Adaptive Indexing in High-Dimensional Metric Spaces

Konstantinos Lampropoulos
University of Ioannina, Greece

Nikos Mamoulis
University of Ioannina, Greece

ABSTRACT

Similarity search in high-dimensional metric spaces is routinely
used in many applications including content-based image retrieval,
bioinformatics, data mining, and recommender systems. Search
can be accelerated by the use of an index. However, constructing a
high-dimensional index can be quite expensive and may not pay
off if the number of queries against the data is not large. In these
circumstances, it is beneficial to construct an index adaptively,
while responding to a query workload. Existing work on multi-
dimensional adaptive indexing creates rectilinear space units by
hyperplane-based partitioning. This approach, however, is highly
ineffective in high-dimensional spaces. In this paper, we propose
AV-tree: an alternative method for adaptive high-dimensional in-
dexing that exploits previously computed distances, using query
centers as vantage points. Our experimental study shows that AV-
tree yields cumulative cost for the first several hundred or even
thousand queries much lower than that of pre-built indices. After
thousands of queries, the per-query performance of the AV-tree
converges or even surpasses that of the state-of-the-art MVP-tree.
Arguably, our approach is commendable in environments where the
expected number of queries is not large while there is a need to start
answering queries as soon as possible, such as applications where
data are updated frequently and past data soon become obsolete.

PVLDB Reference Format:

Konstantinos Lampropoulos, Fatemeh Zardbani, Nikos Mamoulis,

and Panagiotis Karras. Adaptive Indexing in High-Dimensional Metric
Spaces. PVLDB, 16(1): XXX-XXX, 2023.

doi: XX XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
github.com/DinosL/AVtree.

1 INTRODUCTION

Let O be a set of objects in a (high-dimensional) metric space. Given
a query object g, a distance bound ¢, and a distance metric d(), a
range similarity query seeks the objects o € O for which d(g,0) < e.
Similarly, given a positive integer k, a k-nearest-neyighbor (kNN)
similarity query seeks k objects o € O having smaller d(g, 0) than
all other objects in O. Range and kNN similarity queries are rou-
tinely used in similarity-based search and data mining tasks (e.g.,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Fatemeh Zardbani

Aarhus University, Denmark

Panagiotis Karras
Aarhus University, Denmark

clustering and NN classification) for application domains including
computer vision [42], information retrieval [10], kNN search in
spatial networks [1], and recommender systems [32].

Motivation We consider applications where data in a metric space
are short-lived and a relatively small number of queries is expected
before the data become obsolete. For example, satellite images that
depict weather phenomena or other transient information are peri-
odically received and automatically converted to feature vectors
appropriate for similarity computations. Data scientists perform
similarity search against the image collection to detect abnormal
or alerting phenomena. Such images become obsolete when the
next batch arrives, hence the number of queries applied on one
batch is not expected to be large. In such environments, building an
index prior to query processing for each batch of data is costly and
may thus not be worthwhile. Instead, one may evaluate each query
directly on the raw feature vectors by linear scan. However, doing
so, we do not take advantage of previous queries in the processing
of subsequent ones. Adaptive indexing [24] does exploit the work
done for each query with the aim to reduce cost of subsequent ones.
Introduced as database cracking [18, 26, 43, 44], while anticipated
as deferred data structuring [48], adaptive indexing also appeared
as progressive merging [16], leading to hybrid versions [21, 22, 27].
All aforementioned adaptive indexing methods apply on a single
database column. Some preliminary efforts extend them to multidi-
mensional spaces [23, 39, 40], yet are focused on low-dimensional
spatial data and employ hyperplane-partitioning, which (i) does
not scale well to high-dimensional spaces, and (ii) is inapplicable
to generic metric spaces. Besides, they perform indexing only in
response to range queries and do not cater to kNN queries, the most
popular query type in high-dimensional spaces. In this paper, we
develop adaptive indexing methods for generic high-dimensional
metric spaces that eschew hyperplanes partitioning and cater to
kNN queries.

