
CenterpointQuery Authentication
Magnus Haxen

Aarhus University

Morten Raeburn

Aarhus University

Peyman Afshani

Aarhus University

Panagiotis Karras

Aarhus University

ABSTRACT
The rise of online map services drives data owners to outsource

spatial data to potentially untrusted database providers. Query

results are provided along with verification objects that allow con-

firming their authenticity. Such authentication schemes have been

proposed for several spatial and geometric queries, as well as for

median queries in one dimension. However, to date, no authenti-

cation mechanism exists for centerpoint queries, which return a

point lying in the middle of other points in multidimensional space.

In this paper, we propose an authentication scheme for centerpoint

queries, grounded on the algorithm for centerpoint queries on a

finite planar set of points and authenticated aggregation R-trees and

accompanying authenticated aggregation queries. We also provide

methods for finding the centerpoint of a subset of the complete

data set, and implement a range-based method. Our solution has a

worst-case time-complexity of 𝑂 (𝑛 log𝑛) and space-complexity of

𝑂 (𝑛). Our experimental study confirms these claims.

CCS CONCEPTS
• Information systems → Data management systems; • Se-
curity and privacy→ Information accountability and usage
control.

KEYWORDS
centerpoint query, query authentication

ACM Reference Format:
Magnus Haxen, Morten Raeburn, Peyman Afshani, and Panagiotis Karras.

2021. Centerpoint Query Authentication. In Proceedings of the 30th ACM
International Conference on Information and Knowledge Management (CIKM
’21), November 1–5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY,

USA, 5 pages. https://doi.org/10.1145/3459637.3482072

1 INTRODUCTION
With the widespread adaptation of internet-connected devices,

many data owners (DOs) cannot afford an infrastructure for provid-

ing query results to end-users. Instead, they outsource their data to

specialized third-party database providers. Yet outsourcing incurs

the risk of tampering with or corruption of the supplied data. Query
authentication mechanisms allow a database provider to append a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482072

verification object (VO) to the data returned to the client, which

the client can use, along with a signed digest of the entire data pro-

vided by the data owner, to verify the correctness and completeness

of the result [8]; this solution has been applied, among others, to

range [7], aggregation [5], and top-k queries [1].

Yet there are spatial queries for which no authentication scheme

has been proposed. Consider, for example, a ride-sharing company

that uses an outsourced database to provide drivers with sugges-

tions of strategic locations towait for new customers. Such locations

may well be in the middle between currently busy clusters, to be

returned by a centerpoint query [3], a generalization of a median in

many dimensions. Assume the database provider launches a rival

service aiming to gain a market advantage; in this situation, they

may have an incentive to skew results sent to the rival’s drivers. In

these circumstances, an authentication scheme would ensure such

competitiveness-motivated sabotage is not taking place.

To date, no algorithm has been proposed for authenticating cen-
terpoint queries. We propose an 𝑂 (𝑛 log𝑛)-time and 𝑂 (𝑛)-space
scheme for this purpose, building upon the know-how for other

spatial queries [1, 5, 7]. We also devise methods to query and au-

thenticate centerpoints of subsets of the DOs static data.

2 RELATEDWORKS
Here, we review some basic data structures for authentication.

2.1 Merkle Hash Trees
A Merkle Hash Tree (MHT) [6] is a binary tree used for authentica-

tion. Given a dataset, the leaves of its corresponding MHT keep the

hashes of its elements by a collision-resistatn hash function; each

internal tree node keeps the hash of the concatenation of its two

children. The tree root has a hash value affected by every element

in the dataset, hence any change to the dataset results in a different

root value. This property allows for a verifying the contents of

a database against the signature root-hash of the corresponding

MHT; the verifier is given a verification object (VO) that contains

the signature of the MHT-root and the siblings of the path leading

from the root to the requested data, hence can compute the root by

the hash function and verify it against the signature.

