑡 (𝑥 ) ;

8 if 𝑐𝑜𝑠𝑡 (𝑆) + 𝑐𝑜𝑠𝑡 (𝑥∗) ≤ 𝐿 then
9 𝐷𝑖𝑔 [𝑖 ] [1..𝑛 − 1] ← 𝐷𝑖𝑔 [𝑖 ] [2..𝑛];

10 𝐷𝑖𝑔 [𝑖 ] [𝑛] ← 𝐹𝑆 (𝑥∗ )
𝑐𝑜𝑠𝑡 (𝑥∗ ) ;

11 𝑆 = 𝑆 ∪ {𝑥∗ };
12 𝑁 = 𝑁 \{𝑥∗ };
13 return F(S);

Note that we also use the Marginal Influence Improvement and

LazyTag techniques within Random-Partition. Marginal Influence

Improvement enhances the calculation of 𝐹𝑆 (𝑥), updating 𝜙 after

picking 𝑥∗. With respect to LazyTag, we maintain bounds for all

POIs, pick up 𝑥∗ from the sampled subset𝑅 and𝑦∗ from𝑅\{𝑥∗}, and
compare 𝑦∗ and 𝑥∗ to decide whether to select 𝑥∗. Details remain as

in Algorithm 2. In terms of objective value, the following guarantee

applies to Random-Partition.

Theorem 6.2. Let 𝑆 be the subset selected by Random-Partition
in round 𝑖 , and let 𝜉𝑖 be the ratio of the unit marginal gain the algo-
rithm achieves by selecting element 𝑎𝑖 to the optimal unit marginal
gain. Let 𝑂 be the optimal solution, and 𝑢 = 1

𝐿

∑
𝑖 𝑐𝑜𝑠𝑡 (𝑎𝑖 )𝜉𝑖 . Then

𝐹 (𝑆) ≥ (1 − 𝑒−𝑢 )𝐹 (𝑂).
Proof. Please refer to Appendix A.2 □

For an oracle to work, we need to define when a region is more

preferable than another. To that end, we define the expectation value
𝐸𝐶𝑖 of each region 𝐶𝑖 as:

𝐸𝐶𝑖 =
∑
𝑥 ∈𝐶𝑖

𝐹𝑆 (𝑥)
𝑐𝑜𝑠𝑡 (𝑥) 𝑃𝑟 [𝑥

∗
𝑖 = 𝑥] (1)

Where𝑥∗
𝑖
= argmax𝑥 ∈𝑅

𝐹𝑆 (𝑥)
𝑐𝑜𝑠𝑡 (𝑥) , and𝑅 is the set sampled from𝐶𝑖 .

A region of larger expectation is deemed to be more preferable, as

it is likely to yield, after sampling, an 𝑥∗ with high unit marginal in-

fluence. An ideal oracle should return the region𝐶∗ that maximizes

𝐸𝐶𝑖 . Yet, we need to compute 𝐸𝐶𝑖 . Random-Partition collects 𝑟

samples, in each iteration, picking 𝑥 with probability
𝑐𝑜𝑠𝑡 (𝑥)
𝑐𝑜𝑠𝑡 (𝐶∗) , and

selects 𝑥∗
𝑅
= argmax𝑥 ∈𝑅

𝐹𝑆 (𝑥)
𝑐𝑜𝑠𝑡 (𝑥) . Without loss of generality, we list

all the POIs in 𝐶𝑖 in ascending order of unit marginal influence, as

𝑣1, 𝑣2, ..., 𝑣 |𝐶𝑖 | . Hence:

𝐸𝐶𝑖 =

|𝐶𝑖 |∑
𝑗=1

𝐹𝑆 (𝑣 𝑗 )
𝑐𝑜𝑠𝑡 (𝑣 𝑗 )

𝑠𝑟
𝑗
− 𝑠𝑟

𝑗−1
𝑐𝑜𝑠𝑡 (𝐶𝑖 )𝑟

where 𝑠 𝑗 = 𝑐𝑜𝑠𝑡 (𝑣 𝑗 ) + 𝑠 𝑗−1 with 𝑠0 = 0. Lines 1–8 of Algorithm 4

present how we compute 𝐸𝐶𝑖 in detail.

Unfortunately, the computation of every 𝐸𝐶𝑖 incurs cost similar

to Greedy, as it requires calculating the marginal influence of every

vertex first. Thus, we opt for the following Oracle definition:

Definition 6.3. (Oracle) An Oracle 𝑂 receives a partitioning 𝐶 ,

computes a probability vector p𝑂 = [𝑝𝑂 1
, . . . , 𝑝𝑂𝑚]𝑇 , and returns

a region 𝐶∗ at random according to p𝑂 , i.e., returns 𝐶𝑖 with prob-

ability 𝑝𝑂𝑖 . The value of Oracle 𝑂 is defined as 𝑣𝑂 = EC · p𝑂 ,
where EC = [𝐸𝐶1, 𝐸𝐶2, · · · , 𝐸𝐶𝑚]𝑇 .

