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ABSTRACT
Consider a network in which items propagate in a manner deter-
mined by their inherent characteristics or features. How should
we select such inherent content features of a message emanating
from a given set of nodes, so as to engender high influence spread
over the network? This influential feature set selection problem has
received scarce attention, contrary to its dual, influential node set
selection counterpart, which calls to select the initial adopter nodes
from which a fixed message emanates, so as to reach high influ-
ence. However, the influential feature set selection problem arises
in many practical settings, where initial adopters are given, while
propagation depends on the perception of certain malleable mes-
sage features. We study this problem for a diffusion governed by a
content-aware linear threshold (CALT) model, by which, once the
aggregate weight of influence on a node exceeds a randomly chosen
threshold, the item goes through.We show that the influence spread
function is not submodular, hence a greedy algorithm with approxi-
mation guarantees is inadmissible. We propose a method that learns
the parameters of the CALT model and adapt the SimPath diffusion
estimation method to build a heuristic for the influential feature se-
lection problem. Our experimental study demonstrates the efficacy
and efficiency of our technique over synthetic and real data.
ACM Reference format:
Ansh Khurana, Alvis Logins, and Panagiotis Karras. 2020. Selecting Influ-
ential Features by a Learnable Content-Aware Linear Threshold Model. In
Proceedings of Proceedings of the 29th ACM International Conference on Infor-
mation and Knowledge Management, Virtual Event, Ireland, October 19–23,
2020 (CIKM ’20), 10 pages.
https://doi.org/10.1145/3340531.3411886

1 INTRODUCTION
In viral marketing campaigns, organizations aim to spread aware-
ness of new products, ideas, and services across a network. The
problem of Influence Maximization by Node Selection (IMNS) [17, 24]
is to select seed nodes from which to initiate a promotion campaign
so as to attain the best outcome in terms of nodes reached. Yet
the outcome of a network-based promotion campaign depends not
only on its starting nodes, but also on the appeal of the promoted
innovation, product, idea, or, in general, meme. In its turn, the ap-
peal of a meme depends not only on its core features, but also on
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circumstantial and malleable features of the campaign; one may
adapt such features in order to achieve desirable outcomes [8, 9].

The theory of Uses &Gratifications [16] provides insights on how
brand posts engage social network users; parameters such as content
type (e.g., entertaining), media type (e.g., vivid), posting time (e.g.,
peak hours) and valence of comments (e.g., positive) have an effect
on perception [8, 9]. Some works investigate ways to select features
that invoke widespread adoption over a network through peer-to-
peer effects, based on randomized trials [1], as a complement to
the IMNS problem [2], and as a standalone objective [14], namely
the problem of Influence Maximization by Feature Selection (IMFS).
Yet this IMFS problem has been studied only under a content-aware
variant of the Independent Cascade (IC) model [14]; by this model,
each neighbor of a nodeu gets an independent chance to influenceu.
Besides, the parameters of the diffusion model that governs the
process are assumed to be given as input; to our knowledge, no
previous work proposes a way to learn such parameters.

In this paper, we propose a novel content-aware diffusion model
extending the Linear Threshold (LT) model, by which the neighbors
of a node u influence u collectively, and study the IMFS problem
under model parameters learned from real-world network log data.
In this setting, the set of initial adopters is given, while certain
content features of the propagated meme, such as topics of interest,
public persons, locations, and abstract themes [14], are to be chosen
so as to maximize the expected number of network nodes it reaches.
This setting corresponds to the problem faced by an organization
that needs to choose a set of content features that will maximize
the expected appeal of a promotion campaign initiated from a fixed
set of subscribers. To learn model parameters, we exploit that fact
that online social network users are associated to such content
features expressed via posting topics. We denote the set of features
a user is associated with, or interested in, as user features. Our core
premise is that, the more content and user features overlap, the
more likely a user is to be interested in the diffused item, while
the contagion mechanism is equivalent to a process by which a
user is influenced by at most one of its incoming neighbors by a
probability depending on the weight of the associated edge [17].

We outline our main contributions as follows:

(1) We devise a Content-Aware Linear Threshold (CALT) model
that governs a network contagion dependent on content
features, and study the properties of its spread function.

(2) We study the IMFS problem under the CALT model, show its
hardness, and propose heuristic algorithms therefor based on
Monte Carlo simulations (MC) and direct spread estimation.

(3) We propose a way to learn the parameters of the CALT
model by a credit allocation technique.

(4) We show that our direct-estimation algorithm outperforms
the MC-based one in efficiency and scalability without an
efficacy disadvantage, on synthetic and learned data.
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2 BACKGROUND AND RELATEDWORK
We review related work in influencemaximization problem variants,
algorithms, and diffusion models.

2.1 Influence by node selection
The expected number of nodes reached, or expected spread, over a
network represented by a di-graphG(V ,E) is a submodular function
of the set of initially activated seed nodes S ⊂ V under both the
Independent Cascade (IC) and Linear Threshold (LT) models [17].
Therefore, the problem of selecting a set S that maximizes expected
spread, or Influence Maximization by Node Selection (IMNS) [17],
admits an (1 − 1/e − ε)-approximation algorithm [28], where e is a
base of a natural logarithms and ε a positive real number.