Methodology Given the modern size of memories and the fact
that we target applications where the data are short-lived, hence
not voluminous, we assume that the data are stored in memory,
like the majority of previous work in adaptive indexing [18, 24, 39].
For example, a collection O of objects in a D-dimensional vec-
tor space can be stored in a data array as a sequence of feature
vectors (0;4,01,02,03,...,0p), where 0;4 is the identifier of ob-
ject o € O and o; is the value of the object in the i-th dimension
(feature). Let (g1, €1) be the first (range) query. While linearly scan-
ning the data array to derive query results, we conduct object swaps
to crack the array in two pieces: one piece containing all objects that
are query results and another all remaining objects. At the same
time, we initialize an adaptive vantage tree (AV-tree) with (q1, €1) as
root. As new queries arrive, we compare them to past queries using

https://doi.org/XX.XX/XXX.XX
github.com/DinosL/AVtree
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

the AV-tree, and search only the parts of the array that may contain
query results. Guided by the triangle inequality, we avoid accessing
irrelevant fragments of the array, while introducing cracks and
tree nodes corresponding to new queries. To prevent the tree from
becoming excessively large, which would beat the purpose of the
index, we abide by a threshold 6 for cracked pieces; if a piece has
fewer elements than 0, then it is fixed and not cracked again. Fur-
ther, we improve upon this standard cracking approach; we find that
cracking based on the median distance of all data points in a piece
rather than the current query bound ¢; results in a much better
index. In addition, in fixed pieces (which are not further cracked),
we cache previously computed distances and exploit the sort order
to achieve an early termination of comparisons.

Figure 1 depicts the cumulative cost of the proposed AV-tree on
one of the real datasets in our experiments (MNIST) having 70K
50-dimensional points. We iteratively execute 1000 range queries,
whose centers g are sampled from the data and compare our AV-tree
to: (i) a linear scan method, which exhaustively scans all objects
and computes their distances to each querys; (ii) the cost for build-
ing (before the first query) and using an MVP-tree [6], which is
the state-of-the-art index for high-dimensional points [7]; and (iii)
AKD-tree [39], the state-of-the-art multidimensional adaptive in-
dex. Notably, the AV-tree exhibits the desired behavior of an ideal
adaptive index: (i) it becomes much faster than linear scan even
after a few queries; (ii) its cumulative cost converges to that of the
MVP-tree after a few thousands of queries and does not become
worse thereafter; and (iii) it is consistently faster than the AKD-tree.

F —T—T T T TR
['| ¢ Linear Scan
100 ||~ MVP-tree
F|® AKD-tree
| % AV-tree
= L
&
= 107!
Q
g
=
S
1072 E
L L Ll]
10° 10! 102 103

Number of queries

Figure 1: Cumulative cost on a workload of range queries

Besides being much more efficient than previous multidimen-
sional adaptive indexes, our AV-tree is the first multidimensional
adaptive index that supports kNN queries. We emphasize that
distance-based range and kNN queries are the most general and
most common operations in high-dimensional metric spaces with
numerous applications [7]. The AV-tree is not only applicable in
vector spaces where, for example, an Ly-norm distance (e.g., Eu-
clidean distance) is used, but also in general metric spaces; e.g., for
indexing a collection O of strings to support similarity search based
on edit distance. Our experimental evaluation demonstrates the
robustness of AV-tree to different metric spaces and distances.

Our contributions can be summarized as follows:

e We investigate, for the first time, the problem of building a
distance-based adaptive index for high-dimensional metric
spaces

o We define the AV-tree, an index that efficiently adapts to
the query workload, forming a unified solution for both
distance range queries and kNN queries.

e We provide several enhancements on the AV-tree.

e We conduct an extensive experimental study, showing that
the AV-tree behaves as an ideal adaptive index should.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 provides core definitions. Our AV-tree index
is presented in Section 4. Section 5 presents our experimental study
and Section 6 concludes the paper and discusses future work.

2 RELATED WORK

Our work relates to metric space indexing and to adaptive indexing
in databases. In this section, we review related work, focusing on
the state-of-the-art.

2.1 Indexing metric spaces

Indexing high-dimensional spaces is a hard problem for two main
reasons. First, due to the curse of dimensionality [5], if data points
are uniformly distributed, the probability that two points are too
close or too far from each other is very low, rendering similarity
search mostly meaningless. Still, in many real applications, data
typically form clusters, so this predicament does not apply. Sec-
ond, indexes that divide the data space using rectilinear partitions
(e.g., the R-tree [17], the KD-tree [4], etc.) do not perform well, as
they necessarily use only a limited number of dimensions!, hence
partitions end up spanning the entire domain on most dimensions
and do not separate the objects well. Besides, such indexes are only
applicable in vector spaces and are mostly suited for rectilinear
range queries rather than distance-based search.