Algorithm 4: D-Oracle(𝐺,𝐶, 𝑟,𝑢)
// 𝑢 [𝑖, 𝑗 ] stores current unit marginal influence of the 𝑗-th POI in 𝐶𝑖
// Below we calculate every 𝐸𝐶𝑖

1 for 𝑖 = 1 to |𝐶 | do
2 𝑠 ← 0;

3 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝐶 ← 0;

4 𝑣 ← sorted list of POIs in𝐶𝑖 ;

5 for 𝑗 = 1 to |𝐶𝑖 | do
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝐶 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝐶 +𝑢 [𝑖, 𝑗 ] × ( (𝑠 +𝑐𝑜𝑠𝑡 (𝑣𝑗 ))𝑟 −𝑠𝑟 )/𝑐𝑜𝑠𝑡 (𝐶𝑖 )𝑟 ;

7 𝑠 ← 𝑠 + 𝑐𝑜𝑠𝑡 (𝑣𝑗 ) ;
8 𝐸𝐶𝑖 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝐶 ;

9 𝐶∗ = argmax𝐸𝐶𝑖 ;

10 return𝐶∗

Algorithm 4 provides D-Oracle, an ideal oracle with a one-

hot p𝐷 , where 𝑝𝐷𝑖 =1 when 𝐸𝐶𝑖 is the maximum among regions, 0

otherwise. We also define Naive-Oracle as p𝑁 = [ 1𝑚 , · · · ,
1

𝑚 ]
𝑇
.

7 NN-SOWER
In this section, we introduce a Neural Network Oracle (NN-Oracle),

discuss its feature construction and training. Then we propose a ran-

domized algorithm that applies NN-Oracle to Random-Partition.

7.1 Neural Network Oracle
The goal of oracle design is to maximize the 𝑣𝑂 = p𝑂 · EC of our

Oracle 𝑂 in a reasonable time. We train a neural network Oracle

𝑂 to simulate D-Oracle, aiming to minimize the cross-entropy loss

between p𝑂 and p𝐷 :

L = −
𝑚∑
𝑖=1

𝑝𝑂𝑖 log 𝑝𝐷𝑖 (2)

Since p𝐷 is a one-hot vector, minimizing the cross entropy is

very similar to a classification problem. Yet, as many regions may

have similar 𝐸𝐶 values, we need not use prediction accuracy to

evaluate the performance of an oracle; intead, we use the efficiency
of an Oracle 𝑂 as

𝑣𝑂
𝑣𝐷

, which fairly expresses the performance of

Oracles. We opt for a Neural Network Oracle (NN-Oracle), namely

a Multi-Layer Perceptron (MLP), which outputs the probability

vector p𝑂 . NN-Sower randomly returns a region according to p𝑂 .
The input vector d1×(𝑚×𝑛) is a flattened and normalized 𝑛-digest



Figure 3: An example region (a) among the partition of Beijing (b) and expected values before and after picking (a).

of a history 𝐻 , denoted by 𝐷 (𝐻,𝑛). We define these terms in the

next section. Our use of an MLP illustrates the effectiveness of this

concept; other networks, such as ResNet [9], can also be applied.

7.2 Feature Construction
Random-Partition constructs 𝑆 iteratively. Then, instead ofmerely

recording the final 𝑆 , we record how 𝑆 is composed step by step, i.e.,
the history of region selection. We define the history as follows.

Definition 7.1. (History) The history 𝐻𝑡 of region selection at it-

eration 𝑡 is a list of records {(𝑟𝑒𝑔𝑖𝑜𝑛𝑖 , 𝑏𝑒𝑠𝑡𝑖 )}, 1≤ 𝑖 ≤ 𝑡 , where 𝑟𝑒𝑔𝑖𝑜𝑛𝑖
is the region selected in the 𝑖-th iteration of Random-Partition,

and 𝑏𝑒𝑠𝑡𝑖 the unit marginal influence of 𝑥∗ in that iteration.

The whole history 𝐻𝑡 shows what 𝑆 is like, and each record

(𝑟𝑒𝑔𝑖𝑜𝑛𝑖 , 𝑏𝑒𝑠𝑡𝑖 ) reflects the current optimum in each region, which is

about𝐺 . Yet it is impractical to use the entire history; when a region

𝐶𝑖 is picked many times, the first records from 𝐶𝑖 are less helpful

than later records, since the 𝐸𝐶 of a region falls with each POI

selected. Therefore, we introduce the 𝑛-digest of a history, which

keeps the last 𝑛 records of each region. Formally:

Definition 7.2. (HistoryDigest) The𝑛-digest𝐷 (𝐻𝑡 , 𝑛) of history
𝐻𝑡 is an𝑚×𝑛 matrix {𝑑𝑖 𝑗 }, where 𝑑𝑖 𝑗 represents the unit marginal

influence of 𝑥∗ when picking 𝐶𝑖 at the 𝑗-th time from the end of

history. If a region 𝐶𝑖 has been picked fewer than 𝑗 times, 𝑑𝑖 𝑗 = 0.