By the IC model, starting with seed set S , each node activated
in the previous step tries to activate each out-neighbour with a
probability assigned to the corresponding edge. On the other hand,
by the LT model, the probability that a contagion reaches a node v
from its infected in-neighbors depends on a node-specific threshold
{θv : v ∈ V }, being an i.i.d. uniform random variable on [0, 1]. This
LT mechanism is equivalent to one where each node designates at
most one incoming edge as active, by a probability equal to that
edge’s weight, and the contagion goes through active edges [17].
Therefore, by LT, the contribution of a seed node v to expected
spread equals the sum of weights of all simple paths originating
from v , while the spread of a seed set S equals the sum of contribu-
tions of all individual nodes v ∈ S . The state-of-the-art algorithm
for IMNS under the LT model, SimPath [12], is based on this simple
path property. As enumerating all simple paths from nodes in S
is #P-hard [35], SimPath estimates each node’s contribution to
expected spread by exploring paths up to a probability threshold η.

2.2 Influence by feature selection
A vast literature has suggested generalizations of the IMNS problem
that preserve the submodularity property [24, 26], which allows
for sampling-based solutions [5] that scale to networks of mil-
lions of nodes. However, this submodularity does not extend to
IM problem variants, such as, for example, the problem of adap-
tively selecting seed nodes under time constraints [34] or shar-
ing ℓ message parts among k seed nodes [23]; another such variant,
which concerns us, is the problem of Influence Maximization by
Feature Selection (IMFS) under a content-aware variant of the IC
model; this problem is NP-hard to approximate withing a factor
of n1−ϵ for any ϵ > 0 [14]. By the Content-Aware Independent Cas-
cade (CAIC) model [14], the probability of activation through an
edge (u,v) depends on two sets of features, one (Fi ) assigned to
the diffusion action and another (Fv ) to the target node v , and is
calculated as P(u,v) = buv + quv · huv (Fv , Fi ), buv ,quv ∈ [0, 1],
with huv = min

{
1−buv
quv , |Fv ∩ Fi |

}
, where buv is a base probability

of influence expressing the core strength of the connection, and quv
a marginal probability indicating sensitivity to the overlap between
action features Fi and node features Fv , under a sanity bound.

Interestingly, the CAICmodel onk topics is reducible to the topic-
aware model of [3], whereby the diffusion process is associated
with a topic vector γ z , where z = 1 . . .k denotes a feature, and
each edge {u,v} is associated with a probability pzuv , indicating the
power of feature z across {u,v}. Under the IC model, the activation

probability across edge {u,v} is P(v |u) =
∑k
z=1 γ

zpzuv . Under the
LT model, the probability that a contagion reaches a node v from
its infected in-neighbors is P(v) = P

[∑k
z=1

∑
u ∈N(v) γ

zpzuv ≥ θv
]
,

where N(v) is the set of infected in-neighbors of v and θv the
model’s node-specific threshold. We reduce the CAIC model to the
topic-aware model of [3] by setting topic-aware vectors over the
same k topics, plus a (k + 1)th topic corresponding to the content-
independent base probability buv , as follows:

γ z =

{
1, if z ∈ F or z = k + 1
0, otherwise

pzuv =


quv , if z ∈ Fv
buv , if z = k + 1
0, otherwise

Despite this reduction of the one to the other, the CAIC model
differs from the topic-aware model of [3] by virtue of its discrete
nature. In CAIC, diffusion actions and nodes are associated with
sets, hence the problem of optimally configuring a diffusion action is
one of set function optimization, on which continuous optimization
techniques, such as stochastic gradient descent, are inapplicable.
Besides, while [3] and [14] propose similar diffusion models, the
one [3] studies the problem of learning model parameters, but not
the problem of optimally configuring a diffusion action under that
model; in reverse, the other [14] studies the problem of selecting
features to optimally configure a diffusion action under its model,
but not the problem of learning that model’s parameters.

In a different vein, a problem reminiscent of ours is that of finding
the top-k most influential topics relevant to a particular keyword
query and user [22] or discovered community [21].

2.3 Learning model parameters
Despite the popularity of the IC and LT models [5, 7, 17, 33], the
question of deriving their parameters from real-world data has been
scarcely studied [25]. Saito et al. [32] proposed an Expectation-
Maximization approach (EM) to train the IC model parameters,
while Goyal et al. [10] suggested a more scalable approach, estimat-
ing the edge probabilities of the IC model as the fraction of common
actions of two adjacent nodes over the number of source node ac-
tions, as well as a learning approach for the General Threshold (GT)
model, of which IC and LT are special cases, while embedding a tem-
poral decay factor. By the GT model, a node has a general activation
function f that aggregates probabilities from all its in-neighbors,
and the result is compared to a randomly chosen threshold θ to de-
cide about the node’s activation. The suggested training approach
is based on the credit assignment principle, which assigns uniformly,
or, more generally, distributes [11], the credit for each successful
node activation among all candidate influencers.

In another direction, Barbieri et al. [3] proposed an Expectation-
Maximization (EM) approach for two special cases of GT model,
the IC and a newly proposed Air model, where the the activation
function f is a logistic function applied to a linear combination of
incoming probabilities. In these two cases, it is possible to derive a
closed form of the Complete-Data Expectation Likelihood function,
required for EM to work. However, such a closed form under the
LT model remains unknown. We extend this credit assignment
principle to a content-aware generalization of the LT model; to our
knowledge, our work is the first to propose a parameter learning
framework for a content-aware diffusion model.