Ref. [7] (see also [8]) is a recent comprehensive survey of exist-
ing indexes for exact similarity search in metric spaces. Based on
this study, pivot-based indexes are the most effective ones. These
methods select few vantage points (a.k.a. pivots, landmarks, represen-
tatives), partition the data space based on them, and use the vantage
points to prune the search space, guided by the triangle inequality.
Pivot-based indexes are applicable even when distances are not
computed using point coordinates, but in arbitrary metric spaces
(e.g., as shortest paths in graphs [2]). Besides being very efficient,
pivot-based indexes provide exact and explainable results to similar-
ity queries, which is imperative in application domains like public
safety [7], bioinformatics [12], and computer forensics [33]. Hence,
performing exact search in the original metric space may be prefer-
able over solutions that transform the data to a vector space using
machine-learning techniques (e.g., embedding approaches [37]) and
apply search in the transformed space or LSH-based approximate
indexes [14, 15, 35, 46]; the latter are mostly appropriate in spaces
where objects are not well-separated, thus exact similarity search
may not be meaningful or critical.

We present in detail three representative main-memory pivot-
based metric indexes that we use as competitors to our approach.

!partitioning a D-dimensional space at least once in each dimension defines 2P
partitions, which are much more than the data points for large D (e.g., D = 100).

2.1.1 SimplePivot. SimplePivot employs Farthest First Traversal
(FFT) [20] to choose vantage points. The FFT algorithm starts by
selecting a random point as the first pivot. In each subsequent itera-
tion, it selects as a pivot the object u that maximizes min,ep d(u, p),
where P is the set of previously selected pivots. Thereafter, we com-
pute the distances of each data point to all vantage points. When
evaluating queries, we use the pre-computed distances to avoid
unnecessary distance computations. Specifically, consider a query
point g and radius €. At the beginning of query evaluation, we com-
pute and cache d(p;, q) for all p;. For each data object o € S, if there
exists a pivot p;, such that |d(p;,0) — d(pi,q)| > €, then o is cer-
tainly not a result, hence we do not need calculate dist(g, 0). Since
d(pi, 0) has been precomputed, the pruning test for each object o
takes O(m) time, where m is the number of pivots, whereas the
computation of distance d(q, 0) takes O(D) time for L, distances in
D-dimensional vector spaces and even more in other metric spaces
(e.g., edit distance).

2.1.2 Spatial Approximation Tree. The Spatial Approximation Tree
(SAT) [38] is a hierarchical data structure, where the children of a
node are its neighbors in the Delaunay graph on the entire data set.
To find the nearest neighbor (NN) of a query object g, we start from
the root n; if n is closer to ¢ than its children, then search stops
reporting n as the NN. Otherwise, we navigate to the child of n
nearest to q and search recursively. To evaluate a range query (g, €),
SAT uses the triangle inequality to prune nodes (and corresponding
sub-trees) that are guaranteed to be further than e from gq.

2.1.3 VP-tree and MVP-tree. The Vantage Point tree (VP-tree) [47]
partitions the data hierarchically based on a vantage point at each
node. Starting with the root, which indexes all data, at each node v,
a vantage object (pivot) py, is selected at random from the objects
indexed at this node. The data under node v are then split in two
partitions as follows: Let y be the mean distance of points under v
to pivot py. Objects having distance to p, less than or equal to y are
placed in the left sub-tree; remaining objects go to the right sub-tree.
To evaluate a range query, we recursively traverse the VP-tree. For
a query (g, €), at each node v with pivot p, having median distance
from its indexed points y, we examine the following:

o if dist(q, py) < €, then py is a result;
e if |dist(q, po) — pt| < €, then search the left sub-tree;
o if dist(q, py) + € > p, then search the right sub-tree.