2.2 Merkel R-Trees
An R-Tree [2] is a tree data structure for spatial data using a hi-

erarchy of minimum bounding rectangles (MBRs). Each node in

an R-Tree has an associated MBR that contains all its descendants,

while the MBR of a leaf node encloses indexed objects. While in-

dividual indexed objects may not overlap, the MBRs of internal

nodes may do so. To authenticate spatial queries, we may com-

bine properties of R-Trees and MHTs, to construct Merkel R-trees

Short Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3083

https://doi.org/10.1145/3459637.3482072
https://doi.org/10.1145/3459637.3482072

(MR-trees) [8], which have the same purpose as MHTs but are tai-

lored to spatial data. In an MR-tree, leaves correspond to data items

and internal nodes have the form (𝑝 , 𝑀𝐵𝑅, ℎ), where 𝑝 is a set of

pointers to its children,𝑀𝐵𝑅 is the minimum bound rectangle that

covers those children, and ℎ is the hash of the concatenation of all

objects in the node. The size of each of these is at most fanout, the
maximum number of children each internal node may have.

An extension of the MR-tree, the Authenticated Aggregation
R-tree (AAR-tree) [5], is suitable for authenticating aggregation

queries in multidimensional space. In an AAR-tree, each leaf holds

an aggregation value, set to 1 when authenticating a COUNT query.

Internal nodes hold aggregation values equal to

∑
𝑎𝑖 , where 𝑎𝑖 is

the aggregation value of their 𝑖th child. In effect, internal node

aggregation values indicate the number of descendent leaves. Each

node, except for the root, has an associated label that reveals its

position. The aggregate values of the 𝐴𝐴𝑅-tree allow the server to

answer and authenticate an aggregation query [5], by traversing

the 𝐴𝐴𝑅-tree to find the minimum set of nodes,MCS, in the 𝐴𝐴𝑅-

tree whose MBRs cover the query range. The aggregation query

result is the sum of these nodes’ aggregation values,

∑
𝑖∈MCS 𝛼𝑖 ;

thus, authenticating an aggregate query is reduced to authenticat-

ingMCS. To do so, the server provides the minimum set of nodes

SIB, whose MBRs are disjoint with the query range, i.e., the sib-

lings along the path to the root node, just like in an MHT. TheVO
containsMCS and SIB, allowing the client to recompute the

hash-value of the root and verify it against the provided signa-

ture. Given a correctMCS, the client can calculate the requested

aggregate by summing over the aggregate values inMCS. Since
aggregate values are used to eventually calculate the root-hash,

the server cannot risk tampering with those values. TheVO also

contains the siblings of each node inMCS, so the client can verify

that sibling MBRs are disjoint from the specified query range [5].

2.3 Finding a Centerpoint
The center of a set of 𝑛 points P in R𝑑 , 𝑑 ≥ 1, is the maximal subset

of 𝑅𝑑 where any intersecting hyperplane divides the points into

two half-spaces that contain at least ⌈𝑛/𝑑 + 1⌉ points each; that closed
convex set is also called a 𝑘-hull with 𝑘 = 𝑛/𝑑 + 1. A centerpoint is

any member of the center. For 𝑑 = 1, the centerpoint is the median.

To compute a centerpoint of a point set P in linear time, we prune

points in P so that the center of the resulting point set R is a subset

of the center of P, until we arrive at a set of at most 10 points,

whereupon we find a center-point by any brute-force approach [3].

This algorithm relies on two pruning methods, the simplest being

to find a triplet of points in P that satisfies the following lemma:

Lemma 2.1. Let Q be any four points in P such that the (closed)
convex hull of Q contains the (⌈|𝑃 |/3⌉ − 1)-hull of P. Then the center
of ((P − Q) ∪ 𝑞) is a subset of the center of P, where 𝑞 is a Radon
point of Q, i.e., a point in the intersection of the convex hulls of two
sets into which Q can be partitioned by Radon’s theorem.

This lemma removes a quadruple while adding its Radon point.

If a point 𝑟 ∈ Q is in the open convex hull 𝐻𝑈𝐿𝐿(Q), then 𝑟 is the
Radon point of Q; if no points in Q) are contained in 𝐻𝑈𝐿𝐿(Q), a
new Radon point 𝑟 is added to P at the intersection of two lines,

each intersecting a distinct pair of points in Q; if all four points in Q
are on a line, the Radon point 𝑟 is either the 2nd or 3rd point on that

line. To find a quadruple that satisfies this lemma, the centerpoint

algorithm defines four open half-spaces L, U, D and R, each contain-

ing less than ⌈|𝑃 |/3⌉−1 points ofP and their intersections containing

approximately ⌈|𝑃 |/3⌉ − ⌈|𝑃 |/4⌉ = ⌈|𝑃 |/12⌉ points; we prune the points
in these intersections. To find L, we focus on the point 𝑝 that has