3 PROBLEM STATEMENT
We formulate the problem of influence maximization by feature se-
lection under the LT model, over a network expressed as a directed
graph G = (V ,E), where V = {v1,v2, ...,vn } is a set of nodes, each
of which corresponds to an individual user, and E ⊂ V ×V is a set
of directed edges representing social relations among users. First,
we outline our diffusion model.

Content-aware LT model. An action is a set of user messages
exchanged over a network and forming a single instance of diffusion.
Let F = { f1, . . . , fk } be a set of features (i.e., topics or interests)
associated with actions and users. We define the Content-Aware Lin-
ear Threshold (CALT) model as a generalization of the LT model, in
which edge weights depend on action and user features as follows:

fuv = buv + quv · huv (Fv , Fi ), buv ,quv ∈ [0, 1] (1)

huv (Fv , Fi ) = min
{
1 − buv
quv

, |Fv ∩ Fi |

}
(2)

where u is in-neighbour of v; buv is a base weight indicating the
influence of u on v , and quv a quotient indicating how much that
influence may increase due to message features; Fv is a set of topics
that node v is interested in, Fi is a set of topics that characterize
the ith propagation action. The activation probability of a node v is

P(v) = P

[∑
u

fuv ≥ θv

]
where θv ∈ [0, 1] is the LT model’s random node-specific threshold
fixed at the beginning of propagation. The nodes activated during
a propagation action are reachable along activated edges from the
set S of initially active seed nodes. Computing the expected number
of nodes reached by, or expected spread of, an action with feature
set F and seed set S , σ (S, F ), is #P-hard, due to a trivial reduction
of CALT to the regular LT model.

Edge weights fuv
Edge weight parameters buv , quv
in-degree of vertex v dvin

Complete feature universe F

Feature set of the i th action and a vertex v Fi , Fv
Sanity bound function h(·)

Expected spread σ (S, F )
Size of feature set k

Random node-specific activation threshold θv
Weighted cascade weight scaling factor α

Binary threshold parameter Θ
Accuracy parameter for SimPath η

Table 1: Notations

Table 1 gathers our basic notations. Theorem 3.1 shows thatσ (S, F )
does not admit submodularity-based approximation guarantees.

Theorem 3.1. The spread function σ (S, F ) under the CALT model
is neither submodular nor supermodular.

Proof. Consider a network G with nodes V = {s,v1,v2}, illus-
trated on Figure 1, where s is a seed node. The expected activation
probability of a node v in the CALT model, as in the LT model [12],
is equal to the sum of probabilities of all paths from any seed node
to v . Thus, the expected spread of seed node s with feature set F is:

σ (s, F ) = fsv1 + fsv2 + fsv1 fv1v2

where fuv is the weight of edge (u,v) that depends on parame-
ters buv , quv , F , and Fv , according to Equation 1.

s v2
{A,B,C}

v1

{A}

1
2 → 1

1
2 →

2
3

1
2 →

2
3

(a) F1 → F1 ∪ {A}, F1 = ∅

s v2
{A,B,C}

v1

{A}

1
2 → 1

5
6 → 1

5
6 → 1

(b) F2 → F2 ∪ {A}, F2 = {B, C }

Figure 1: Counterexample for submodularity of σ ; edges are
labeled by weight updates after adding a new feature A.

Let ∆ be the marginal gain brought by adding a new feature f :

∆(F1, f ) = σ (S, F1 ∪ { f }) − σ (S, F1)

σ (S, F ) is submodular (supermodular) with respect to F if and only
if it satisfies the property of nonincreasing (nondecreasing) returns:

∀F1, F2, f : F1 ⊆ F2, f < F2 → ∆(F1, f ) ≥ (≤)∆(F2, f )

The feature space is F = {A,B,C}. We consider two cases of mar-
ginal case comparison. Figure 1 presents the first case, where Fv1 =

{A} and Fv2 = {A,B,C}, while all edges have buv =
1
2 , and qsv1 =

1
2 and qsv2 = qv1v2 =

1
6 . Then:

fsv1 = 1/2 + 1/2 · |{A} ∩ Fi | (3)
fsv2 = 1/2 + 1/6 · |{A,B,C} ∩ Fi | (4)
fv1v2 = 1/2 + 1/6 · |{A,B,C} ∩ Fi | (5)

We assume sets F1 = ∅, F2 = {B,C}, where F1 ⊂ F2, and added
feature f = A; then the marginal gain for F1 is:

∆(F1,A) = σ (s,A) − σ (s, ∅) =

(1 + 2/3 + 1 · 2/3) − (1/2 + 1/2 + 1/2 · 1/2) = 13/12 (6)

while the marginal gain for F2 is:

∆(F2,A) = σ (s, {A,B,C}) − σ (s, {B,C}) =

(1 + 1 + 1 · 1) − (1/2 + 5/6 + 1/2 · 5/6) = 15/12 (7)

Figures 1a and 1b illustrate the updates in weights for F1 and F2,
respectively. We observe that ∆(F2,A) > ∆(F1,A), hence the spread
function is not submodular.

