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ABSTRACT

Social network data analysis raises concerns about the privacy of
related entities or individuals. To address this issue, organizations
can publish data after simply replacing the identities of individuals
with pseudonyms, leaving the overall structure of the social net-
work unchanged. However, it has been shown that attacks based on
structural identification (e.g., a walk-based attack) enable an adver-
sary to re-identify selected individuals in an anonymized network.
In this paper we explore the capacity of techniques based on ran-

dom edge perturbation to thwart such attacks. We theoretically
establish that any kind of structural identification attack can effec-
tively be prevented using random edge perturbation and show that,
surprisingly, important properties of the whole network, as well as
of subgraphs thereof, can be accurately calculated and hence data
analysis tasks performed on the perturbed data, given that the legit-
imate data recipient knows the perturbation probability as well. Yet
we also examine ways to enhance the walk-based attack, propos-
ing a variant we call probabilistic attack. Nevertheless, we demon-
strate that such probabilistic attacks can also be prevented under
sufficient perturbation. Eventually, we conduct a thorough theoret-
ical study of the probability of success of any structural attack as
a function of the perturbation probability. Our analysis provides
a powerful tool for delineating the identification risk of perturbed
social network data; our extensive experiments with synthetic and
real datasets confirm our expectations.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Administration—Se-

curity, integrity, and protection; H.2.8 [Database Management]:
Database applications—Data mining; K.4.1 [Computers and So-

ciety]: Public Policy Issues—Privacy
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1. INTRODUCTION
Today data owners (e.g., private corporations, public organiza-

tions) can store large volumes of digital human interactions. Ex-
amples include interactions among groups of players in an online
game, for file-sharing in P2P networks, and among individuals in
online social networks. In most cases, the network at hand can be
represented by a graph G = (V,E), where vertices stand for indi-
viduals and edges for interactions or relations. Data owners wish
to publish such graphs, e.g. for social studies and marketing.

Nevertheless, publication should not reveal sensitive personal in-
formation contained in the network. A naïve graph anonymization

approach is to remove identifying attributes such as names, e-mails
or IP addresses, and still publish the network in a way that allows
all kind of analysis of its graph properties.

Unfortunately, this naïve anonymization approach does not guar-
antee privacy protection. As Hay et al. [8] discerned, the structural
characteristics of the published graph, combined with background
knowledge, can expose individuals. For instance, assume an adver-
sary has access to graph Gn in Figure 1(b), the naïvely anonymized
version of the graph in Figure 1(a) and and knows that Suzanne has
3 friends, none of whom has more than 2 friends. With this knowl-
edge, the adversary can identify Suzanne as node 3.

Backstrom et al. [1] have shown that a practical way for an ad-
versary to gain structural knowledge is to embed a known subgraph
(e.g., register dummy users in an online social network and link
them to victims). Figure 1(c) shows our example graph includ-
ing an embedded subgraph (nodes {11, 12, 13, 14, 15}). Malicious
nodes were connected to Suzanne and Robert (e.g., by tricking
them to respond to a bogus friendship invitation). An adversary
capable to locate the inserted subgraph efficiently can also identify
Suzanne and Robert and hence infer other attributes of theirs.

Let GA = (VA, EA) be the inserted subgraph and k = |VA| the
number of vertices in GA. Typically, it suffices for k to be in the
order of

√

log |Go|, as the number of possible k-node subgraphs,
hence the probability that the inserted subgraph is unique, grows
exponentially with k2. Locating GA is an intractable problem [7],
hence impractical for large graphs. Therefore, [1] only considers
subgraphs having a connected backbone (i.e., a Hamiltonian path
of their k nodes), and describes an efficient walk-based attack:
an adversary can locate GA by searching for k-node paths hav-
ing the same degree sequence as GA (e.g., the subgraph of nodes
{11 . . . 15} in Figure 1(c) has degree sequence [2, 5, 3, 4, 2]).

In this paper, we study the effectiveness of random edge pertur-
bation as a tool for preventing structural identification in an anony-



(a) Original graph Go. (b) naïvely anonymized Gn. (c) Gn with malicious nodes. (d) Perturbed graph Gp.

Figure 1: Example of a social network graph.

mized graph. We assume that the original graph Go is first trans-
formed to Gn by naïve anonymization, and then Gn is altered to Gp

by random edge perturbation with perturbation probability µ. Fig-
ure 1(d) shows a perturbed graph Gp, in which edges (4, 5), (8, 9)
and (11, 13) in Gn have been removed, whereas edges (13, 15)
and (5, 10) have been added. Fittingly, the degree sequence of GA

cannot be found in Gp; therefore the walk-based attack fails.
Remarkably, Ying and Wu [12] reject random edge perturbation

as a method for privacy preservation on the grounds that it obfus-
cates important graph characteristics; Bonchi and Tassa arrive at a
similar, albeit more positive result [2]. We inspect such claims by
showing that estimation algorithms can accurately recover impor-
tant graph properties (e.g., density, degree distribution, transitivity,
modularity, etc) from the perturbed graph, not only for the complete
original graph, but more crucially, even for subgraphs thereof - for
which publishing such measures directly to the end-user would not
be a solution. We apply this methodology on several graph metrics
used in graph analysis [5]. Our estimation algorithms are not ap-
plicable only on the presented metrics; in addition, we introduce a
generic framework for estimating a class of utility metrics.

Nevertheless, we are wary that an adversary can employ a method-
ology similar to ours so as to launch sophisticated attacks. We
demonstrate this potential by generalizing the walk-based attack of
[1] to a probabilistic walk-based attack, which examines multiple
possible degree sequences, each with its own probability of appear-
ance. We show that, while being more computationally intensive
than the deterministic variant, our probabilistic attack is practicable
in perturbed graphs with higher success probability. Furthermore,
we generalize our study to take into account any possible structural
attack, even by extremely powerful adversaries having the compu-
tational power to enumerate all possible subgraphs of size k inside
Gn. Our analysis delineates the probability of success in that case,
for subgraph size k and perturbation probability µ.

To summarize, our contributions are outlined as follows: We
show how important graph properties can be accurately recovered

from a perturbed graph, even though this perturbed graph does not

look like the original. We introduce a novel probabilistic attack,
more powerful than the one [1]. We compute the probability of suc-
cess of any structural attack, offering a yardstick for assessing the

privacy risk entailed by the publication of perturbed graph data.

2. RELATED WORK
The idea that privacy can be preserved after randomization while

data characteristics can be partially recovered, which we espouse,
was debuted in the context of association rule mining [6, 11].