We record the history digest (Lines 3 and 9–10, Algorithm 3) and

use it as input in NN-Oracle after min-max normalization.

7.3 NN-Sower
NN-Sower applies an NN-Oracle on top of Random-Partition.

Figure 2 shows its architecture. NN-Sower contains an offline train-

ing stage and online deployment stage. In the offline training stage,

we first divide the graph into𝑚 regions and get the partitioning 𝐶 .

Then we call a dataset-generator several times to get the data for

NN-Oracle. In each iteration, we inquire a 𝐶𝑖 from the D-Oracle,

derive p𝐷 and save (𝐷𝑖𝑔, p𝐷 ) as a record. We train an NN-Oracle

using the generated data. When we deploy NN-Sower online, we

call Random-Partition(𝐺, 𝐿,𝐶, 𝑟 ) to obtain the GIM solution.

8 EXPERIMENTAL EVALUATION
We conduct experiments on two real-world data sets in two large

Chinese cities, Beijing and Chengdu. The data sets consist of two

parts: POI information and user movements. We obtain data

from the a third-party mobility data semantic platform, which as-

signs user positions to POIs, using various methods to determine

that a user checked at or appeared in a POI. The data come from

Beijing and Chengdu, on September 2–21, 2018. These data follow

the pattern described in Section 3.1, made out of sequences of POIs

per user,𝑈𝑖 = {𝑢𝑖0, 𝑢𝑖1, 𝑢𝑖2, . . . , 𝑢𝑖𝑘 }.
Based on these above data sets, we construct the Graph𝐺 where

the vertex set𝑉 is a set of the POIs. We derive edge probabilities as

described in Section 3.1. In particular, ∀𝑢, 𝑣 ∈ 𝑉 , we have:

𝑝𝑢,𝑣 =

∑
𝑈𝑖

∑ |𝑈𝑖 |−1
𝑗=0

[𝑢𝑖 𝑗 = 𝑢 and 𝑢𝑖 ( 𝑗+1) = 𝑣]∑
𝑈𝑖

∑ |𝑈𝑖 |−1
𝑗=0

[𝑢𝑖 𝑗 = 𝑢]

We add edge (𝑢, 𝑣, 𝑝𝑢,𝑣) to 𝐺 i.f.f. 𝑝𝑢,𝑣 ≠ 0. We get the specta-

tor distribution 𝑠𝑝𝑒𝑐 , setting 𝑠𝑝𝑒𝑐 (𝑢, 𝑘) to the number of length-𝑘

movements starting from 𝑢. Table 2 provides detailed information.

As we cannot obtain the cost for all the POIs, we estimate the

cost of each POI as 𝑐𝑜𝑠𝑡 (𝑥) = 𝛽 · 𝑠𝑢𝑚(𝑥)/20 + 100, where 𝛽 is a

random factor ranging from 0.8 to 1.2, and 𝑠𝑢𝑚(𝑥) the number users

who have visited 𝑥 in the examined time interval. This estimate

is based on the economic theory that the cost of an ad on a POI

consists of a variable cost and a fixed cost, the variable cost being

proportional to the traffic at this POI. We also present a discussion

about the deployment plan of SOWER in Appendix A.6.

|𝑉 | |𝐸 | 𝐾 V(𝑥,𝐾) E(𝑥,𝐾) #Moves

Beijing 686k 2334k 5 228.9 961.9 626m

Chengdu 564k 2086k 5 262.9 1283.1 420m

Table 2: Dataset Statistics.
Parameter Values

𝐿 200k, 300k, 400k, 500k, 600k
𝐾 0, 1, 2, 3, 4, 5, 6, 7, 8

𝑚 (Beijing) 16, 36, 64, 100, 144, 196, 256
𝑚 (Chengdu) 16, 36, 64, 100, 144, 196, 256

𝑟 50, 100, 200, 400, 800, 1600
𝑉 , 𝐸 enlarged multiple 1x, 2x, 3x, 4x, 5x

Table 3: Parameter settings.
We compare against the following baselines:

NaiveGreedy. A method that sorts POIs by unit marginal influ-

ence over an empty set, and picks POIs by the descending order.

CELF. The network-oriented version of the Lazy Greedy algo-

rithm [15], which reuses calculations of previous iterations while

picking POIs by unit marginal influence gain.

RandomGreedy. Our adaptation of the method of [22] for a

budget-constrained problem. In each iteration, it takes a sample of

POIs and picks the one with largest unit marginal influence.