the minimum abscissa (𝑥-coordinate), and draw |P | − 1 lines, one
from 𝑝 to each other point 𝑝 ′ ∈ P; the line having the (⌈|𝑃 |/3⌉ −1-th
largest slope defines half-space L, which contains less than ⌈|𝑃 |/3⌉−1
points. U and D are found with respect to L, based on a generalized

version of the Ham Sandwich cut algorithm, via lines that divide

the points in L into a ratio of 1:3, and all other points into a ratio

of 3:5; R is found similarly, with U playing the role of L [3]. In the

following, we use N𝑝 to denote ⌈|𝑃 |/3⌉ [3].

3 AUTHENTICATING CENTERPOINTS
To authenticate a centerpoint query, we need to prove to the client

that half-spaces and pruned points are chosen correctly without

involving the data owner. In one dimension there is a total order,

which allows us to authenticate a median by authenticating a range

count query, i.e., proving that the number of points before the

median is equal to that after [5]. Unfortunately, this method cannot

be extended to two dimensions, where there is no total order. We

resort to a more elaborate solution using MR-trees and constructing

aVO out of multipleVOs, each corresponding to a pruning step.

Algorithms 1 and 2 present the authentication and verification

phase of our solution, respectively, which we describe below.

Algorithm 1 AuthCenterPointQuery(AAR, range)→ VO

1 AAR ← Perform desired subset queries based on range

2 pruneVOs ← []

3 while (AAR.leaves > 10):
4 AAR, pruneVO ← AuthPrune(AAR)

5 pruneVOs.push(pruneVO)

6 finalVO ← authPoints(AAR)

7 centerVO ← {pruneVOs, finalVO}

8 return centerVO

Algorithm 2 Verify(𝛿 , VO, size, fanout)→ bool

1 for pruneVO in VO.pruneVOs:
2 for authedHPlane in pruneVO.authedHPlanes:
3 if !verifyHPlane(authedHPlane , 𝛿):

4 return false
5 for prune in pruneVO.prunes:
6 valid, 𝛿 ← VerifyPrune(prune, 𝛿)

7 if !valid
8 return false
9 for point in finalVO:
10 if !verifyPoint(point, 𝛿):

11 return false
12 return true

Figure 1: A range query returns 3 nodes inMCS and 4 nodes
inSIB, used to recompute the signed root digest 𝛿 and anew
root digest 𝛿 ′ using the verifiedMCSs.

Short Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3084

3.1 Prerequisites
We use an 𝐴𝐴𝑅 created and signed by the data owner, as well as an

additional signature on information on the total number of points.

We also allow for authenticated center-point queries on a subset of

the original points: the client performs a range query that returns

the minimum covering set of the specified range,MCS, and all

siblings, disjoint to the range, along the path to the root, SIB. The
client then recomputes the digest usingMCS as Figure 1 shows.

The client trusts theMCS contents, as 𝐴𝐴𝑅-tree nodes contain

their MBRs, which cover the requested range. Client and server com-

pute a new sub-tree that contains the descendants of nodes inMCS.
MBRs, aggregate values, and hash values of parent nodes are com-

puted from their children, so client and server can agree on a new

𝐴𝐴𝑅-root for the range query. As the client already trusts theMCS
contents verified against 𝛿 , it subsequently verifies against 𝛿 ′.

3.2 Authenticating Half-spaces
The server must prove that each of the open half-spaces 𝐿, 𝑈 , 𝐷 ,

and 𝑅 contains at most N𝑝 − 2 points, hence the other side of the
half-space has at least |𝑃 | −N𝑝 + 2 points; we focus on those points

using a depth-first traversal of the𝐴𝐴𝑅-tree. In Figure 2, points P1−8
are separated into two half-spaces. A client performing a COUNT

query cannot verify that R2 only contains points on the right side,

as the dark gray area lies on the other side; to prove that there are

more than |𝑃 | − N𝑝 + 2 points on the right side, the server’s 𝐴𝐴𝑅-

tree traversal proceeds to R5 and R6, which form the minimum set

of nodes that cover all the points in the open half-space,MCS,
and returns the authenticated COUNT result, along with a VO
containingMCS and SIB, the minimum set of nodes that cover