For a single query, we may follow multiple paths of the VP-
tree, according to the above. The MVP-tree [6] generalizes the
VP-tree to a m-ary tree. Instead of splitting the objects in two
partitions, it orders them by their distance to the vantage point and
partitions them to m groups of equal cardinality. During search,
it uses the mean distance for each of the m groups to prune sub-
trees that cannot include query results. According to the extensive
experimental study in [7], the MVP-tree performs best compared
to a wide-range of main-memory metric space indexes, including
pivot-based methods [13, 29] and SAT [38]. On the other hand,
notable metric-space indexes optimized for secondary memory are
the M-tree [9] and the PM-tree [45]

The AV-tree we propose differs from VP-tree variants in the fol-
lowing ways: (i) it builds the tree progressively, via query evaluation,
rather than in advance; (ii) it selects pivots adaptively from queries

rather than from the data collection; and (iii) it keeps the data in a
single array and swaps them to partition them to sub-arrays.

2.2 Adaptive indexing

Adaptive indexing constructs a data structure for a static dataset
on demand by adapting to an evaluated query workload [31]. Each
query divides the data space based on its results, triggering the
construction of a search tree that guide the evaluation of subse-
quent queries. This idea has been applied to database indexing [24],
progressively cracking an initially unsorted array to segments that
obey a total order and constructing a binary search tree to prune
sub-arrays that do not contain query results. Figure 2 shows the
cracking of an unsorted array based on query 10 < x < 20 and one
step in the progressive construction of the corresponding binary
search tree. The array is first cracked based on 10 < x. Indices i
and j scan the array in forward and backward, respectively. For
each out-of-order value found (i.e., a value > 10 at i and one < 10
at j), if i < j, the values are swapped and the process continues;
otherwise, cracking stops. After cracking based on 10 < x, we
update the binary search tree: all values less than 10 are in array
positions 0 to 1 and all values of 10 or larger are in array positions 2
to 7. The second crack, based on x < 20 applies on the right child
of the root and cracks the corresponding subarray to two pieces:
positions 2 to 3 having keys less than or equal to 20 and positions 4
to 7, having keys greater than 20. The search tree (e.g., an AVL-tree)
is re-balanced after each cracking.

i— “l
{52, 37, 63, 14, 17, 8, 6, 25}

<

i
63, 14,17, 37, 52, 25}

{6, 37, 63, 14, 17, 8, 52, 25} 10 { 2

{6, 37, 63, 14, 17, 8, 52, 25} N2 { 63, 14,17, 37, 52, 25} N

{6, 8, 63, 14, 17, 37,52, 25} [04] [27] * 17, 14,63, 37, 52, 25} 10, [4,7)
il

(6,863, 14, 17, 37, 52, 25} © 0[17, 18] 63,37, 52,25y 01 23

10<key 10<key key<=20

(a) cracking based on 10 < x (b) cracking based on x < 20

Figure 2: Standard cracking example

In effect, cracking conducts quicksort incrementally, triggered
by queries. This process has been extended to efficiently handle
updates efficiently [25]. As an alternative to quicksort, one may per-
form a mergesort operation incrementally [16], a hybrid approach
that combines merging and cracking [27], or first partition the
domain in disjoint ranges and then crack the partitions [44].

Like typical database indexes do, cracking applies on a single
attribute [26]. Adaptive indexing for multidimensional spaces has
been explored in the context of spatial or low-dimensional databases.
QUASII [40] builds a tree of D levels, where D is the data dimen-
sionality. It first projects each query on the x dimension and per-
forms cracking on it; then it cracks the formed x-dimension pieces
on the y dimension, and so on. AKD-tree [23] extends the classic
kd-tree [4] to a multidimensional adaptive index, which progres-
sively partitions the data by hyperplanes guided by queries and
constructs a kd-tree to index the enusing pieces. The latter was
shown to outperform QUASII [30, 39]. However, as we will show
experimentally, distance-based partitioning fares much better than
hyperplane-based partitioning.