Backstrom et al. [1] were the first to present an attack demon-
strating that naïve anonymization is insufficient to ensure privacy in
graph data. They emphasize the differences between active attacks,
where the adversary adds nodes and edges before publication, and
passive attacks, where they do not, and propose the walk-based

and cut-based attacks; the extent to which random edge perturba-

tion can protect from this family of active attacks was not exam-
ined in [1]. Hay et al. [9] proposed a privacy protection technique
based on random edge insertions and deletions, similar to the ran-
dom edge perturbation that we study. However, the efficiency and
utility preservation of their scheme were not studied. In [8], Hay
et al. formalize two adversary knowledge models based on sub-
graph queries and hub fingerprints, and propose an approach using
structure aggregation and sampling to protect from such attacks;
however this method does not preserve the complete graph struc-
ture. Ying and Wu [12] assert that random edge perturbation sig-
nificantly degrades a graph’s utility; this assertion is true if utility
metrics are measured on the perturbed graph; however [12] does
not attempt to recover graph properties by estimation algorithms.

Zhou and Pei [13] use edge addition (along with generalization
of node labels) in order to ensure that, for every node in the graph,
there exist at least k−1 other nodes that share isomorphic neighbor-
hoods. Similarly, Liu and Terzi [10] bring a graph in a form such
that, for each node, there exist at least k − 1 other nodes having
the same degree, while Cormode et al. [4] study the anonymization
problem for bipartite graphs and propose the notion of safe group-

ings. Zou et al. [14] propose the model of k-automorphism, which
guarantees that the anonymized graph consists of k structurally in-
distinguishable subgraphs; Cheng et al. [3] expand on this concept
with k-isomorphism, in which a graph is published in the form of
k identical disjoint subgraphs. Unfortunately, such syntactic ano-
nymization methods can severely alter the nature of the published
network so as to conform to the privacy guarantee they provide. For
example, by k-isomorphism, a connected graph is converted to an
assortment of k identical disjoint graphs; thus, the published graph
is not an anonymized version of the whole original, but only of 1

k

thereof. Besides, the computational complexity of these syntactic
schemes renders them inapplicable on very large graphs.

Recently, Bonchi et al [2] used an entropy-based privacy met-
ric to evaluate several graph anonymization techniques; they con-
clude that techniques based on random perturbation are comparable
to syntactic methods. Our work builds upon these findings by in-
specting the potential to estimate a graph’s original properties and
the viability of structural attacks after random perturbation.

3. UTILITY MEASURE ESTIMATION
Let Go = (V,E) be an undirected graph representing the orig-

inal social network and let N = |V |. Without loss of generality,
we assume that V is ordered and V [i] refers to the ith node in the
set. Naïve anonymization replaces all labels in Go with random
pseudonyms. The resulting graph is denoted by Gn, where new la-
bels are given by L(V [i] ,Gn), i ∈ [1, N ]. As Gn and Go contain
the same set of nodes and edges, Gn = (V,E).

Random edge perturbation yields a perturbed graph Gp =
(V,Ep) from a naïvely anonymized graph Gn by adding or remov-
ing edges. Let µ ∈ [0, 1

2
) be a user-defined perturbation probabil-

ity, known to the legitimate data recipient, and (V [i], V [j]) denote



the edge between nodes V [i] and V [j]. For every pair of nodes
V [i], V [j] ∈ V it holds that:

Pr
(

(V [i], V [j]) 6∈ Ep | (V [i], V [j]) ∈ E
)

= µ

Pr
(

(V [i], V [j]) ∈ Ep | (V [i], V [j]) 6∈ E
)

= µ

We assume that the adversary knows a subgraph GA = (VA, EA)
in the original graph Go. GA contains k ordered nodes, with la-
bels L(VA[i], GA) known to the adversary; the latter aims to iden-
tify GA in Gp, i.e., an ordered set Y of k nodes in Gp, such that
L(Y [i], Go) = L(VA[i], GA), for 1 ≤ i ≤ k. We are interested to
quantify the probability that the adversary will succeed.

Before we study the adversary’s success probability, we study the
effect of perturbation on different graph utility metrics. No single
metric for measuring a graph’s utility exists, as organizations may
use a graph for different purposes. Still, there are a few widely ac-
cepted metrics [5]. We study four popular metrics: density, degree
distribution, transitivity, and modularity. While past research has
asserted that such metrics rapidly degrade with random edge per-
turbation [12], we outline how, even when the metrics measured on
the perturbed graph vary greatly from those of the original, we can
still accurately estimate their original values.

3.1 Density Estimation
The density metric for a general graph is the ratio of the number

of edges in the graph over the number of possible edges. It de-
scribes the average level of connectivity between nodes. Formally,
the density value is defined as follows:

density =
2|E|

|V |(|V | − 1)
(1)

The density metric is widely used in social network data anal-
ysis. Admittedly, due to perturbation, the number of edges in the
perturbed graph will differ from that in the original graph. How-
ever, we can use the known perturbation probability to estimate the
original density. Since the density value depends on the graph size
and the number of edges, when the graph size is known, we only
need to estimate the original number of edges. Let h = |E| be the
(unknown) number of edges in Go, and hp = |Ep| the observed
number of edges in the perturbed graph Gp. We can estimate the
value of h via the maximum-likelihood estimator ĥ, defined as:

ĥ = argmax
h

(Pr(hp|h)) (2)

where Pr(hp|h) is the probability of observing hp edges in the
perturbed graph when the original graph has h edges. Intuitively,
the estimator ĥ is the number of edges in the original graph that is
most likely to result in hp edges in the perturbed graph.

To estimate ĥ, we need to find a value h that maximizes Pr(hp|h).
Alternatively, we can find the value of ĥ by deriving an equation
with the following rationale: since each edge removal and addi-
tion during perturbation can be viewed as an independent Bernoulli
trial, the value of h that maximizes Pr(hp|h) is the one that renders
the expected number of edges in the perturbed graph equal to hp.
Given that each existing edge survives with probability (1−µ) and
each non-existing one is created with probability µ, the equality in
consideration is expressed as follows:

hp = ĥ · (1− µ) +
(

M − ĥ
)

· µ (3)

where M = N(N−1)
2

is the number of possible edges in the
graph. The quantity on the right-hand side of the equation is the

expected number of edges in Gp when the number of edges in Go

is ĥ. Solving Equation 3 for ĥ, we get:

ĥ =
hp −M · µ
1− 2µ

(4)

3.2 Degree Distribution Estimation
The degree is a cardinal feature of a node. In social networks,

degrees describe the number of friends a person has. In many real-
world networks, degrees exhibit a power-law distribution.