In the second case, we consider Fv1 = Fv2 = {A,B} and all edges
having buv = 1

2 , and quv =
1
2 , hence:

fuv = 1/2 + 1/2 ·min{1, |{A,B} ∩ Fi |}

Let F1 = ∅, F2 = {B} and f = A. Now the marginal gains are

∆(F1,A) = σ (s, {A}) − σ (s, ∅) = 3 − 5/4 = 7/4

and
∆(F2,A) = σ (s, {A,B}) − σ (s, {B}) = 3 − 3 = 0

Thus, ∆(F2, f ) < ∆(F1, f ), hence σ is not supermodular either. We
conclude that σ is neither submodular nor supermodular. □

The problem of Influence Maximization by Feature Selection
(IMFS) is to select a set F ⊂ F of up to k features that maximizes
the expected spread for a given seeds S under the CALT model:

max
F : |F | ≤k

σ (S, F ) (8)



4 SOLUTIONS
The probability that a node’s weight fv ∈ [0, 1] exceeds an i.i.d.
uniform random threshold θv in [0, 1] is equal to fv . Therefore, on
a graph where each node has only one incoming edge, the IMFS
problem under that CALT model is reduced to the IMFS problem
under the IC model, which is NP-hard to approximate within a
factor of n1−ε [14]. Given this hardness, we design heuristic solu-
tions for the IMFS problem. We first present a greedy baseline that
estimates influence spread by Monte-Carlo simulations; then, we
propose a more efficient heuristic that employs a spread estimation
technique adopted from the SimPath algorithm [12].

4.1 Greedy baseline
Algorithm 1 presents our Greedy baseline, which iteratively selects
the feature in F incurring the highest marginal gain in expected
spread in a networkG with seed set S , as calculated by Monte-Carlo
simulations; this baseline follows previous work in the area [14].

Algorithm 1: Greedy
Input: G(V ,E), S , F

1 F = ∅;
2 while |F | < k do
3 for every f ∈ F \ F do
4 calculate σ (F + { f }) using Monte Carlo simulations;
5 F = F ∪ argmaxf {σ (F + { f })};
6 return F ;

4.2 SimPath-based heuristic
We propose a feature selection algorithm based on the SimPath
spread estimation technique [12]. Our algorithm maintains the
structure of Algorithm 1: we greedily pick k features, while evalu-
ating expected spread for each feature. However, as the evaluation
of expected spread by Monte-Carlo simulations is computation-
ally demanding, we opt for estimating spread using the SimPath
algorithm [12], which we explain in the following.

The SimPath algorithm is based on a series of observations
regarding the LT model. First, the spread of a given seed set S is
equal to the contribution of each seed node s to the spread on the
induced subgraph of G with vertex set (V \ S) ∪ {s}. This property
transfers to the CALT model, as the following theorem shows.

Theorem 4.1. The expected spread of seed set S by the CALTmodel
is the sum of expected spreads over all nodes s ∈ S , each on the induced
subgraph with vertex set (V \ S) ∪ {s}. That is,

σ (S) =
∑
s ∈S

σ (V \S )∪{s }(s) (9)

Proof. The statement of the theorem holds for the LT model
due to result of Goyal et al. [12]. The CALT model is equivalent
to the LT model for each particular action feature set Fi . Since the
feature set Fi does not change during the diffusion process, the
theorem still holds. □

Secondly, as noted in Theorem 3.1, the expected spread from a
single seed s is equal to the sum of probabilities of all paths from s
to other nodes [12]. Lastly, in practice, edge probabilities, fuv , are
generally small, hence the probability of a path tends to rapidly
decrease with a path length. Based on these three observations, we
estimate expected spread under the CALTmodel using simple paths
with a probability threshold η, as the SimPath algorithm does [12].

Algorithm 2 shows the SimPath spread estimation procedure. For
a seed set S and path probability pruning threshold η, we evaluate
the spread independently for each s ∈ S on a graph, induced by s ,
with nodes (V \S)∪{s}, and sum the results to get the final estimate.

Algorithm 2: CA-SimPath spread estimation routine
Input: G(V ,E), S , F , η

1 σ = 0;
2 for s ∈ S do
3 σ = σ + ForwardBacktrack(G, s, (V \ S) ∪ {s},η);
4 return σ

Algorithm 3 shows how we estimate the spread of a single seed
node s . We enumerate all simple paths in a neighborhood of s , in
which the probability of any path, calculated as the product of edge
weights along the path, is not lower that the threshold η.

In Line 1 we create a few variables: Q is a stack that contains
the nodes of the current path, initiated with the seed node s; D
is a map that stores a set of out-neighbors for each node that has
been considered so far; p stores the current path’s probability and σ
stores the current spread estimate.

The algorithm builds path segments from each node in Q by
a look-forward procedure, ensuring that it does not create cycles
and new segments have not been previously explored; Lines 4–
8 perform this procedure in a loop. Upon the loop’s termination,
i.e., when it reaches a path’s end or go under the threshold η, it
backtracks by removing the last node from the stack (Line 9), and
recovering the current path’s weight to its previous state (Line 10).
OnceQ is empty, the algorithm returns its spread estimate σ . Higher
values of η imply lower runtime and less accurate local spread
estimation; η = 0 results to an exact local spread computation.