3 DEFINITIONS AND PRELIMINARIES

We examine similarity-based queries in a metric space. A metric
space is defined as a pair {M,d}. M is a domain wherefrom ob-
jects are instantiated. For example, if M is be a D-dimensional
vector space, each object o in it has the form (id, 01,02,...,0p),
where id is an identifier and o; € [0, 1] is the i-th dimensional
value of o; d is a metric distance function applied between ob-
jects in M; in vector spaces, d is typically the Euclidean distance,

d(gq,0) = 1,2121(%' — 0j)2. In general, a metric distance function d

has the following four properties:

o Identity. The distance of an object to itself is 0; d(x, x) = 0.

e Non-negativity. The distance between two distinct objects
is positive; if x # y then d(x,y) > 0.

e Symmetry. The distance from x to y is the same as that
from y to x; d(x,y) = d(y, x).

o Triangle Inequality. For any three objects x, y, z, d(x, z) <
d(x,y) +d(y, 2).
We consider a set O of objects in the metric space M, which may
become available in batches. The most common similarity-based
queries are the range query and the k-nearest-neighbor query.

DEerFINITION 1. Range Query. Given an object q and a distance
bound €, a range query returns all objects o € O that are within
distance € from q, i.e., d(g,0) < €.

DEFINITION 2. k-Nearest-Neighbor (kNN) Query. Given an
object q and a positive integer k, k < |O|, a k-nearest-neighbor query
returns a subset R C O, such that |R| = k andYo € R,o’ € O\ R :
d(g.0) < d(q,0’); in other words, a kNN query finds a set R of k
objects in O having no larger distances to q than those outside R.

Answering a query amounts to finding the identifiers of the
objects 0 € O in the result set. We assume that the objects are stored
in rows in memory, i.e., the entire tuple of the first object precedes
the tuple of the second object, and so on; such a representation
facilitates efficient distance computations.

S8 O@

(a) disjoint (b) overlap (c) gi contains q; (d) g; contains g;

Figure 3: Four cases of overlap between g; and g;

We aim to exploit previously evaluated queries to expedite the
evaluation of subsequent queries. To do so, we should quickly de-
termine whether, and how, the range of a previous query (gj, €;)
overlaps with that of the current query (g, €;). There are four cases
in this regard, depicted in Figure 3.

(@) (gi,€i) does not overlap (gj, €j), i.e., d(qi,qj) > € +€;j.
(b) (gi,€) overlaps (gj, €), but neither is a subset of the other.
(¢) (gi,€i) contains (gqj, €;), i.e., € > d(qi,q;) +€;j.

(d) (gj,€j) contains (gi, €;), i.e., €j > d(qi, qj) + €i.

Exploiting the triangle inequality, we can identify the relation-
ship between two queries as follows. We first check whether d(q;, q;) >
€j+€j. If this holds, then the query ranges do not overlap, i.e., case (a)
holds. Otherwise, we have one of the remaining three cases, which
we test as follows. If d(gi,q;) < €; — €j then g; contains gj, ie.,
case (c). If d(gi, qj) < €j — €; then g; contains g;, i.e., case (d). In all
other cases (i.e., d(qi,qj) > |e; — €;|), we have case (b).

4 THE AV-TREE

In this section, we present our proposed adaptive vantage tree
(AV-tree) for high-dimensional metric spaces. We first show how
the AV-tree is incrementally constructed while evaluating range
queries and then present the corresponding algorithm for ANN
queries. Notably, range queries can be interleaved with kNN queries
in a mixed workload without affecting the data structure and its
effectiveness. In Section 4.3, we present some enhancements to the
basic version of our index, followed by a cost analysis (Sec. 4.4).

4.1 Range Query

Our algorithm builds on the framework for one-dimensional data-
base cracking with some significant departures: First, there is no
total order of the indexed data to guide the process. Second, con-
trary to existing multidimensional cracking approaches [39, 40],
we do not partition the space by hyperplanes, but based on the
distances between the query and data.

We evaluate the first query (g1, €1) by scanning the entire data ar-
ray O, and, while computing the results, performing a crack-in-two
operation: we place data points 0 € O with d(q1,0) < € before data
points o € O with d(qi1,0) > €. We heed no other order constraints.
At the same time, we define the root of the adaptive vantage tree, or
AV-tree, a binary search tree which helps identify relevant data for
subsequent queries and avoid redundant computations. For each
subsequent query, we use the AV-tree to guide search and expand
it by introducing new cracks.