Our estimation for degree distribution is similar to that for den-
sity estimation, as a node’s original degree can be estimated via its
degree in the perturbed graph. While there may be a high error in
the estimation for an individual node, the total degree distribution
can still be accurately estimated. We first focus on estimating the
original degree of a single node. Let dp be a node’s observed de-
gree in Gp, and d̂o our estimator of its degree in Go, respectively.
As in our density estimation solution, we can estimate d̂o by set-
ting dp to be equal to the expected degree of the node at hand in Gp

when its original degree is d̂o. Therefore it is:

dp = d̂o · (1− µ) + (N − 1− d̂o) · µ (5)

Solving the latter for d̂o, we get:

d̂o =
dp − (N − 1) · µ

(1− 2µ)
(6)

Let d̂o[i] be the estimator of the ith node’s degree. Then

[d̂o[1], d̂o[2], . . . , d̂o[N ]] forms an estimation of the degree sequence
of all nodes in Go, whence we derive an estimate of the distribution.

3.3 Transitivity Estimation
Transitivity measures the incidence of order-3 loops in a graph.

In a social network, if v1 is connected to both v2 and v3, then there
is a relatively high probability that v2 and v3 are also connected
(i.e., a friend’s friend is a friend). Most social networks present
high transitivity. Formally, a network’s transitivity T is defined as:

T =
3N∆

N3
(7)

In the above formula, N∆ is the number of triangles in the net-
work, and N3 is the number of connected triplets, i.e., subgraphs
of exactly 3 connected nodes (albeit not necessary triangular).

To compute a graph’s transitivity, we have to count the number of
triangles and the number of connected triplets therein. Such struc-
tures may be destroyed post-perturbation, yet we can still count the
number of different triplet structures in Gp, and thereby estimate
the number of triangles and connected triplets in Go.

Given any triplet of nodes in Go, the possible edge connections
therein fall into the following four patterns:

• Pattern 1: They form a triangle (i.e., a triplet of three edges).
We denote the number of triangles in Go as To and their ob-

served number in Gp as Tp.

• Pattern 2: They form a connected triplet with two edges.
Let Xo (Xp) be the original (observed) number of connected
triplets in Go (Gp).

• Pattern 3: They form a disconnected triplet with only one

edge. Again, let Io (Ip) be the original (observed) numbers
of this pattern in Go (Gp).



Tp Xp Ip Dp

To
(1 µ)3 (1 µ)2µ (1 µ)2µ (1 µ)2µ (1 µ)µ2 (1 µ)µ2 (1 µ)µ2 µ3

Xo
(1 µ)2µ (1 µ)3 (1 µ)µ2 (1 µ)µ2 µ3 (1 µ)2µ (1 µ)2µ (1 µ)µ2

Io
(1 µ)µ2 (1 µ)2µ µ3 (1 µ)2µ (1 µ)µ2 (1 µ)µ2 (1 µ)3 (1 µ)2µ

Do
µ3 (1 µ)µ2 (1 µ)µ2 (1 µ)µ2 (1 µ)2µ (1 µ)2µ (1 µ)2µ (1 µ)3

Figure 2: Converting a pattern in Go to another.

• Pattern 4: They are completely disconnected with no edges.
Similarly, we denote the original (observed) numbers of this
pattern in Go (Gp) as Do (Dp).

Given a triplet pattern in Go, we can calculate the probability
that it will be transformed into one of the three other patterns in
Gp. For instance, a triangle in Go can become a triplet of either
Pattern 2, Pattern 3 or Pattern 4, or remain unchanged. Figure 2
depicts the calculations of the probabilities that a pattern in Go is
converted to another pattern in Gp. We emphasize that these cal-
culations are obtained under the simplistic assumption that each
triplet conversion is independent of others. This assumption serves
our objective of deriving an estimation, which is ultimately tested
in our experiments. Thus, for example, the probability that a trian-
gle in Go remains unchanged in Gp is (1−µ)3; the probability that
a triangle becomes a triplet of Pattern 2 (for which three possible
cases as shown in Figure 2) is 3(1 − µ)2µ. Given the counts of
triplets in different patterns (Tp, Xp, Ip and Dp) in Gp, and the
pattern convertion probabilities in Figure 2, we can devise a system
of linear equations with four unknown estimator variables T̂o, X̂o,
Îo and D̂o, as we did for density and degree distribution estimation.
Solving this system of equations, we get:

T̂o = 1
(2µ−1)3

(Dpµ
3 − Ipµ

2 + Ipµ
3 − Tp

+3µTp − 3µ2Tp + µ3Tp + µXp

−2µ2Xp + µ3Xp)

(8)

X̂o = 1
(2µ−1)3

(2Ipµ− 3Dpµ
2 − 4Ipµ

2

+3Dpµ
3 + 3Ipµ

3 + 3µTp − 6µ2Tp + 3µ3Tp

−Xp + 3µXp − 5µ2Xp + 3µ3Xp)

(9)

Then, given the maximum-likelihood estimators of triangles T̂o

and connected triplets X̂o, we estimate the transitivity of Go as:

T̂ =
3T̂o

X̂o

(10)

3.4 Modularity Estimation
Social networks exhibit community structures. A characteris-

tic of such a community is that intra-community links are more
than inter-community links. The modularity is a metric measur-
ing whether a partition of graph exhibits community properties. To
compute modularity, the network is partitioned into a fixed number
of communities. A symmetric matrix A is formed such that the el-
ements A[i, i] (i.e., the diagonal of matrix A) are the fractions of
links between the nodes in the same community i. The other ele-
ments A[i, j] are the fractions of links between communities i and
j. The network’s modularity is defined as:

M =
∑

i

[

A[i, i]−
(
∑

j A[i, j]
)2]

(11)

The modularity value depends on the entries in matrix A. To
estimate modularity, we first create an estimator Â for A. To do
so, we use an auxiliary symmetric matrix, B, in which B[i, i] is
the number of edges within community i and B[i, j] the number of
edges between community i and community j. Bp and B̂ refer to
the matrix in the perturbed graph and the estimator for B, respec-
tively. Once B̂ is computed, Â can be derived from B̂ by dividing
each entry by the estimated total number of edges. Since the en-
tries in B are counts of edges between nodes, we can apply similar
technique as in density estimation to estimate B̂. Bp is directly
computed by counting the edges within and between partitions in
the perturbed graph. The relation between B̂[i, i] and Bp[i, i] is:

B̂[i, i] =
2Bp[i, i]− (z2i + zi) · µ

2− 4µ
(12)

In the above equation zi is the number of nodes in partition i.
Assuming the number of nodes in community i (j) is zi (zj), the
relation between B̂[i, j] and Bp[i, j] is:

B̂[i, j] =
Bp[i, j]− zi · zj · µ

1− µ
(13)

Each entry in Â is then computed by dividing the corresponding
entry in B̂ by the estimated number of edges in the network.