Algorithm 3: ForwardBacktrack
Input: G, s,W ,η

1 Q ← {s}; D ← Null; p ← 1; σ ← 1 ;
2 while Q , ∅ do
3 u ← Q .last();
4 while ∃v | (u,v) ∈ E,v < Q,v < D[u],v ∈W do
5 D[u].insert(v);
6 if p · fuv ≥ η then
7 Q .add(v);
8 p ← p · fuv ; σ ← σ + fuv ; u ← v ;
9 v ← Q .last(); Q ← Q −v ;

10 p ← p/fuv ;
11 return σ ;



5 CALT TRAINING
In this section we present or approach for training the CALT model
using real-world data.

5.1 Credit assignment in the LT model
As discussed in Section 2.3, Goyal et al. [10] presented the credit
assignment algorithm for training the General Threshold model, of
which LT is a special case. The algorithm is based on the assumption
that all relevant in-neighbours of a node share the same credit for
each successful activation of that node. For example, if two nodes
have posted a message about Trump, and then a common neighbour
of theirs also posts about Trump, then each of the former two nodes
is considered 50% responsible for activating the third node. Note
that, by this principle, nodes share credits for successful actions in
a manner agnostic to whether the ground-truth edge weights are
the same or not.

Formally, let t(a) be a timestamp of an action a. We consider an
action a performed by node u as adapted by a neighbor node v if v
performs the actions after u, with timestamps tu (a) < tv (a). For
the regular LT model, the credit assignment algorithm determines
edge weigths (or influence probabilities) as follows:

fuv =

∑
a credituv (a)
|Au |

where a is an action propagated in one diffusion instance (cascade)
and Au the set of all actions of u. The credit is defined as:

credituv (a) =
1∑

w ∈N I (tw (a) < tv (a))

where I is an indicator function that an in-neighbourw of a node v
has been activated by an action a before v itself.

5.2 Credit assignment in the CALT model
The parameters of the CALT model are buv , quv , Fv and Fi . Out of
those, the last two (i.e., user preferences and topics of actions) are
discrete sets that need to be given as input, or be determined in a
preprocessing step (Section 6) from log data, while Fi is the object
of optimization in the IMFS problem. Here, we propose a novel
Content Aware Credit Assignment (CACA) algorithm that efficiently
learns the parameters buv and quv from log action data.

The CACA algorithm uses the equal credit share assumption, by
which, for each successful action, an in-neighbour takes 1

d of the
credit, whered is the total number of in-neighbours that share credit
for that action. However, instead of a single parameter value fuv ,
we need to estimate coefficients buv and quv , which are dependent
on the features (or topics) of each observed action. For that purpose,
we use the Ordinary Least Squares (OLS) estimator. Let N be a set
of in-neighbours of v , Au the set of all actions performed by u,
and Auv the set of actions performed by u and adapted by v . Then,
for each a ∈ Au , the equal share assumption implies that:

buv + quvαv (a) = Ea

[
I (tu (a) < tv (a))∑

w ∈N I (tw (a) < tv (a))

]
(10)

where I (tu (a) < tv (a)) indicates thatv adopted action a at any time
afteru,

∑
w ∈N I (tw (a) < tv (a)) is the number of in-neighbours who

could have influenced v if v has adopted a, and αv (a) = |Fv ∩ Fa |
shows how many topics (features) in a match the preferences of v .

Let dv (a) =
∑
w ∈N I (tw (a) < tv (a)), and nu = |Au |. Then, the

OLS solution is:

quv =

∑
a∈Auv αv (a)

1
dv (a)

− 1
nu

(∑
a∈Au αv (a))(

∑
a∈Auv

1
dv (a)

)
∑
a∈Au α

2
v (a) −

1
nu

(∑
a∈Au αv (a)

)2
(11)

buv =
1
nu

∑
a∈Auv

1
dv (a)

− quv
1
nu

∑
a∈Au

αv (a) (12)

These equations derive from the OLS method applied on a linear
equation of the form

yi = α + βxi + ϵi

where ϵi is random error and

yi =
I (tu (a) < tv (a))∑

w ∈S I (tw (a) < tv (a))

xi = αv (a), α = buv , β = quv .

5.3 The CACA algorithm
In order to compute coefficients of CALT according to Equations 12
and 11, we have to know the following statistics:

nu = |Au |

dv (a) =
∑
w ∈N

I (tw (a) < tv (a))

C1
uv =

∑
a∈Auv

αv (a)
1

dv (a)
, C2

uv =
∑
a∈Au

αv (a)

C3
uv =

∑
a∈Auv

1
dv (a)

, C4
uv =

∑
a∈Au

α2v (a)

Then, coefficients are equal to

buv =
1
nu

C3
uv − quv

1
nu

C2
uv (13)

quv =
C1
uv −

1
nu C

2
uvC

3
uv

C4
uv −

1
nu (C

2
uv )

2
(14)

Algorithm 4 presents the CACA algorithm, which utilizes a log
of actions on a graph sorted in in chronological order. For each
observed action a, the algorithm traverses logs in chronological
order considering each messagem that corresponds to an action a
by nodev , updating a currentTable data structure. If the user-action
pair {v,a} already exists in currentTable, with any time step t , then
we just update the time step in the table to that of the currently
considered message, tv (Line 7). The underlying rationale is that
any node that the algorithm will consider in future iterations is a
potential target node, while the current node v is a potential source
node; it is beneficial to update v’s time step to the latest possible.