Each node v in the AV-tree contains two elements: the scope
[v.lo,v.hi] of v, i.e., the range of array indices that v indexes; and
the query (v.g, v.€), that guides the search in v, if v is not a leaf node.
The tree root has lo = 0 and hi = |O| — 1, where |O| is number of
data objects. If v is a leaf, then v.q is null. Otherwise, v has two
pointers v.left, v.right to its left and right children, respectively. For
each object o in the scope of v.left, it is d(g, 0) < v.€, while for each
object o in the scope of v.right, it is d(q,0) > v.€.

Algorithm 1 presents the search-and-crack process in detail,
outlined in two procedures. The main recursive SEARCH-AND-CRACK
procedure takes as input an array O with the data points, a query
point g and the corresponding distance bound € and the node v of
the AV-tree on which it is applied. For a new query, we initialize
the query result to R = 0 and call the procedure with v being
the tree root. If v.q is null, then v is a leaf node, hence we crack
by procedure cRACK-IN-TWO (described later), yielding two new
vertices as children of v. If node v is not a leaf, then we examine the
relationship between the node query range (v.q, v.€) and the new
query range (q, €) as in Section 3. If the two ranges are disjoint,
all data under the scope of v.left are not part of the query result,
hence we call SEARCH-AND-CRACK for the right child v.right, as its
scope may include results of q. On the other hand, if the new query

range overlaps with (v.q, v.€), we distinguish two cases. If (v.q, v.€)
is entirely inside (g, €), then we add? to R all data under the scope
of v.left as query results and SEARCH-AND-CRACK the right subtree
of v. Otherwise, if (g, €) is entirely inside (v.q, v.€), we only SEARCH-
AND-CRACK the left subtree of v. Lastly, if there is no containment
relationship between (v.q,v.€) and (g, €), as in Figure 3b, then we
also call SEARCH-AND-CRACK for the right subtree.

Algorithm 1 Distance-Range Search and Crack

1: procedure SEARCH-AND-CRACK(data array O, query g, bound €, node o, result R)
2 if v.q is null then > leaf node
3 (v.left, v.right) «—crack-IN-TWO(O, v.l0, v.hi, q, €, R)

4: 0.q < q;V.€ < €

5: else > non-leaf node
6 if d(q,v.q) > € + v.e then > disjoint query ranges
7 SEARCH-AND-CRACK(O, g, €, v.right, R)

8 else > overlapping query ranges

9: if d(q,v.q) < € — v.€ then > 0.q entirely inside ¢
10: R <« RU [o.left.lo, v.left.hi] > update query result
11: SEARCH-AND-CRACK(O, g, €, v.right, R)

12: else

13: SEARCH-AND-CRACK(O, g, €, v.left, R)

14: if d(q,0.q) > v.€e — € then > g not entirely inside v.q
15: SEARCH-AND-CRACK(O, g, €, v.right, R)

16:

17: procedure CRACK-IN-Two(array O, int lo, int hi, query pt g, bound €, resullt R)
18: i—lo

19: je—hi

20: while true do

21: while d(q,O[i]) < epsilon and i < hi do

22: ie—i+1

23: while d(q,O[j]) > epsilonand j > lo do

24; jej-1

25: if i > j then

26: break

27: swap O[i] with O[j] > O[i] and O[j] on wrong sides
28: R« RU[lo,j] > update query result
29: op.do « lo; wp.hi « j; ovp.q < null

30: oR.lo «— j+1; og.hi < hi; vg.q < null

31: return (og, vR)

Procedure CRACK-IN-TWO is based on Hoare’s quicksort parti-
tioning [19]; it scans the scope of a node v array O from position lo
to position hi and swaps data items to divide [lo, hi] in two parts:
[lo, j], including data points o such that d(q,0) < € and [j + 1, hi]
including remaining points. We add the former part, [lo, j], to the
query result R and generate two new nodes for the two new scopes,
as children of calling node v. Note that one of the two scopes may
be empty, in case the scope of v includes either (i) no query re-
sults or (ii) only query results. In the former case, vy .lo = lo and
vr.hi = lo — 1; in the second case, vg.lo = hi + 1 and vy .hi = hi.
Procedure SEARCH-AND-CRACK does not perform recursive calls for
a child having empty scope, as no query results can be obtained
from such nodes. We call leaves that cannot be further cracked
because they have an empty scope empty leaves.