3.5 A Generic Estimation Framework
While it is impossible to provide an exhaustive enumeration of

estimation methods for every possible graph utility metric, in this
section we provide a generic framework for the estimation a partic-
ular class of such metrics.

A common characteristic of the above four metrics is that the
utility value relies on the counts of certain substructures (a sub-
graph) in the graph. For example, the density value relies on the
count of disconnected pairs of nodes and the count of connected
pairs of nodes. Similarly, the transitivity value relies on the count
of connected triplets and the count of triangles in the graph. Gener-
ally, the class of the utility metrics whose values rely on the counts
of substructures can be estimated using a generic framework. The
generic framework for estimation is described as follows.

Let S be a set of smax substructures relevant to a particular util-
ity metric, where Si refers to the ith substructure. For example,
in transitivity estimation, smax = 2, and the two substructures
are triangles and connected triplets. Si.c refers to the count of
the ith substructure in the original graph. Therefore, the utility
value is a function of the counts of different structures in S, i.e.
f(S1.c,S2.c, . . . ,Ssmax .c). To estimate the utility value, we need
to estimate the value of Si.c for all substructures in S. Let Si.s be
the number of nodes in the ith substructure. For transitivity estima-
tion, the number of nodes in the two substructures (triangles and
triplets) are both 3. In the perturbed graph, we count the number
of all substructures involving S1.s,S2.s, . . . ,Ssmax .s nodes. The
count of all the substructures in the perturbed graph is denoted as
p1, p2, . . ., ptmax . For transitivity estimation, they are the counts
of the four patterns involving three nodes. The Ŝi.c ∀i, are max-
imum likelihood estimations for the parameters Si.c, and can be
derived by solving the following maximization problem:

Ŝ1.c, Ŝ2.c, . . . , Ŝsmax .c= argmax
Si.c ∀i

(Pr(p1, p2, . . . , ptmax |Si.c ∀i))

Given the estimation Ŝi.c ∀i, we can compute the estimated util-
ity value using function f . Note that the counting of all substruc-
tures is only feasible for substructures involving a small number of



nodes. For example, in density, we count substructures involving
two nodes, and in transitivity substructures involving three nodes
only. For utility metrics involving substructures of a larger number
of nodes, we can use sampling (defining an upper limit for counting
or execution time) to estimate their values.

While not all utility metrics can be effectively recovered, there
exists an ineffective algorithm (impractical due to the computation
cost) that follows standard procedures to estimate all the metrics.
The algorithm is described as follows: Let G denote the set of all
possible graphs on N number of nodes. For each possible graph
G[i], there is a probability that G[i] = Go, which can be computed
based on G[i], Gp and µ, and denoted by Pr(G[i] = Go|Gp). Con-
sider a particular metric Z, we can measure its value vali(Z) on
each G[i]. Lastly, the sum of vali(Z)·Pr(G[i] = Go|Gp), ∀i forms
an estimation to the metric Z in the original graph. Although the-
oretically sound, this algorithm is impracticable as it requires the
enumeration of all possible graphs on N nodes. A more efficient
recovery of specific other metrics is left as an open problem.

The quality of our estimations is also a concern. To assess that
quality, we can compute the standard error of the mean, StErr.
For example, from Equation 4, we estimate the variance of ĥ as:

σ
2(ĥ) =

σ2(hp)

(1− 2µ)2
(14)

Let R = 1 (R = 0) denote the event there exists (does not exist)
an edge between a particular pair of nodes. Therefore, Pr(R =
1) = h

M
· (1−µ) + (1− h

M
) ·µ, and Pr(R = 0) = h

M
·µ+(1−

h
M
) · (1− µ). Therefore, σ2(hp) = M · Pr(R = 1) · Pr(R = 0).

Substituting in Equation 14, we get:

σ(ĥ) =

√

M ·
[ 1

16 · ( 1
2
− µ)2

−
( h

M
− 1

2

)2]

(15)

4. ATTACKING THE PERTURBED GRAPH
As we argued, by carefully designing estimation algorithms, many

of the original graph properties can be accurately estimated. Nev-
ertheless, the same potential can also be exploited by an adversary
to launch more sophisticated attacks.

4.1 Principles of the probabilistic attack
The probabilistic attack starts out from the observation that an

adversary can confidently estimate a degree interval (i.e., range) for
each embedded malicious node. Using an approach similar to that
of the walk-based attack [1], the adversary can efficiently enumer-
ate a list of candidate degree sequences that will include, with high
probability, the one that represents the embedded subgraph GA.
In most cases, the adversary can arrive at a single degree sequence

that represents with high probability the subgraph embedded in Go.
This disposition is enabled by the fact that candidate degree se-
quences are filtered out in our attack methodology using two tests:
the interval degree check and the error-tolerant edge check. These
tests work differently from those of the walk-based attack [1].

k = 10 k = 20 k = 30

µ = 0.0001 0.9991 0.9981 0.9971
µ = 0.001 0.9910 0.9812 0.9714
µ = 0.01 0.9135 0.8262 0.7472

Table 1: Probability that k-path in GA is preserved.

We face a few challenges in demonstrating the feasibility of the
attack: first, the prediction of degree ranges should be correct with

high probability. Second, the length of the predicted interval for an
adversary’s node should be as small as possible, as a large interval
may result in a large number of nodes passing the degree check,
causing a severe penalty to the attack’s time complexity. Last, in
order for our attack to succeed, the perturbation may alter the at-
tacker’s subgraph but must not have destroyed the k-path (i.e., path
of k nodes) therein. In Table 1 we show the probability that this
k-path is preserved (i.e., all its edges are preserved after perturba-
tion) for several combinations of different µ and k, computed as
(1−µ)k−1 under perturbation probability µ. As this probability is
quite high, the adversary can reasonably assume that the embedded
subgraph’s k-path is preserved in Gp after perturbation.

4.2 Predicting the degree interval
Let do be the degree of a malicious node in Go and dp the de-

gree of the same node after perturbation. In the following, we first
compute Pr(dp|do), i.e., the probability that, given that the node’s
original node degree is do, its degree after perturbation is dp.