In case the pair {v,a} is not in the table, then we consider mes-
sage m as the first instance when node v performs action a and
proceed to update the values ofC1

uv ,C2
vw ,C3

uv , andC4
vw . We update

the nv value accordingly (Line 9), and, for each outgoing edge (v,w),
we compute αw (a) and store it in cache (Line 11), so that we can



later use it for updating C1
uv , and duly update C2

vw and C4
vw ; as

these two are defined as a sum over all actions ever performed by a
source node v , we may update them as soon as we detect any node
performing any action for the first time. On the other hand, to up-
date C1

uv and C3
uv , we need to find all source nodes in currentTable

that may have successfully influenced v within a time threshold τ .
For each such u, we increment dv (a) and save u in a temporary
list parents (Lines 15–18). After collecting all such parent nodes, we
traverse the list, and update C1

uv and C3
uv for each u that has v as

a successful follower. Lastly, we add < v,a, tv > in the table. After
running Algorithm 4, we assign coefficients to each edge according
to Equations 13 and 14.

Algorithm 4: Content Aware Credit Assignment (CACA)
Input: A set of messages grouped as actions, sorted by t
Output: C1,2,3,4

uv ,nu for all u and v
1 for u,v ∈ V do
2 nv ← 0, C1,2,3,4

uv ← 0;
3 for a ∈ actions do
4 currentTable← ∅;
5 for each < v,m, tv > |m ∈ a in chronological order do
6 if < v,a, t >∈ currentTable then
7 t ← tv ;
8 else
9 Increment nv ;

10 forw ∈ V |(v,w) ∈ E do
11 Compute αw (a) and store in cache;
12 C2

vw+ = αw (a);
13 C4

vw+ = α2w (a);
14 parents← ∅, dv (a) ← 0;
15 for < u,a, tu >∈ currentTable ∧ (u,v) ∈ E do
16 if τ > tv − tu > 0 then
17 Increment dv (a);
18 Insert u in parents;
19 for u ∈ parents do
20 C1

uv+ = αv (a)
1

dv (a)
;

21 C3
uv+ =

1
dv (a)

;
22 Add < v,a, tv > to currentTable;

5.4 Evaluating efficacy
We evaluate the efficacy of the CACA algorithm by the Area Un-
der ROC Curve (AUC) measure. We define a positive propagation
instance as a case where a messagem exists for node v and a mes-
sagem′ similar tom exists for any of the in-neighbours of v . To
calculate such positive instance, we traverse all graph nodes, and col-
lect the in-neighbor messages of each node. For each thus collected
message, in arbitrary order, we compose the set of in-neighbours
that have posted similar messages, and, using that set, we calculate
the predicted probability of the influence; in case that value exceeds
a predefined threshold µ, we consider the prediction to be positive,
otherwise negative. Thereafter, we discard all considered messages.
This way, we calculate the True Positive and False Positive Rates
for each value of µ, as TPR = T P

T P+FN , FPR = F P
FP+T N . The AUC

is AUC =
∫
TPRdFPR.

6 DATA PREPARATION
We experiment on diverse network structures and ways of deriving
their CALT model parameters, which we discuss in this section.

6.1 Barabási-Albert synthetic networks
We use Barabási-Albert (BA) networks as synthetic network data.
Such networks have high clustering coefficients and power-law
degree distribution, hence are reasonable imitations of real-world
social networks. In particular, we use the algorithm of Holme and
Kim [13], available in the NetworkX Python library1, which extends
the original Barabási-Albert model with a triad formation step, yet
denote it by the BA label, which represents its basis; this algorithm
first randomly createsm edges for each node in a graph by pref-
erential attachment, as the BA model, and, for each created edge
(v,w), adds, with a probability p, an extra edge from v to one of
w ’s neighbors, making a triangle. We use parameter values p = 0.2
andm = 15. We generate edge weight parameters according to the
trivalency model. For each edge, we pick uniformly at random one
of three values per parameter:

buv ∈ {0.1, 0.01, 0.001}, quv ∈ {0.1, 0.01, 0.001}

We set the feature space size |F | and randomly draw features with
probability p=0.2 to create node feature sets Fv .

6.2 Gnutella network
Gnutella is a snapshot of the Gnutella peer-to-peer file sharing
network [30] with 10,876 nodes and 39,994 edges. To derive CALT
model coefficients therefor, we build upon the Weighted Cascade
model [6, 14], which defines edge weights, in the context of the
IC model, as 1

dvin
, where dvin is the in-degree of node v . We adapt a

scaled weighted cascade model to the CALT model by introducing
a hyperparameter c , which indicates how much the spread grows
from when features do not match to when they match completely.
The boundary conditions for fuv are as follows:

fuv =

{
buv , if Fi = ∅
c · buv , if Fi = Fv

(15)

where buv follows the scaled Weigted Cascade model, designed so
as to obtain realistic overall spread values:

buv = min

{
αbuv ,

1
dvin

}
(16)

where α is a tunable parameter. In our experiments, we set c = 5
and α = 0.2. We further normalize edge weights so that

∑
u fuv ≤ 1

on each v . To achieve that, we apply a weighted Sigmoid func-
tion д(·) on the edge weight function fuv (Equation 1) and derive a
new expression for normalized edge weights f ′uv :

f ′uv =
1
dvin
· д

(
b ′uv + q

′
uv |Fv ∩ F |

)
(17)

where д(·) is the Sigmoid function, while b ′uv and q′uv are un-
knowns; it follows that

∑
u f ′uv ≤

∑
u ∈in−neighbors(v)

1
dvin
≤ 1. Ap-

plying the boundary condition in Equation 15 to the normalized

1https://networkx.github.io/

https://networkx.github.io/


edge weights f ′uv , we obtain the following closed-form expressions
for the parameters b ′uv and q′uv :

b ′uv = log

(
buvd

v
in

1 − buvdvin

)
(18)

q′uv =
1
|Fv |

log

(
c − cbuvd

v
in

1 − cbuvdvin

)
(19)

Lastly, we define node feature sets as in the BA case.