Lazy-Sower. Our deterministic greedy algorithm.

NN-Sower. Our partition-based algorithm using an NN-oracle.

We also use the NN-Sower without some of its components: NN-

Sower (noL) refers to NN-Sower without the LazyTag improvement;
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Figure 4: Effect of varying Budget 𝐿; best viewed in color — each color stands for a certain budget.
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Figure 5: Effect of varying number of samples 𝑟 .

NN-Sower (noN) is NN-Sower without the NN-Oracle, i.e., the

partition-based framework with Naive-Oracle.

We divide methods into Deterministic algorithms (NaiveGreedy,

CELF and Lazy-Sower) and Non-deterministic algorithms (Random-

Greedy, NN-Sower and its variants).

Settings.We implemented the NN-Oracle in Python and other

parts in C++. Experiments run on a server with a 2.0 GHz Intel

Xeon Gold 5117 CPU and 198GB memory running CentOS 6.3.

When training the NN-Oracle, we use a Cirrus Logic GD 5446 GPU.

Training takes advantage of the GPU. Table 3 shows the settings

of all parameters with default values highlighted in bold. In our

real-world data most people visit no more than five POIs in one

outdoor trip; thus, we select 𝐾 = 5 as the default value of 𝐾 . We

conduct each experiment 10 times and report the average result.

TheMLP in NN-Sower consists of three hidden ReLU layers (of sizes

512, 256, and 128) and one softmax output layer. We set the length

of the History Digest to𝑚 × 16, where𝑚 is the number of grid cells

per city, shown in Table 3. Thus, the input layer has size𝑚 × 16,
and the output layer𝑚. For each city, we call the dataset-gernerator

60 times with the bold parameters in Table 3; in about 12 hours it

generates 17k records. We randomly pick 10% of records as test set,

10% as validation set, and 80% as training set. When training, we

set batch size as 64, number of epochs as 50,000, and learning rate

as 0.0001. Training takes 1000 seconds for each city.

8.1 Varying the Budget 𝐿
Figure 4 shows results when varying the budget 𝐿 . Lazy-Sower

achieves the same influence as CELF while it only takes up to 20%

of the time. NN-Sower achieves 1.8% to 6.4% higher influence than

RandomGreedy in about 25% of the time. Lazy-Sower achieves

the highest influence, while NN-Sower obtains up to 91% of that

influence in 2% of the runtime of CELF. As the budget grows from

200k to 600k, the runtime of Lazy-Sower grows by less than 5%, that

of NN-Sower grows by about 70%, while those of RandomGreedy

and CELF grows by up to 214% and 123%, respectively. The runtime

of NaiveGreedy is stable, but its influence is always much lower

than that of Lazy-Sower and their gap grows with budget. NN-

Sower(noL) achieves the same influence as NN-Sower but takes

more than twice of the time; NN-Sower(noN) needs nearly the same

time but yields lower influence than NN-Sower. That is reasonable,

since LazyTag reduces time, while the NN-Oracle gains influence.

8.2 Varying the Number of Samples 𝑟
Figure 5 shows the performance of non-deterministic algorithms

with varying number of samples 𝑟 . While NN-Sower and its noL

version achieve the highest influence, the performance of the noN

variant shows that the NN-Oracle improves influence from 1% to 5%

compared to the Naive Oracle. Yet, as Figures 5(b) and (d) show, a

larger number of samples 𝑟 also incurs higher runtime. The runtime

of NN-Sower is lower than those of other methods, and about 92% of

the one of its variant without LazyTag. Surprisingly, NN-Sower with

NN-Oracle is also a bit faster than NN-Sower with Naive Oracle,

as its superior choices also facilitate subsequent calculations. Last,

NN-Sower achieves the same influence as RandomGreedy at 1/55

of the runtime. Appendix A.4 presents an evaluation while varying

the number of grid cells𝑚.

8.3 Robustness to Disabled POIs
In real-world applications, we may not be allowed to place ads

on certain POIs, as some of them may be reserved or disqualified.

We evaluate the robustness of our methods by randomly selecting

some POIs and rendering them ineligible. Figure 6 shows our results.

Unsurprisingly, the influence of all methods drops with increasing

disabled POIs. Yet the performance of RandomGreedy and NN-

Sower declines slightly, while that of CELF and Lazy-Sower more

perceptibly. As non-deterministic algorithms are liable to miss some

good POIs anyway, they are more robust to failures [20].
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Figure 6: Effect of varying disabled POIs

8.4 Scalability
The threshold 𝐾 determines whether a spectator can reach POI 𝑥 .

Figure 7(a) shows that NN-Sower needs a little more time than

RandomGreedy when 𝐾 < 3, since the NN computation takes most

of the time in these cases. However, when 𝐾 > 3, NN-Sower out-

performs RandomGreedy by a factor of 3 to 6. The runtime of CELF

is higher than Lazy-Sower. We also evaluate scalability in growing

graph size. We considered adding vertices and edges in the graph.