Let r be the number of neighbors eventually removed from the
set of do’s neighbors in Go, and a the number of new neighbors
added, due to perturbation. Without loss of generality, suppose that
the dp neighbors of the malicious node at hand are generated in
two steps: first, r neighbors are disconnected and the number of
remaining neighbors is do − r; then, a = dp − (do − r) nodes are
connected and become neighbors, so the total number of neighbors
is do − r + a = dp. Then the following three inequalities hold:

r ≥ 0, do − r ≥ 0, dp − (do − r) ≥ 0 (16)

It follows that r is in the range of [max{0, do − dp}, do]. The

r neighbors can be removed in
(

do
r

)

ways, and new neighbors

added in
(

N − do − 1
dp − do + r

)

ways. Hence, Pr(dp|do) is equal to:

∑

r

(

do
r

)(

N−do−1
dp−do+r

)

·(1−µ)N−1−(dp−do+2r)µdp−do+2r

Thus, an adversary can efficiently compute Pr(dp|do). The pos-
sible values of dp after perturbation ranges from 1 to N − 1. Yet
the distribution of these values is not uniform. For each embed-
ded node, the adversary can select a small subset of dp values and
build an interval I representing the range of possible degrees for
that node. We check inclusion in this interval as our degree check.

The removal and addition of neighbors of an embedded node can
be viewed as two independent Binomial processes. The expected
values for r and a are E[r] = do · µ and E[a] = (N − do − 1) · µ,
respectively. Pr(dp|do) is maximized for r = E[r] and a = E[a]
(hence dp = E[dp]). Then the chosen interval I for the embedded
node at hand is centered at dp = E[dp], with w other values to its
left and right, where w is a small non-negative integer. Eventually,
the predicted degree interval for a selected malicious node in Gp is
I = [E[dp] − w,E[dp] + w]. Let Pr(dp ∈ I) be the probability
that the embedded node’s degree is in I after perturbation. An
effective attack is possible if the adversary can find a fine-tuned
value of w such that Pr(dp ∈ I) is sufficiently large and yet the
width of I is small. Let IVA[i] be the degree interval for embedded
node VA[i], and Dp be the degree sequence of the embedded graph
GA in Gp. Then the probability that all embedded nodes’ degrees

fall into their respective intervals is
k
∏

i=1

Pr(Dp[i] ∈ IVA[i]). This

calculation is made under the assumption that the events of different
embedded nodes’ degrees falling into their respective intervals are
independent of each other, which helps us derive our estimate.



Table 2 shows the values of Pr(dp ∈ I) for selected values of µ
and w with k = 12. We observe that, when the number of nodes
in the network is 10, 000, the perturbation probability is 0.001 and
w = 4, then the probability that a single embedded node falls into
the interval I is close to 1. Moreover, the probability that all the
embedded nodes’ degrees fall into their respective intervals after
perturbation is also close to 1 in the same configuration. We con-
clude that, with this configuration, the attacker is almost sure that
all embedded nodes will pass the interval degree check.

µ w Pr(dp ∈ I)
k
∏

i=1

Pr(Dp[i] ∈ IVA[i])

µ = 0.001 0 0.3670 5.9643× 10−6

µ = 0.001 2 0.9814 0.7983
µ = 0.001 4 0.9994 0.9931

µ = 0.01 0 0.1246 1.3935× 10−11

µ = 0.01 4 0.8488 0.1399
µ = 0.01 8 0.9927 0.9158

Table 2: Pr(dp ∈ I) with N = 10, 000 and do = 50.

For example, in the graph in Figure 1(c), the adversary’s degree

sequence is [2, 5, 3, 4, 2]. Yet in the perturbed graph Gp the degree
of the node labeled 11 has become 1. Then, if a walk-based attack

is launched, this node will not be detected. Still, with a probabilis-

tic attack, the adversary is able to estimate the degree interval for
each embedded node. For example (after integer rounding) the es-
timated degree intervals can be [ [1, 2], [4, 5], [3, 4], [3, 4], [2, 3] ].
In this scenario node 11 can still be accepted by the adversary as a
candidate embedded node, allowing for a successful attack.

Algorithm 1: The probabilistic attack

Data: Gp, GA, µ, w as chosen, m = 0, k-path;
Result: A k-path containing identifiers of nodes in VA;

1 while k-path not found and wmax,mmax unreached do

2 T =new Tree(); level = 0;
3 foreach V [i] in Gp do

4 localSearch(V [i], level, T .root());

5 if w < wmax then

6 w ++;
7 else if m < mmax then

8 m++;

Function localSearch(curnode, level, parent)

1 if level = k then

2 return;

3 if curnode passes Interval Degree and ET-Edge checks then

4 T .add(curnode, parent);
5 foreach neighbor nb of curnode do

6 localSearch(nb, level ++, curnode);

4.3 Attack Algorithm
Algorithm 1 describes our probabilistic attack. T is the tree of

all candidate subgraphs, w is the width parameter for the degree
intervals used in the interval degree check (chosen by the adversary
as discussed) and m is the maximum number of errors that we allow
in the employed error-tolerant edge check. The main block of the
algorithm is a loop that continues until a k-path is found in T by

the localSearch function (shown below), or both w and m reach
their predefined maximum thresholds wmax and mmax.

Our probabilistic attack algorithm follows the pattern of a walk-
based attack [1], with the key difference being on the two tests
it performs (Line 3 in localSearch). To pass the interval degree

check, a node’s degree should fall in the predicted degree interval
VA[level]. To pass the error-tolerant edge check, the number of
errors in edge checks accumulated in the path from this node to the
root should not be larger than m. At each iteration of the main loop,
if a k-path is not found, we relax the searching condition by either
increasing w or m. However, using large w and m enlarges search
space. The maximum w and m values that can be used depend on
the attacker’s computational resources.

4.4 Building edges to target the victims
In order to compromise the victims’ privacy, the adversary has

to correctly identify the victims. However, due to perturbation,
the links between the victim and the adversary’s nodes may have
changed which raises new challenges for identifying the victims.
We propose a method that minimizes the impact of perturbation and
establishes robust links against perturbation. Let the set of nodes
that represent the victims in the network be VT = {τ1, τ2, . . . τq}.
Sτi ⊂ VA is the set of maliciously embedded nodes that are linked
to victim τi, 1 ≤ i ≤ q. Our approach is as follows: we define two
parameters ρ1 and ρ2, where ρ1 defines the minimum size of Sτi ,
and ρ2 defines the minimum number of different members between
the two sets Sτi and Sτj , for i 6= j. Formally:

{

|Sτi | ≥ ρ1 ∀i ∈ [1, q]
|Sτi\Sτj | ≥ ρ2 ∀i, j ∈ [1, q] and i 6= j

(17)

Moreover, we require that none of the adversary’s nodes share
common neighbors other than the nodes in VT and VA. To prove
the robustness of the links between the victims and the adversary’s
nodes, we show analytically that the probabilities of the three events
that affect the identification of the victims are negligible.

Claim 1: The probability that Sτi for any τi changes due to

perturbation tends to be 0 when µ → 0.