all the points disjoint to the half-space. In each pruning step, the

client uses these sets to verify the digest and checks that the nodes

inMCS are fully contained in the open half-space and the count

is at least |𝑃 | − N𝑝 + 2, for all open half-spaces, and recalculate the

new root digest of the 𝐴𝐴𝑅-tree after removing the pruned points,

which is to be used in the next pruning step. The data owner does

not need to sign the new root digests, as the client verifies them to

be valid based on the providedVOs; the owner only needs to sign

the initial root digest 𝛿 and the total number of points |𝑃 |.

.P1

.P2

.P3

.P6

.P5.P4

.P7

R1

P8

R2

Figure 2: MBRs indexing half-spaces.

3.3 Authenticating Points
Having verified the half-spaces, the client can verify that the quadru-

plets to be pruned were chosen correctly. For a quadruplet to be

correctly chosen each of the points has to be contained in an inter-

section, as indicted with the black dots in Figure 3. The server con-

structs aVO for a COUNT query on multiple rectangular ranges

that cover the points in those intersections. Such aVO has only

leaves in itsMCS. The client checks that all nodes in MCS have

aggregation value 1 (assuming no points share the same position)

and reconstructs the digest of the 𝐴𝐴𝑅-tree. The server does not

need to provide the radon points that substitute quadruples, as

the client can compute them. Still, server and client must choose

the exact same quadruplets; we ensure such agreement using label

order. Algorithms 3 and 4 summarize these steps.

Figure 3: VO for authenticating quadruplets; black points
lie in an intersection, each covered by a single MBR.

Algorithm 3 AuthPrune(AAR)→ AAR, VO

1 HPlanes ← Compute half-spaces L, U, D, and R from 𝐴𝐴𝑅

2 authedHPlanes ← []

3 for HPlane in HPlanes:
4 authHPlanes.push(AuthHPlane(HPlane, AAR))

5 prune ← Authenticate corners with MCS consisting of only
leaves

6 LUs, LDs, RUs, RDs ← Distribute corner points based on
label

7 while (LUs, LDs, RUs, RDs > 0):
8 LU, LD, RU, RD ← Select and remove a quadruple from

LUs,LDs,RUs,RDs
9 radon ← Calculate radon from LU,LD,RU,RD

10 AAR.remove(LU, LD, RU, RD)

11 AAR.add(radon, index(LU))

12 pruneVO ← {authedHPlanes , prune}

13 return AAR, pruneVO

Algorithm 4 VerifyPrune(prune, 𝛿 , fanout)→ bool, 𝛿

1 valid ← Verify ’prune’ as a COUNT query

2 if !valid
3 return false, null

4 LUs, LDs, RUs, RDs ← Distribute corner points based on
label

5 allCorners ← Checks whether LUs,LDs,RUs,RDs are fully
contained each corner

6 if !allCorners:
7 return false, null
8 AAR ← constructTree(prune, fanout)

9 if AAR.digest≠ 𝛿:

10 return false, null
11 while (LUs, LDs, RUs, RDs > 0):
12 LU, LD, RU, RD ← Select and remove a quadruple from

LUs,LDs,RUs,RDs
13 radon ← Calculate radon from LU,LD,RU,RD

14 AAR.remove(LU, LD, RU, RD)

15 AAR.add(radon, index(LU))

16 return true, AAR.digest

3.4 Final Stage
The final stage of the center-point algorithm ends up with a set 𝑃 ′ of
atmost 10 points such that CENTER(𝑃 ′) ⊆ CENTER(𝑃); CENTER(𝑃 ′)
is found by any brute-force approach. It suffices to authenticate

Short Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3085

and send 𝑃 ′ to the client. If the client is interested in finding a

point in 𝑃 within CENTER(𝑃 ′), they can query the database using

any authenticated spatial query method. The finalVO consists of

multipleVOs, as illustrated in the following:

VO𝑐𝑒𝑛𝑡𝑒𝑟 = {VO∗𝑝𝑟𝑢𝑛𝑒 ,VO 𝑓 𝑖𝑛𝑎𝑙 }
VO𝑝𝑟𝑢𝑛𝑒 = {VO𝐿,VO𝑈 ,𝑉𝑂𝐷 ,VO𝑅,VO𝑞}
VO𝐻 = {𝐻,MCS𝐻 ,SIBℎ}, 𝐻 ∈ {𝐿,𝑈 , 𝐷, 𝑅}
VO𝑞 = {MCS𝐿𝑈 ,MCS𝐿𝐷 ,MCS𝑅𝑈 ,MCS𝑅𝐷 ,SIB}

VO 𝑓 𝑖𝑛𝑎𝑙 = {MCS,SIB}

where (·)∗ represents zero or many.VO𝑐𝑒𝑛𝑡𝑒𝑟 contains a collection
ofVO𝑝𝑟𝑢𝑛𝑒 , each for a single pruning step, andVO 𝑓 𝑖𝑛𝑎𝑙 , which

is a COUNTVO that verifies the points of the fully pruned set 𝑃 ′,
where |𝑃 ′ | ≤ 10. EachVO𝑝𝑟𝑢𝑛𝑒 contains aVO for each half-space

and one that proves the existence of pruned quadruples. EachVO𝐻 ,

where 𝐻 is any of the four half-spaces, contains the half-space that

has to be verified, so that the client can check that MBRs of nodes

inMCS𝐻 are contained in 𝐻 , and those in SIB𝐻 are disjoint

from 𝐻 .VO𝑞 authenticates pruned quadruplets, with oneMCS
for each intersection, allowing the client to confirm Radon points.

3.5 Analysis
Our scheme requires counting points in each of the 4 open half-

spaces during each pruning step, done via COUNT queries [5] based

on an 𝐴𝐴𝑅-tree on all the points in the database. The worst-case

scenario is that points are distributed in a way that necessitates

traversing the tree to the leaf level for each point. Thus, the running

time of our authentication scheme depends on the distribution of

points and the state of the 𝐴𝐴𝑅-tree. In the worst case, the server

goes through all internal nodes in the 𝐴𝐴𝑅-tree, taking 𝑂 (𝑛 log𝑛)
time. The size of the point-set after each pruning decreases by at

least
|𝑃 |/4 points [3], hence the time it takes to run our authentication

scheme with input size 𝑛 is amortized to 𝑂 (𝑛 log𝑛). Likewise, in
the worst-case the client is given a VO containing 𝑛 leaf nodes

and performs as many operations as there are internal nodes in

the 𝐴𝐴𝑅-tree, taking 𝑂 (𝑛 log𝑛) time. The size ofVOs transferred
between the server and client include, in the worst case, all leaf

nodes, hence the total space required for each pruning step is𝑂 (𝑛).
Besides, the server stores the entire tree in 𝑂 (𝑛 log𝑛) space; the
client needs 𝑂 (𝑛) storage to recompute new digests. Thus, space

complexity is 𝑂 (𝑛 log𝑛) on the server and 𝑂 (𝑛) on the client.

4 EXPERIMENTAL STUDY
We implemented our solution

1
in Go, while the external library

2

used to find centerpoints is in Python. We achieved interoperability

between Go and Python using a web API. As the endpoints are REST

(representational state transfer) compliant, the system is modular.

We implemented an 𝐴𝐴𝑅-tree [5] to bulk-load the data and run the

authentication. To facilitate the introduction of Radon points, we

used floats to store coordinates, and included a global 𝜖 value that
determines precision and thereby granularity. Our implementation

uses web-based inter-process communication (IPC) only at the

server, so as to communicate with the external library to find half-

spaces. The client-server communication is done by passingVOs
1
Available at https://github.com/1234JohnDoe/Auth-Centerpoint

2
https://github.com/JianiLi/centerpoint

as messages to the function executed by the client. We generate

point-sets of a random sizes in a space of range [-50, 50] in both

dimensions, distributed uniformly at random over the entire space.

4.1 Results
We measured runtime vs. input size with fanout of the 𝐴𝐴𝑅-tree

set to 3 and 9. Figures 4a and 4b show our results.

0 1 2 3 4 5
Input size (# of points) 1e4

0.0

0.5

1.0

1.5

2.0

S
e

rv
e

r
ru

n
ti

m
e

 (
m

s
)

1e5

Fanout = 3

Fanout = 9

Poly. Fit , f= 3

Poly. Fit , f= 9

(a) Server runtime vs. input size.