However, doing so properly would require a network growth model,

which is beyond the scope of this work.We test the scalability by du-

plication: we copy the same graph several times and use the union

of these graphs as the input. The duplicated POIs have the same cost,

coordinates and spectator distribution as their original ones. For ex-

ample, if it is𝐺 = (𝑉 = {𝑢1, 𝑢2}, 𝐸 = {(𝑢1, 𝑢2, 1), (𝑢2, 𝑢1, 1)}) andwe
copy it twice, then the new graph is𝐺 ′ = (𝑉 ′ = {𝑢1, 𝑢2, 𝑢∗

1
, 𝑢∗

2
}, 𝐸 ′ =

{(𝑢1, 𝑢2, 1), (𝑢2, 𝑢1, 1),(𝑢∗
1
, 𝑢∗

2
, 1), (𝑢∗

2
, 𝑢∗

1
, 1)}). Figure 7(b) shows that

both our proposals scale gracefully with graph size.
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Figure 7: Scalability on Beijing dataset.

9 CONCLUSIONS
We introduced and studied the probelm of Geodemographi Influ-

ence Maximization. We showed that this problem is NP-hard, but

its objective function is monotone and submodular. Going beyond

previous work in the area, we equipped our algorithm with a novel,

tight double-bounding scheme that accelerates marginal influence

gain calculations, exploiting the locality properties of the problem.

Thereby, we built Lazy-Sower, an algorithm that achieves equal

to the state-of-the-art CELF method at much lower runtime, and

can handle large urban-network data. Furthermore, we devised

a learning-based variant, NN-Sower, that utilizes randomization

and deep learning to enhanced efficiency even further with only a

slight loss of quality. Our extensive experiment evaluations on two

real-world datasets verify the effectiveness, efficiency, scalability,

and robustness of our methods.
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A APPENDIX
A.1 Properties of Influence Function
We now prove that 𝐹 (𝑆) is a monotonic and submodular function.

Lemma A.1. The function 𝑓 (𝑢, 𝑘, 𝑆) is submodular, i.e., for any
𝑢 ∈ 𝑉 , 𝑘 , 𝑋 ⊆ 𝑌 ⊆ 𝑉 , and 𝑥 ∈ 𝑉 \𝑌 , it is

𝑓 (𝑢, 𝑘, 𝑋 ∪ {𝑥}) − 𝑓 (𝑢, 𝑘, 𝑋 ) ≥
𝑓 (𝑢, 𝑘,𝑌 ∪ {𝑥}) − 𝑓 (𝑢, 𝑘,𝑌 )

Proof. We use induction on 𝑘 . When 𝑘 = 0, by definition, the

differences on both sides are either 0 or 1. Then, if the difference on

the left side is 1, the inequality holds. Otherwise, if the difference on

the left side is 0, then it should hold that 𝑢 ≠ 𝑥 , hence either 𝑢 ∈ 𝑌
or 𝑢 ∈ 𝑉 \𝑌\{𝑥}. If 𝑢 ∈ 𝑌 , then 𝑓 (𝑢, 0, 𝑌 ∪ {𝑥}) = 𝑓 (𝑢, 0,𝑈 ,𝑌 ) = 1,

while if𝑢 ∈ 𝑉 \𝑌\{𝑥}, then 𝑓 (𝑢, 0, 𝑌 ∪{𝑥}) = 𝑓 (𝑢, 0, 𝑌 ) = 0; in both

cases, the inequality holds. Now, let us assume that the inequality

holds for 𝑘 and consider the case of 𝑘 + 1:
𝑓 (𝑢, 𝑘 + 1, 𝑋 ∪ {𝑥}) − 𝑓 (𝑢, 𝑘 + 1, 𝑋 )

=
∑

(𝑢,𝑣,𝑝) ∈𝐸
𝑝 [𝑓 (𝑣, 𝑘, 𝑋 ∪ {𝑥}) − 𝑓 (𝑣, 𝑘, 𝑋 )]

≥
∑

(𝑢,𝑣,𝑝) ∈𝐸
𝑝 [𝑓 (𝑣, 𝑘, 𝑌 ∪ {𝑥}) − 𝑓 (𝑣, 𝑘, 𝑌 )]

= 𝑓 (𝑢, 𝑘 + 1, 𝑌 ∪ {𝑥}) − 𝑓 (𝑢, 𝑘 + 1, 𝑌 )
Where the inequality in the third line holds due to our assump-

tion. Since both the base case and the inductive step hold, the lemma

is proven. □

Theorem A.2. 𝐹 (𝑆) is submodular.