PROOF. Sτi is preserved for any τi if the edge relations between
this τi and all the adversary’s nodes are preserved (i.e, (1 − µ)k).
Therefore, the probability that Sτi changes is 1− (1− µ)k. When
µ → 0, 1− (1− µ)k → 0.

Claim 2: The probability that there is a node v outside sets VA

and VT such that Ev , the set of edges between v and the nodes

from VA, is equal to Sτi for the victim τi, decreases fast with the

increase of ρ1.

PROOF. Let us consider a particular node v which already has
an edge with a node in Sτi . The probability that it forms new edges
with all other nodes in Sτi but not with the nodes in VA − Sτi is
at most µρ1−1 · (1 − µ)k−ρ1+1. Moreover, the total number of
such possible nodes v in the network is N − k − q. Therefore,
(N−k−q) ·µρ1−1 · (1−µ)k−ρ1+1 is the probability for the event

in this claim. When µ = c
N

, this probability at most cρ1−1

Nρ1−1 (by

taking N − k− q as N and (1− µ)k−ρ1+1 as 1), which decreases
fast with the increase of ρ1.

Claim 3: The probability that the set Sτi of malicious nodes

connected to victim τi becomes the same as the set Sτj of malicious

nodes connected to victim τj after perturbation decreases fast with

the increase of ρ2.

PROOF. Let the number of non-common elements in Sτi and
Sτj be xij . Similarly to the derivation of equation 27, Sτi is con-



verted to Sτj by perturbation if and only if an xij number of edge
additions and deletions occurs. Therefore, after perturbation, Pr(Sτi

= Sτj ) = (1−µ)k−xij ·µxij . Since ρ2 ≤ xij , Pr(Sτi = Sτj ) ≤
µρ2 , which decreases fast with the increase of ρ2.

A trivial algorithm that builds our robust links operates as fol-
lows: for each victim τi, repetitively select a subset of nodes in VA

at random, until a subset that satisfies both ρ1 and ρ2 requirements
is found; then link τi to all the nodes in this subset of VA.

4.5 Preventing the probabilistic attack
The adversary can successfully identify his subgraph based on

the assumption that the k-path is not broken. However, the pub-
lisher can increase the perturbation probability so that, with high
probability, the k-path is broken and therefore the probabilistic at-

tack is infeasible. Let ε, the secure parameter, be the maximum
probability that the k-path is preserved. Therefore,

(1− µ)k−1 ≤ ε (18)

The following inequality gives the minimum µ to be used so as to
prevent the probabilistic attack with probability no less than 1− ε:

µ ≥ 1− k−1
√
ε (19)

5. GENERIC STRUCTURAL ATTACK
We now provide a generic analysis of a structural attack’s prob-

ability of success. We assume that any structural attack can be
translated into an instance of the graph isomorphism problem and
show that an adversary who can enumerate all permutations of k
nodes in Gp, will also be able, with high probability, to detect the
embedded nodes under a random perturbation scheme for low µ.

Let Yi be the ith permutation of k nodes in the network. We
assume an extreme case where the adversary has infinite computa-
tional power and is able to enumerate all permutations of k nodes
in the network: Y = {Yi : 1 ≤ i ≤ P

N
k } where P

N
k = N !

(N−k)!
is

the total number of permutations. The adversary will then choose
a particular permutation Y ∈ Y as a candidate for VA and will as-
sume that Y [i] is VA[i]. However, the adversary faces the following
two challenges when choosing Y : first, the perturbation may have
changed the embedded graph GA in such a way that GA cannot be
detected in Gp. Second, even if the adversary succeeds in locating
a permutation Y that matches subgraph GA in appearance, there is
still a probability that Y is not the actual VA, but only a look-alike.

We define λY as the probability that the chosen Y is VA, given
Gp. For the sake of conciseness, we use EY

A to denote the set of
edges among the nodes in Y , after perturbation, in the event that
this set has been created by perturbing the set EA, i.e., in the event
that Y = VA. Then λY = Pr(EY

A |Ep).
Let EY

p be the set of edges among the nodes in Y in the perturbed
graph Ep. Then the following theorem holds:

THEOREM 5.1. For a perturbed graph Gp of size N with a per-

turbation value µ, the probability that an adversary detects the em-

bedded subgraph GA, for a permutation of k nodes Y , is:

λY =
Pr(EY

p |EY
A )

∑PN
k

i=1 Pr(E
Yi
p |EYi

A )
(20)

PROOF. First, we rewrite the expression using Bayes’ theorem,

Pr(EY
A |Ep) =

Pr(Ep|EY
A ) · Pr(EY

A )
∑PN

k
i=1 Pr(Ep|EYi

A ) · Pr(EYi
A )

(21)

In the above equation, Pr(EYi
A ) is the prior probability of Y be-

ing the attacker’s nodes, which is the same for all i. Therefore:

Pr(EY
A |Ep) =

Pr(Ep|EY
A )

∑PN
k

i=1 Pr(Ep|EYi
A )

(22)

We first focus on the numerator Pr(Ep|EY
A ) in Equation 22. We

split the set of edges in the perturbed graph into two sets: EY
p , the

edges between the nodes in Y , only and EY
p , the other edges in Ep.

By definition, EY
p =Ep−EY

p . EY
p and EY

p are independent, hence:

Pr(Ep) = Pr(EY
p ) · Pr(EY

p ) (23)

Inserting the conditional variable EY
A to Equation 23, we get:

Pr(Ep|EY
A ) = Pr(EY

p |EY
A ) · Pr(EY

p |EY
A ) (24)

Since EY
p and EY

A are independent, Pr(EY
p |EY

A ) = Pr(EY
p ) =

Pr(Ep)

Pr(EY
p )

(by Equation 23). Then Equation 24 becomes:

Pr(Ep|EY
A ) = Pr(EY

p |EY
A ) · Pr(Ep)

Pr(EY
p )

(25)

Combining Equations 22 and 25, and using EYi
p for EY

p , we get:

Pr(EY
A |Ep) =

Pr(EY
p |EY

A )
∑P

N
k

i=1 Pr(E
Yi
p |EYi

A )
(26)

The intuition behind the derived equation for λY is the follow-
ing: the numerator Pr(EY

p |EY
A ) is the likelihood of the particular

chosen permutation Y to be VA. The denominator is the sum of
the likelihoods of each permutation Yi in the network being VA.
The ratio describes the probability of success of the particular se-
lection Y being VA. Thus, the value of λY depends on the value of
Pr(EY

p |EY
A ) and the sum of Pr(EYi

p |EYi
A ) for all i. In effect, the

computation of the exact λY would require the enumeration of all
permutation of k nodes in the graph. In the following, we study the
conditional probability Pr(EY

p |EY
A ) for a particular Y .