6.3 VK network
We use the VK dataset presented by Logins et al. [25], a weakly
connected subgraph of the VKontakte social network2 with 2452
nodes and 28108 edges. This dataset comes along with a list of up
to 100 latest text posts for each user, 106,217 posts in total. We
derive feature vectors for these messages as follows. We apply stem-
ming, lemmatization, and remove stopwords, and then vectorize
the messages by the enriched TFIDF technique [18], which helps
to represent very short messages; it first collects the regular term
frequency-inverse document frequency (TFIDF) statistic, and then
updates zero-valued entries in message vectors to new values that
depend on the similarity of the corresponding terms to existing
terms in the document, which we obtain using the skip-gram model
pretrained on Wikipedia. Yet the feature space resulting from this
NLP analysis of user messages is quite large (k = 6.6 · 104); there-
fore, we first sparsify the resulting TFIDF matrix by taking the
top-100 elements per row and setting others to zero, and then ap-
ply the Latent Dirichlet Allocation (LDA) dimensionality reduction
technique [4] to reduce the feature space size |F | to 100.

Still, the IMFS problem requires the feature vectors character-
izing users and actions (i.e., messages) to be discrete. Therefore,
we associate each post (i.e., text message) with a binary feature
vector Fi using a threshold parameter Θ:

Fi = { f1, .., f |F |} = {I (tj > Θ)}

where I (·) is an indicator function and tj is the j-th topic of a
message. We tune Θ experimentally to Θ = 0.034, so that adding
features creates contagion on the VK network. Similarly, we define
the topic vector of each user u as the thresholded average over all
messages u has authored:

Fu =

{
I

(
1
|M |

∑
M

tj > Θ

)}
whereM is a set of topic vectors of messages authored by u.

To apply the CALT training method of Section 5, we need to de-
fine when a post of a node v constitutes an instance of propagation
(i.e., repost) of a post of a neighbor node u; reposts are not tagged.
We thus define three criteria to identify reposts, as follows:
• the two posts are subsequent in time;
• their time difference is smaller than a threshold τ ;
• the posts have similar content.

In experiments, we set τ to one month, which is reasonable, since
user influence in a social network may persist up to 100 weeks [10].
We assume each node is influenced on a topic only once, but may
post about the same topic several times. Thus, when we assess a
2https://vk.com/

node v as a target node, we consider the time when v performs an
action a as the time of the earliest message of v associated with Fa ;
when we assess a node u as a source node, we consider the time
step of any message of u associated with Fa . Thus, an action a
may be associated with a set of time steps. Lastly, to determine
which messages have similar content, we employ a natural k-means
clustering of VK messages; we opt for k = 82 clusters, with which
we obtain the maximum Silhouette Score [31], as we observe in
Figure 2, and consider messages that belong to the same cluster as
being of the same action.
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Figure 2: Clustering quality of VK messages

0 1,000 2,000100

102

104

Degree

N
od

es

(a) Degree distribution

4 · 10−2 6 · 10−2 8 · 10−2 0.1
0.62

0.63

0.64

0.65

Θ

A
U
C

(b) Selection of the Θ parameter.

Figure 3: Citation dataset statistics.

6.4 Citation network
As a third real-world dataset, we use the Arxiv high energy physics
theory citation graph [20], which contains 27,770 papers (nodes)
with 352,807 citations (directed edges), and paper metadata. First,
we select a weakly connected component of papers that contain title,
authors, and abstract in their metadata, ending up with a network
of 16,890 nodes and 166,812 edges. From these data we induce a
network in which nodes represent authors, and edges represent
pairs of coauthors of a common paper, as well as citations by one
author to another, obtaining a network of 6,852 nodes and 208,467
edges with power-law degree distribution as Figure 3a shows.

To learn the parameters of influence within the high-energy
physics community represented by this network by the method of
Section 5, we assume that each paper is an action (i.e., message),
and each citation is an instance of successful propagation from
all authors of the source paper to all authors of the target paper,
i.e., v performs the same action as u if a paper of v cites a paper
of u. We define binary feature vectors for papers (i.e., messages)
and authors (i.e., nodes) similarly to the way we do so on the VK
data: we apply stemming, lemmatization, and regular TFIDF on
paper metadata (i.e., merged title and abstract), and reduce the
dimensionality of the resulting TFIDF matrix to |F | = 100 features
by LDA. We render the resulting feature vectors binary using the
threshold value Θ = 5 · 10−5 that maximizes the AUC measure (see
Section 5.4) under cross-validation with a 1:3 split, as Figure 3b
shows. As in VK, the papers of an author u define its topic vector.

https://vk.com/


7 EXPERIMENTAL STUDY
Here, we present our experimental evaluation of IMFS algorithms
Greedy and CA-SimPath on the data presented in Section 6.

7.1 Setting
Our feature selection algorithms are implemented3 in C++, com-
piled using gcc 7.4.0 with the -O3 flag. We implemented the algo-
rithms for model training in Python, and ran all experiments on
an Intel Xeon CPU E5-2687W v3 @ 3.10GHz machine with 377GB
RAM running Ubuntu 18.04.