Proof. For every X, Y⊆ V with X⊆ Y and every x ∈ 𝑉 \𝑌 , it is
𝐹 (𝑋 ∪ {𝑥}) − 𝐹 (𝑋 )

=
∑
𝑢∈𝑉

∑
𝑘

𝑠𝑝𝑒𝑐 (𝑢, 𝑘) (𝑓 (𝑢, 𝑘, 𝑋 ∪ {𝑥}) − 𝑓 (𝑢, 𝑘, 𝑋 ))

≥
∑
𝑢∈𝑉

∑
𝑘

𝑠𝑝𝑒𝑐 (𝑢, 𝑘) (𝑓 (𝑢, 𝑘,𝑌 ∪ {𝑥}) − 𝑓 (𝑢, 𝑘,𝑌 ))

=𝐹 (𝑌 ∪ {𝑥}) − 𝐹 (𝑌 )
The inequality in the third line holds due to Lemma A.1. So 𝐹 is

a submodular function. □

Next, we will prove that 𝐹 (𝑆) is monotonic.

Lemma A.3. The function 𝑓 (𝑢, 𝑘, 𝑆) is monotone, i.e., for every
𝑢 ∈ 𝑉 , 𝑘 , and 𝑋 ⊆ 𝑌 ⊆ 𝑉 , it is

𝑓 (𝑢, 𝑘, 𝑋 ) ≤ 𝑓 (𝑢, 𝑘,𝑌 )

Proof. We perform induction on 𝑘 . The base case of 𝑘 = 0 holds

by definition. Let us assume that the lemma holds for 𝑘 and consider

the case of 𝑘 + 1:
𝑓 (𝑢, 𝑘 + 1, 𝑋 ) =

∑
(𝑢,𝑣,𝑝) ∈𝐸

𝑝 · 𝑓 (𝑣, 𝑘, 𝑋 )

≤
∑

(𝑢,𝑣,𝑝) ∈𝐸
𝑝 · 𝑓 (𝑣, 𝑘, 𝑌 ) = 𝑓 (𝑣, 𝑘 + 1, 𝑌 )

Then the lemma follows inductively. □

Theorem A.4. 𝐹 (𝑆) is monotonic.

Proof. ∀𝑋 ⊆ 𝑌 ⊆ 𝑉 , it is
𝐹 (𝑋 ) =

∑
𝑢∈𝑉

∑
𝑘

𝑠𝑝𝑒𝑐 (𝑢, 𝑘) 𝑓 (𝑢, 𝑘, 𝑋 )

≤
∑
𝑢∈𝑉

∑
𝑘

𝑠𝑝𝑒𝑐 (𝑢, 𝑘) 𝑓 (𝑢, 𝑘,𝑌 ) = 𝐹 (𝑌 )

The inequality holds due to Lemma A.3. □

A.2 Proof of Theorem 6.2
Proof. Let 𝑆𝑖 = {𝑎1, 𝑎2, · · · , 𝑎𝑖 }, note that:

𝐹 (𝑆𝑖 ) − 𝐹 (𝑆𝑖−1)
𝑐𝑜𝑠𝑡 (𝑎𝑖 )

= 𝜉𝑖 max

𝑜∈𝑉 \𝑆𝑖−1

𝐹𝑆𝑖−1 (𝑜)
𝑐𝑜𝑠𝑡 (𝑜)

≥ 𝜉𝑖
∑

𝑜∈𝑂\𝑆𝑖−1

𝐹𝑆𝑖−1 (𝑜)
𝑐𝑜𝑠𝑡 (𝑜)

𝑐𝑜𝑠𝑡 (𝑜)
𝑐𝑜𝑠𝑡 (𝑂\𝑆𝑖−1)

≥ 𝜉𝑖

𝐿

∑
𝑜∈𝑂\𝑆𝑖−1

𝐹𝑆𝑖−1 (𝑜)

≥ 𝜉𝑖

𝐿
(𝐹 (𝑂) − 𝐹 (𝑆𝑖−1))

Here, the third inequality can be deduced from the submodularity

of 𝐹 stated in Theorem A.2 and A.4.

Rearranging, we get:

𝐹 (𝑆𝑖 ) ≥
𝑐𝑜𝑠𝑡 (𝑎𝑖 )𝜉𝑖

𝐿
(𝐹 (𝑂) − 𝐹 (𝑆𝑖−1)) + 𝐹 (𝑆𝑖−1)

Next, we use induction to show that

𝐹 (𝑆𝑖 ) ≥
©­«1 −

𝑖∏
𝑗=1

(
1 −

𝑐𝑜𝑠𝑡 (𝑎 𝑗 )𝜉 𝑗
𝐿

)ª®¬ 𝐹 (𝑂)
For the base case of 𝑖 = 1 along with 𝑆0 = ∅, we have:

𝐹 (𝑆1) ≥
𝑐𝑜𝑠𝑡 (𝑎1)𝜉1

𝐿
(𝐹 (𝑂) − 𝐹 (𝑆0)) + 𝐹 (𝑆0)