Given that Y is the set of embedded nodes and EY
A is the set of

edges among the nodes in Y before perturbation, Pr(EY
p |EY

A ) is
the probability that the set of edges among the nodes in Y becomes
EY

p after perturbation. With this fact in mind, the derivation of
Pr(EY

p |EY
A ) becomes easy: let m be the number of non-common

edges in EY
p and EY

A . The minimum value of m is 0, achieved
when EY

A and EY
p are identical, and its maximum value is M =

k2
−k
2

, obtained when EY
A and EY

p are totally foreign to each other.
Since each edge removal or addition occurs with probability µ, the
probability that EY

A is converted to EY
p is:

Pr(EY
p |EY

A ) = µ
m · (1− µ)M−m (27)

5.1 Estimation of λY

From a (computationally powerful) adversary’s point of view,
Equation (20) can be used to compute λY for each Y = Yi. The
attacker will then assume that the set Y that gives the maximal
value of λY is the embedded subgraph VA in Gp. In particular,
given that the denominator is constant for a given EA and Gp, the



µ ℓ λ̂Y when m = ℓ Pr(m ≤ ℓ)

0.0001 0 1 0.9955
0.0001 5 1 1
0.0001 10 1 1
0.001 0 1 0.9559
0.001 5 1 1
0.001 10 0.0031 1

Table 3: λY with k = 10, M = 45, N = 10, 000.

adversary will simply opt for the set Y that maximizes the numera-
tor in Equation (20). The best-case scenario for an adversary is that
m = 0 (i.e., EY

p and EY
A are identical). Otherwise, an adversary

will choose the Y that gives the most similar subgraph to GA.
In the following we provide a simple method for estimating the

value of λY . For any permutation of k nodes Yi, let mYi = |EYi
A ∪

EYi
p − E

Yi
A ∩ EYi

p |. We consider EYi
p as a random subset chosen

from all possible edges among the nodes of Yi. Then the expected

value of mYi is M
2

and the expected value of Pr(EYi
p |EYi

A ) is µ
M
2 ·

(1− µ)
M
2 . Then our simple estimate of λY is:

λ̂Y = min

{

1,
1

PN
k

(

1− µ

µ

)M
2

−m
}

(28)

Thus, our estimate of λY depends on µ and m. Table 3 lists dif-
ferent λY estimates with respect to different µ and m combinations
in a network of 10, 000 nodes with 10 malicious nodes. Intuitively,
m can be seen as the number of altered edges from EY

A to EY
p . We

note that, unless both µ and m are high, λ̂Y approaches 1.
We observe that λ̂Y tends to be large only when m is small. If

the lowest value of m is kept large (e.g., greater than 10, as in the
last row of Table 3), then λ̂Y is kept low. In effect, to assess the
potential for a successful attack, we study the distribution of m

under random edge perturbation. This perturbation can be seen as
a binomial process that adds and deletes edges with probability µ.
Then the probability distribution of m is:

Pr(m ≤ ℓ) =
∑ℓ

m=0

(

M

m

)

(1− µ)M−mµm (29)

The last column of Table 3 shows instances of the probability
distribution for m with the values of k and µ fixed. We observe
that Pr(m = 0) equals 0.9955 and 0.9559 for µ = 0.0001 and
µ = 0.001. This result shows that m tends to be rather small with
high probability. Thus, we conclude that λ̂Y tends to be large for
such perturbation probabilities. This is good news for an adversary
who has the computational powers to enumerate all subgraphs and
choose the one most similar to the embedded one.

6. EXPERIMENTAL EVALUATION
We now present our experimental evaluation. First, we inves-

tigate the probability of success of the probabilistic attack under
different values of µ, and measure its execution time. Next, we
investigate the effect of perturbation on the graph properties.

All experiments ran on a 2.33GHz CPU, Windows-XP machine
with 3.25GB RAM. We employ two real datasets: The Enron dataset1

is the graph of email exchange among employees of Enron, having
4,644 accounts. Each account corresponds to a node and two ac-
counts are linked if they have exchanged emails in both directions.
The DBLP dataset2 is a random subset of 20,000 authors from the

1
http://www.cs.cmu.edu/˜enron

2
http://dblp.uni-trier.de/xml/

DBLP bibliography. Each author corresponds to a node and two
authors are linked if they are coauthors in at least one paper. The
Wiki dataset3 is a network Wikipedia encyclopedia writers around
the world. It consists of 7,115 nodes and 103,689 edges.

0

10

20

30

40

50

60

70

80

 3  4  5  6  7  8
w

Time in secs

Enron
DBLP

0

20

40

60

80

100

120

140

 1  2  3  4  5  6
m

Time in secs

Enron
DBLP

(a) Time vs. w (prob.) (b) Time vs. m (prob.)
Figure 3: Efficiency of the probabilistic attack.

6.1 Assessing the Probabilistic Attack
In our first experiment, we assess the probability of success of

our probabilistic attack as opposed to that of the classical walk-

based attack [1]. We first test the walk-based attack on the Enron
and DBLP data, measuring its success rate in trials of 200 sepa-
rate attack runs, as a function of the perturbation probability µ. An
attack run is considered to be successful, if the adversaries can de-
tect the sequence of embedded nodes and re-identify at least one
victim node. In [1], the suggested number of malicious nodes k is
Θ(log(N)) and the number of victim nodes is q = O(log2(N)).
Following this suggestion, we vary k at values 20, 25, 30 for both
graphs, with number of victims 100, 157 and 225, respectively.

Figures 4a,e show our results, which provide a glimpse of the
probability that an adversary successfully identifies the embedded
nodes in perturbed DBLP and Enron data using a walk-based at-
tack. When µ is 0, all attacks are 100% successful. Still, already
for rather small values of µ (10−7 to 10−6), the success rate drops
drastically to very low values. In addition, the success rate is lower
for larger k under the same perturbation value µ; that is because,
with larger k, the node degree sequence of the malicious nodes is
more likely to be changed or the backbone to be broken, making
the attack more likely to fail. In effect, the walk-based attack can
be effectively prevented through random edge perturbation, with
minimal impact on the graph’s structure (as µ is negligible).

On the other hand, Figures 4b-d,f-h show the success rate of
the probabilistic attack on the same DBLP and Enron data, again
in trials of 200 runs each. We show results for several values of
the interval-width parameter w. As the search space of the attack
algorithm grows with w, the success rate also rises with it. For
µ≃ 10−4, the probabilistic attack succeeds in almost 100% of the
cases, in stark contrast to the walk-based one. Still, as µ grows fur-
ther, the observed success rate swiftly drops for all values of w. As
with the walk-based attack, the success rate falls as k grows.