Seed selectionAs the seed set S is an input parameter, we select
seeds uniformly at random from the same community on all real-
world data, as in [14]. We define a community of usersU as those
who share an interest in a particular topic f , U = {u | f ∈ Fu },
picking f at uniformly random. In all experiments, we select 20
seed nodes, unless otherwise specified. On synthetic data, we select
a set of five seed nodes with the largest out-degrees, following the
naïve degree heuristic for influence maximization, so as to evaluate
our algorithms in an informative setting.

Monte-Carlo evaluationWe estimate the final expected spread
we obtain with any solution via 10,000 Monte-Carlo iterations; we
exclude the time for this estimation from runtime results.
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Figure 4: Performance on BA networks, η = 10−5.

7.2 Results on BA synthetic data
We first study the obtained expected spread value and runtime
on the synthetic BA network with growing network size, using
the top-5 nodes of largest degree as seed set and path probability
threshold η = 10−5. As Figure 4 shows, the spread increases with
network size |V |. Critically, the runtime of CA-SimPath scales much
more gracefully than that of Greedy with network size, without
deterioration in solution quality. For the network size |V | = 214,
Greedy slightly outperforms CA-SimPath.

7.3 Results on Gnutella
Figures 5 and 6 present our results on the Gnutella dataset, mea-
suring spread and runtime against feature set size |F | and seed set
size |S |. We set scaling parameter α = 5, weight parameter c = 0.2,
and probability threshold η = 10−5, and define seed sets by picking
random nodes from a group sharing a randomly chosen feature.
Remarkably, once again, the spread values for both algorithm over-
lap, while the runtime of CA-SimPath scales much more gracefully

3The code is available at https://github.com/AnshKhurana/CAIM.

than that of Greedy; as the seed set size grows from 20 to 100, the
runtime of Greedy rises by 509%, while that CA-SimPath rises
by 140% and yields practically the same spread.
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Figure 5: Performance on Gnutella vs. |F |, η = 10−5.
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Figure 6: Performance on Gnutella vs. seed set size, η = 10−5.
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Figure 7: Performance on VK vs. |F |, η = 10−4.
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Figure 8: Performance on VK vs. seed set size, η = 10−4.
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7.4 Results on VK
We now proceed our study to the VK dataset; we set η = 10−4 and,
as discussed in Section 6.3, Θ = 0.034, which renders the network
responsive to feature addition. For instance, after adding 50 features
on a network of 100 seed nodes, we observe a marginal influence
spread gain of 0.0079 and 0.0107 when adding one more feature
with the Citation and Gnutella data, respectively, and a much higher
value of 0.0747 with the VK data. The results in Figures 7 and 8
show that CA-SimPath is significantly more efficient than Greedy.
In a middle range of feature set size values Greedy achieves slightly
better spread value.With larger seed set sizes, though, the execution
time of Greedy increases more than 13-fold, while that of CA-
SimPath by only 2.5. This results showcases that CA-SimPath
achieves scalability without compromising its efficacy.
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Figure 9: Performance on Citation vs. |F |, η = 0.05.
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Figure 10: Performance on Citation vs. seed set size, η = 0.05.

7.5 Results on Citation
Figures 9 and 10 present our results on the Citation dataset; we
set η = 0.05 and, as discussed in Section 6.4, θ = 5 · 10−5, which
maximizes the AUC value by the analysis of Section 5.4). Results
are consistent to those with other datasets, corroborating that CA-
SimPath achieves superior scalability without an efficacy drawack.

7.6 Influence of η threshold
Lastly, we study the effect of the path probability pruning threshold
η on Gnutella, VK, and Citiation data. Figure 11 presents our results
on an inverted x-axis. As expected, smaller threshold values incur
reduced runtime, since they cause earlier pruning of path explo-
ration, hence. Surprisingly, reducing η does not significantly affect
the achieved spread values, which converge as η falls. This result

indicates that CA-SimPath not only achieves results practically in-
distinguishable from those of Greedy, as we have seen in previous
results, but also does so in a robust manner, insensitive to variations
in the aggressiveness of pruning. The main parameters the affect
performance appear to be network structure and parameters, while
the accuracy of path probability estimation is secondary.
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Figure 11: Performance of CA-SimPath vs. η.

8 CONCLUSION
We proposed a content-aware variation of the linear thresholdmodel
that governs influence spread over a network based on features
associated with both network nodes and propagated items. We for-
mulated the problem of influence maximization by feature selection
under this model, and proposed a solution therefor, CA-SimPath,
that expands on previous work.We also introduced a content-aware
variation of the credit assignment algorithm to derive model param-
eters. We evaluated the performance of the solutions on synthetic
power-law networks and real-world datasets, demonstrating that
CA-SimPath significantly outperforms a Greedy baseline in terms
of runtime, while preserving its effectiveness; we also showed that
content-aware credit assignment achieves good predictive power.

In the future, we intend to study how to contain a viral epidemic
by engineering features affecting its spread. We also plan to study
the robustness of solutions to uncertain input [27], as well as the
problem of learning model parameters in online fashion [19], the
possibility of learning from anonymized network data [29, 36], and
that of configuring learned responses adaptively while safeguarding
the privacy of exchanged user information, in the spirit of [15].
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