=
𝑐𝑜𝑠𝑡 (𝑎1)𝜉1

𝐿
𝐹 (𝑂)

=

(
1 −

(
1 − 𝑐𝑜𝑠𝑡 (𝑎1)𝜉1

𝐿

))
𝐹 (𝑂)

For any round 𝑖 , the following holds according to the inductive

hypothesis:

𝐹 (𝑆𝑖 ) ≥
𝑐𝑜𝑠𝑡 (𝑎𝑖 )𝜉𝑖

𝐿
(𝐹 (𝑂) − 𝐹 (𝑆𝑖−1)) + 𝐹 (𝑆𝑖−1)

=
𝑐𝑜𝑠𝑡 (𝑎𝑖 )𝜉𝑖

𝐿
𝐹 (𝑂) +

(
1 − 𝑐𝑜𝑠𝑡 (𝑎𝑖 )𝜉𝑖

𝐿

)
𝐹 (𝑆𝑖−1)

≥ 𝑐𝑜𝑠𝑡 (𝑎𝑖 )𝜉𝑖
𝐿

𝐹 (𝑂)

+
(
1 − 𝑐𝑜𝑠𝑡 (𝑎𝑖 )𝜉𝑖

𝐿

) ©­«1 −
𝑖−1∏
𝑗=1

(
1 −

𝑐𝑜𝑠𝑡 (𝑎 𝑗 )𝜉 𝑗
𝐿

)ª®¬ 𝐹 (𝑂)
=
©­«1 −

𝑖∏
𝑗=1

(
1 −

𝑐𝑜𝑠𝑡 (𝑎 𝑗 )𝜉 𝑗
𝐿

)ª®¬ 𝐹 (𝑂)



Further applying 1 − 𝑥 ≥ 𝑒−𝑥 , the inequality implies:

𝐹 (𝑆𝑖 ) ≥
©­«1 −

𝑖∏
𝑗=1

𝑒−
𝑐𝑜𝑠𝑡 (𝑎𝑗 )𝜉 𝑗

𝐿
ª®¬ 𝐹 (𝑂)

=

(
1 − 𝑒−

∑𝑖
𝑗=1

𝑐𝑜𝑠𝑡 (𝑎𝑗 )𝜉 𝑗
𝐿

)
𝐹 (𝑂)

As for 𝑆 , we have:

𝐹 (𝑆) = 𝐹 (𝑆 |𝑆 |) ≥ (1 − 𝑒−𝑢 )𝐹 (𝑂)
□

A.3 Data Generation
In the offline training stage, we generate data as follows. In each

iteration, we inquire a 𝐶𝑖 from the D-Oracle and derive p𝐷 . Same

as in Random-Partition, we sample a POI subset 𝑅 from 𝐶𝑖 , and

select the POI 𝑥∗ that has the maximum
𝐹𝑆 (𝑥∗)
𝑐𝑜𝑠𝑡 (𝑥∗) . Then we save

(𝐷𝑖𝑔, p𝐷 ) as a piece of data and add the record (𝐶𝑖 , 𝐹𝑆 (𝑥
∗)

𝑐𝑜𝑠𝑡 (𝑥∗) ) into
the digest 𝐷𝑖𝑔. After that, we maintain 𝑢 [𝑖, 𝑗] by updating POIs

near 𝑥∗ immediately after picking 𝑥∗ (Lines 28–29), since D-Oracle
requires the exact unit marginal influence for every POI. So its time

complexity is𝑂 (𝐾 |𝑉 | |V(𝑥, 𝐾) |·( |V(𝑥, 𝐾) |+|E(𝑥, 𝐾) |)) and its space
complexity is 𝑂 (𝐾 |𝑉 |). Algorithm 5 shows the details.

Algorithm 5: Dataset-Generator(𝐺, 𝐿,𝐶, 𝑟 )
1 Function Sample(𝑁 , 𝑟)
2 Initialize an array 𝑜𝑟𝑑 ;

// 𝑁 = 𝑢1,𝑢2, · · · ,𝑢𝑛
// 𝑜𝑟𝑑 [0] = 0, and ∀𝑖 ∈ [1..𝑛], 𝑜𝑟𝑑 [𝑖 ] = 𝑜𝑟𝑑 [𝑖 − 1] + 𝑐𝑜𝑠𝑡 (𝑢)

3 𝑅 ← ∅;
4 for 𝑖 = 1 to 𝑟 do
5 𝑝𝑜𝑠 ← 𝑟𝑎𝑛𝑑 () × 𝑜𝑟𝑑 [𝑛];
6 find 𝑡 ∈ [1..𝑛] s.t. 𝑜𝑟𝑑 [𝑡 − 1] ≤ 𝑝𝑜𝑠 < 𝑜𝑟𝑑 [𝑡 ];
7 𝑅 ← 𝑅 ∪ {𝑢𝑡 };
8 return R