Figures 3a,b show the execution time of our attack as a function
of interval-width w and error-tolerance m, with µ = 10−3. The
number of malicious nodes is k = 4 log(N) and the number of
victims q = log2(N). The algorithm’s search space grows with
both w and m (Section 4.2), hence the execution time also ascends
with them, yet remains lower than 3 minutes, rendering the attack
rather feasible on reasonably-sized real-world data sets.

An adversary who successfully identifies the embedded subgraph
inside the perturbed graph may yet not locate the target victims,
as the edges between the embedded nodes and the victims may
have been removed. Table 4 shows the measured percentage of
victims that can be identified in a successful attack. The number
of malicious nodes and the victims remain at k = 4 log(N) and at

3
http://snap.stanford.edu/data/wiki-Vote.html
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Figure 4: Evaluation of probabilistic attack.
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Figure 5: Evaluation of utility preservation.

q = log2(N). As the table shows, more than 91% of victims are
identified when the attack succeeds.

µ Enron DBLP

1×10−4 95.2% 98.3%

2×10−4 93.6% 98.3%

3×10−4 92.7% 96.7%

4×10−4 91.9% 94.2%

Table 4: Percentage of affected victims

The error-tolerance m also affects an attack’s probability of suc-
cess. Table 5 shows an instance of this effect: in a trial of 100
attacks with m = 0 on the Enron graph perturbed with µ = 0.04,
there are 53 successes, 35 failures due to false predicted interval,
and 6 due to broken path or edge check failures. Still, when we re-
lax the requirement for passing the edge check test, we can increase
the number of successes to 58 and 59.

Events m=0 m=1 m=2

Success 53 58 59
False prediction 35 35 35

Broken path 6 6 6

Edge check fail 6 1 0

Table 5: Effect of m.

To sum up, the probabilistic attack is more effective than the
walk-based one and feasible in terms of runtime. Still, both can be
prevented under random perturbation with sufficiently large µ.

6.2 Assessing Utility Preservation
We use the perturbed data derived in previous experiments to

evaluate the extent to which graph properties are preserved. Fig-
ures 5a-f show the density, transitivity and degree distribution for
perturbed DBLP and Enron data. Each figure shows the original,
perturbed, and estimated values. Density and transitivity values
vary with the perturbation probability µ, while the degree distri-
bution is given as a single snapshot for µ = 10−3. We observe
that, while graph properties deviate significantly from the originals
as µ grows, our derived estimates are resilient to perturbation and
approximate the original values well. Significantly, our estimation
algorithms provide accurate approximations even under perturba-
tion probabilities that render probabilistic attacks unviable.

Furthermore, we illustrate the benefit of our method in terms of
measuring the properties of subgraphs of the original graph. This
application of our technique offers an undeniable benefit, as pub-
lishing the graph cannot be substituted by directly publishing the
measures of interest. We measure the same six structural proper-
ties over subgraphs of different sizes extracted from the original
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Figure 6: Classification of nodes under perturbation

DBLP and Enron graphs, and average our results over 10 different
randomly extracted subgraphs. Figures 5g-l show our results as a
function of subgraph size, with µ = 0.001. For density and transi-
tivity, we show again the original, perturbed, and estimated values,
for each subgraph size. For degree distribution, we now present the
sum of absolute errors between the perturbed/estimate and origi-
nal distribution values for each degree. Our results reconfirm our
findings even with subgraphs extracted from the parent graphs.

Overall, our results corroborate our claim that a published graph
allows accurate estimations of graph properties not only for the
whole graph, but also for subgraphs thereof, where publishing the
measures directly to end-users would not be a satisfactory solution.

6.3 Distance-based classification
We now attempt to perform a specific data mining task, distance-

based node classification, over perturbed data.
Social networks often possess hubs, i.e., nodes with very high

degree. A particular person’s connectivity pattern to the hubs in-
dicates that person’s interests. For example, in a social election,
a person’s voting pattern may indicate its political views. Thus,
node classification based on such patterns is useful. We consider
a classification of nodes based on the distance between their hub
connectivity pattern (HCP) and some target patterns (TPs). Given
a set of hubs, a node’s HCP is the subset of hubs that this node has
connectivity to. Each TPi is a subset of the hubs defined by the
analyst. Given a set of k hubs, HCP and TPi are k-dimensional
binary vectors. The distance between HPC and a particular TPi is
the edit distance between the two vectors. For each TPi, a group of
nodes Gi is formed by assigning group membership to the nodes
that have closest distances to TPi than to all other TPj(i 6= j). We
aim to classify each node to the right group.

We use the Wiki graph. Hubs are chosen as the nodes that have
top-10 degrees in the graph (ranging from 482 to 1,053). We ex-
tract a subset of 200 nodes for classification, each having at least
4 connections to the hubs. For instance, the 10-dimensional binary
data (0 0 1 0 1 0 0 1 1 0) represent the HCP for a node that has
connectivity to the 3rd, 5th, 8th and 9th hubs. We define four target
patterns, TP1 =(0 0 0 0 0 0 0 0 0 0), TP2 =(0 1 0 1 0 1 0 1 0 1),
TP3 =(1 1 1 1 1 1 1 1 1 1) and TP4 =(1 0 1 0 1 0 1 0 1 0), hence 4
classes of nodes. We assign IDs to the nodes so that nodes that are
classified into the same group have consecutive IDs. Figure 6(a)
visualizes the original classification. Figures 6(b,c,d,e) show the
classification obtained from the perturbed graph with increasing µ.
Remarkably, the classification is faithful even with µ=0.01, with
which both walk-based attack and probabilistic attack fail (see Fig-
ure 4). Classification error becomes apparent with larger µ as Fig-
ures 6(d,e) show, while most nodes are still correctly classified.

7. CONCLUSIONS
In this paper we have delineated the effectiveness of random

edge perturbation as a tool for privacy-preserving publication of

graph data in the face of structural attacks. We have shown that
sophisticated attacks based on probabilistic heuristics are feasible
when the perturbation probability is sufficiently low, but can be
thwarted as that probability grows. Moreover, we conducted an in-
depth theoretical study of the probability of success for any struc-
tural attack. Our analysis offers a yardstick for assessing the pri-
vacy risk entailed by the publication of perturbed graph data. On
the other hand, we developed methods that accurately estimate the
properties of the original graph from the perturbed data. A thor-
ough experimental study validates our analysis and explores the
tradeoff between privacy and utility. Last, we have effectively demon-
strated that data mining tasks such as distance-based node classifi-
cation can be successfully performed even under random edge per-
turbation probabilities with which structural attacks typically fail.
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