Example. Figure 4 presents a detailed example of SEARCH-AND-
CRACK running. Data array O includes eight 2D points, p; to ps,
and initially the tree has a single node v; with scope [0, 7]. Upon
the first query, (qi, €1), CRACK-IN-TWO runs for the root node v;
(Line 3), which is a leaf, to produce two new nodes, v and v3, as its
left and right child, respectively, as Figure 4a shows. The result of R
is the scope of vy (i.e., p7, p2, and ps). For the second query, (g2, €2),
SEARCH-AND-CRACK runs for (g, €) = (g, €2). Figure 4b shows that

ZFor simplicity, we denote the query result as a set of interval ranges indicating the
positions of result objects in array O.

the range of g, overlaps with the query range of the root, (g1, €1).
Hence, we enter Lines 13-15. The call in Line 13 yields a CRACK-IN-
TWO of v1’s left child (i.e., node v2). However, this crack produces no
results, because all points in the scope of v, are outside g2’s range;
thus the newly produced node vy4 as left child of vy has empty range
[0,-1] (shaded in the figure). The generated right child vs has the
same scope as its parent vy. As we will discuss in Section 4.3.2, in
our enhanced version we do not split a leaf if one of its children is
empty. The recursive call at Line 15 invokes CRACK-IN-TWO for v1’s
right child (i.e., v3). Now we do have a query result [3,4] added
to R (i.e., points p4 and ps) and two new vertices v and v7 with
non-empty scopes as new children of v3. Figure 4c shows the effect
of the next query, (g3, €3). Query range (g3, €3) is outside the range
of the root v1, hence we only visit its right child v3 (Line 7). We find
that (g3, €3) is fully contained in (gg, €2), hence only visit v3’s left
child v (Line 13), where we find no results for g3, yielding vg as an
empty child of, and vg as identical to, v.

data space data array (initially) tree (initially)
[Pr]P2]ps[pa]ps e 7] ps] V]
0 7

data array (after ¢,) tree (after q,)

° °p6 (B[] pa] 25 [0s [o] s
1 o }
Pa 0 23 7
° result of ¢;: [0,2]

(a) data array and tree, before and after (g1, €1)
data array (after ¢,)
[pr]p2]ps|Pa]Ps| ps] p1]ps]
! !

0 273 45 7

data space

result of g,: [3,4]

tree (after ¢,)
0,7,q1,8 |V

\ V) V3
‘02(]2?7 ‘3 7,q2,52‘
b1 v

(b) after (q2, €2)

data array (after g;)

data space

result of g3: @

‘1)7‘772‘Pﬁip4‘l?6ipzi‘771‘778‘
0 2 3 45 7
tree (after qJ)
0,7,4,,

Vv, vy

‘ 0,2, q,, 52

V7

34q3a3 57

(c) after (g3, €3)
Figure 4: Search-and-crack example

4.2 Nearest-Neighbor Query

Like range queries, kNN queries crack the data array and progres-
sively construct and use AV-tree as a binary search tree that guides
them to relevant data, yet now we access the AV-tree nodes in a
best-first order that is appropriate for kNN search. Further, adaptive
indexing in response to kNN queries poses a distinct challenge, as

queries do not readily offer a distance bound. We define such a
bound as the distance between the query object and its running
k-th nearest neighbor. Algorithm 2 presents the process in detail.
A query (g, k) comprises a query point g and the integer number
of sought nearest neighbors k. We use two priority queues: a min-
heap searchPQ that organizes unvisited nodes by least possible
distance to g to guide the search in a best-first manner, initialized
with the root; and a max-heap resultPQ that holds the running kNN
data object results. In each iteration of the while loop (Lines 5-20),
we pop the top element v from searchPQ. If v is a leaf (Line 8), we
compute the distance of each data object in v to the query point ¢
and update resultPQ accordingly, keeping track of the k nearest
objects to g; resultPQ is a max-heap of data-objects ordered by their
distance to the query point, hence the top element is the farthest
from g, i.e., the running kth Nearest Neighbor. When looping over
the data objects in a leaf (Line 9), if one is closer to g than the
running kth-NN (Line 10), then we remove the current top element
(Line 11), and add this object to resultPQ (Line 12). We also crack
the leaf node using as bound (to be enhanced in Section 4.3) the
distance to the top item in resultPQ (Line 13). If v is an internal tree
node (Line 14) then we push its children to searchPQ with their
priority key set as the least possible distance of an object under v
to g, using the triangle inequality. As the left sub-tree contains
points that are closer than v.€ to v’s vantage point, g’s minimum
possible distance from an object therein is the maximum of 0 and
distance of ©’s vantage point from the query minus v.e (Line 15); if
the latter is negative, then q is in the sphere of v. The right child,
conversely, contains the objects outside the sphere centered at v’s
vantage point with radius v.€, hence ¢’s minimum possible distance
from such an object is the maximum of 0 and v.e minus the distance
of v’s vantage point from g (Line 18); if the latter is negative, then q
is outside the sphere of v. In both cases, if the minimum distance
is not smaller than the running k-th smallest distance at the top
of resultPQ, then we do not need to look into that child; otherwise
(Lines 16 and 19), we add the node to searchPQ (Lines 17 and 20).
The search terminates when searchPQ becomes empty.