0 1 2 3 4 5
Input size (# of points) 1e4

0.0

0.5

1.0

1.5

2.0

C
li
e

n
t

ru
n

ti
m

e
 (

m
s
)

1e4

Fanout = 3

Fanout = 9

Poly. Fit , f= 3

Poly. Fit , f= 9

(b) Client runtime vs. input size.

Figure 4: Runtimes on server and client.

As expected, the server runtime scales by 𝑂 (𝑛 log𝑛) wrt size;
fanout has no big effect. Runtime varies a lot on larger inputs, as the

query runs on a different point-set in each test. The time-complexity

on the client-side is also 𝑂 (𝑛 log𝑛). The results suggest that the
runtime slightly worsens with the lower fanout of 3; this is due to

the recomputation of digests benefiting from larger fanout.

0.0 0.2 0.4 0.6 0.8 1.0
Subset size (# of points) 1e4

0

2

4

6

R
u

n
ti

m
e

 (
m

s
)

1e4

Server runt im e

Client runt ime

Poly. fit , server runt im e

Poly. fit , client runt im e

Figure 5: Memory and real-world data.

Figure 5 shows performance on real-world data, with fanout

3; the data contains roads in the USA
3
, and the experiments find

a centerpoint of a subset of this data having a random size 𝑛 ∈
[500, 10000]. These results show that our solution is applicable on

real-world data. Runtime on the client scales significantly better

than that on the server, as we expect. The server runtime varies as

a result of choosing a random subset of the data on each test.

5 CONCLUSION
We devised a method to authenticate centerpoint queries on any

subset of a finite planar sets of points. Our mechanism produces a

minimal set 𝑃 ′ (with a size of at most 10), whose center is a subset of

that of the original set 𝑃 . By authenticating 𝑃 ′, the client can com-

pute the centerpoint based on 𝑃 ′ using any brute-force approach.

Our experiments verified that this mechanism works on real-world

data as well as uniformly random point-sets. In the future, we will

consider authentication over multidimensional synopses [4] and

natural spatial joins [9].

3
https://drive.google.com/file/d/1pd5eGPWJUzzv8B26lYTz2rOkGgOuRM-I/view

Short Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3086

REFERENCES
[1] Qian Chen, Haibo Hu, and Jianliang Xu. 2013. Authenticating top-k queries in

location-based services with confidentiality. Proc. VLDB Endow. 7, 1 (2013), 49–60.
[2] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Searching.

In SIGMOD. 47–57.
[3] S. Jadhav and A. Mukhopadhyay. 1994. Computing a centerpoint of a finite planar

set of points in linear time. Discrete & Computational Geometry 12, 3 (1994),

291–312.

[4] Panagiotis Karras and Nikos Mamoulis. 2008. Hierarchical synopses with optimal

error guarantees. ACM Trans. Database Syst. 33, 3 (2008), 18:1–18:53.

[5] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. 2010. Au-

thenticated Index Structures for Aggregation Queries. ACM Trans. Inf. Syst. Secur.
13, 4 (2010), 32:1–32:35.

[6] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption

Function. In CRYPTO. 369–378.
[7] Dimitrios Papadopoulos, Stavros Papadopoulos, and Nikos Triandopoulos. 2014.

Taking Authenticated Range Queries to Arbitrary Dimensions. In CCS. 819–830.
[8] Yin Yang, Stavros Papadopoulos, Dimitris Papadias, and George Kollios. 2008.

Authenticated indexing for outsourced spatial databases. The VLDB Journal 18, 3
(2008), 631–648.

[9] Man Lung Yiu, Nikos Mamoulis, and Panagiotis Karras. 2008. Common Influence

Join: A Natural Join Operation for Spatial Pointsets. In ICDE. 100–109.

Short Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3087

	Abstract
	1 Introduction
	2 Related Works
	2.1 Merkle Hash Trees
	2.2 Merkel R-Trees
	2.3 Finding a Centerpoint

	3 Authenticating Centerpoints
	3.1 Prerequisites
	3.2 Authenticating Half-spaces
	3.3 Authenticating Points
	3.4 Final Stage
	3.5 Analysis

	4 Experimental Study
	4.1 Results

	5 Conclusion
	References