9 Initialize the digest matrix 𝐷𝑖𝑔;

10 Initialize matrix𝑢;

11 𝑑𝑎𝑡𝑎 ← ∅;
12 𝑆 ← ∅;
13 𝑁 ← 𝑉 ;

14 for 𝑖 = 1 to |𝐶 | do
15 for 𝑗 = 1 to |𝐶𝑖 | do

// Let 𝑦 be the 𝑗-th POI of 𝐶𝑖

16 𝑢 [𝑖, 𝑗 ] ← 𝐹𝑆 (𝑦)
𝑐𝑜𝑠𝑡 (𝑦)

17 while N ≠ ∅ do
18 𝐶𝑖 ← D-Oracle(𝐺,𝐶, 𝑟,𝑢);

19 p𝐷 ← a one-hot vector where p𝐷 [𝑖 ] = 1;

20 𝑅 ← Sample (𝐶∗ , 𝑟 );

21 𝑥∗ ← argmax𝑥∈𝑅
𝐹𝑆 (𝑥 )
𝑐𝑜𝑠𝑡 (𝑥 ) ;

22 if 𝑐𝑜𝑠𝑡 (𝑆) + 𝑐𝑜𝑠𝑡 (𝑥∗) ≤ 𝐿 then
23 𝑑𝑎𝑡𝑎 ← 𝑑𝑎𝑡𝑎 ∪ {(𝐷𝑖𝑔, p𝐷 ) };
24 𝐷𝑖𝑔 [𝑖 ] [1..𝑛 − 1] ← 𝐷𝑖𝑔 [𝑖 ] [2..𝑛];

25 𝐷𝑖𝑔 [𝑖 ] [𝑛] ← 𝐹𝑆 (𝑥∗ )
𝑐𝑜𝑠𝑡 (𝑥∗ ) ;

26 𝑆 ← 𝑆 ∪ {𝑥∗ };
// Next we update 𝑢. Let 𝑥∗ be the 𝑑-th POI of 𝐶𝑖 .

27 𝑢 [𝑖, 𝑑 ] = 0 ;

28 foreach 𝑦 ∈ V(x∗, 𝐾) \ 𝑆 do
// Let 𝑦 be the 𝑡-th POI of 𝐶 𝑗

29 𝑢 [ 𝑗, 𝑡 ] ← 𝐹𝑆 (𝑦)
𝑐𝑜𝑠𝑡 (𝑦) ;

30 𝑁 ← 𝑁 \{𝑥∗ };
31 return data

A.4 Varying Number of Grid Cells𝑚
As the number of grid cells 𝑚 determines the input and output

size of NN-Sower, we fix its value for all experiments. Figure 8

shows the effect of𝑚 on quality and runtime. We observe that: (1)

Efficiency decreases as𝑚 grows: the more grid cells there are to

choose from, the harder it is to choose the best. (2) still, as𝑚 grows,

the attained influence 𝑣𝑂 rises first, and then falls; that is because

𝑣𝑂 = 𝑣𝐷 · Efficiency, where 𝑣𝐷 increases with the growth of𝑚 even

while Efficiency falls; for example, if each POIs is in a separate grid

cell, then 𝑣𝐷 equals the largest unit marginal influence value among

all POIs. We opt for𝑚 = 144 for Beijing and𝑚 = 64 for Chengdu;

as Beijing is larger, it requires more grid cells to prevent having too

many POIs per cell.
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Figure 8: Effect of varying number of grids cells𝑚.

A.5 Usability of NN-Sower
We point out that NN-Sower performs well even under different

settings of budget 𝐿 and number of samples 𝑟 . In all the evaluation

results of Figure 5 and 4, the Neural Network model is trained with

𝐿 = 400K and 𝑟 = 200. However, NN-Sower performs well even

with other settings of 𝐿 and 𝑟 . This outcome illustrates the usability

of NN-Sower; it suffices to train the model once, and then let it deal

with diverse 𝐿 and 𝑟 .

A.6 Deployment Plan
SOWER is developed for Baidu Juping

1
, an ecosystem of intelligent

marketing and offline media digitalization in the AI era established

by Baidu since 2018. Given the evidence provided, our algorithmwill

be deployed on the backend to automatically generate a package

of POIs for delivering advertisement. In the first step, the Lazy-

Sower will be deployed for solving the Guarantee Delivery (GD)

advertisement. Later, thanks its high efficiency, NN-Sower will be

deployed for real-time biding (RTB) advertisement.

Lazy-Sower can be deployed and executed immediately because

it’s a deterministic algorithm. While NN-Sower can be re-trained

infrequently, such as a month or a quarter, because it can handle

various situations well once trained according to Section 8.3 and

Appendix A.5. Thus we can use only one server to support all

training tasks for hundreds of cities in China.

1
https://juping.baidu.com/
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