Algorithm 2 kNN Search and Crack

: procedure kNNSEarcH(data array O, query g, int k)

: searchPQ « PriorityQueue(dist, node)
resultPQ « PriorityQueue(dist, pid)
searchPQ.push ([0, root])

1

2 > guide search
3

4:

5: while !searchPQ.empty() and

6:

7

8

> results PQ

searchPQ.top().dist < resultPQ.top().dist do

v = searchPQ.top().deheap()
: if vis leaf then
9: for 0 in v do

> 0 is a data point
10: if d(p, q) < resultPQ.top().dist then
11: resultPQ.pop() > update kNN set
12: resultPQ.push([d(p, q), pid])
13: Crack v > on distance to current k-th NN
14: else > non-leaf node
15: leftMinDist = max{0,d(v,q) — v.€}
16: if leftMinDist < resultPQ.top().dist then
17: searchPQ.push([leftMinDist, v.left])
18: rightMinDist = max{0,v.e — d(v,q)}
19: if rightMinDist < resultPQ.top().dist then
20: searchPQ.push([rightMinDist, v.right])

4.3 Enhancements

We introduce three enhancements that significantly improve the
performance of the AV-tree: First, we crack leaves by the median

distance of objects therein to the query. Second, we eschew con-
structing empty leaves and cracking leaves that have a few objects.
Third, we cache and sort the last computed distances of objects in
leaves that cannot be cracked further, to avoid distance computa-
tions for objects that are definitely not results.

4.3.1 Cracking based on mediocre distances. A popular practice in
both cracking-based and pivot-based indexing methods is to parti-
tion the data on an intrinsic median value rather than an extrinsic
threshold. For instance, the VP-tree [47] partitions data on their
median distance to a vantage point. Likewise, in one-dimensional
cracking, using a median or mediocre value in a cracked piece rather
than a query threshold brings efficiency benefits [48]. Inspired by
such precedents, we use a sample-based mediocre pivot for leaf crack-
ing. When we crack a sub-array corresponding to a leaf node v, we
compute the distances from a few sample points in v to q and crack
on the median thereof as v.e. We confirmed experimentally that,
with as few as 3 samples, mediocre-based cracking is superior to
the default strategy that cracks on the query range € or the run-
ning kth nearest neighbor. Besides, mediocre-based cracking leads
to a balanced tree, since each crack yields two partitions of almost
equal size. Therefore, mediocre-based cracking improves perfor-
mance and renders the index more versatile in handling different
query workloads. In addition, thanks to mediocre-based cracking,
we do not need to perform two passes over the data (one to update
the kNN set and one to crack) with kNN-search cracking; we only
sample 3 distances and then crack and update kNN in one pass.

4.3.2 Avoiding empty leaves and applying a cracking threshold. As
we saw in Section 4.1, our default algorithm may add empty leaves
to the AV-tree. Such empty leaves add overhead in searching the
tree. In our implementation, we do not create leaves with empty
scopes, i.e., we do not commit a crack of a leaf v that results in
an empty oy or vg and let v remain a leaf. In addition, the default
algorithm cracks a leaf v unconditionally; however, leaf nodes that
contain few objects are not worth cracking in practice, as they in-
crease tree height without offering a significant pruning advantage
in comparison to scanning objects. As in one-dimensional crack-
ing [24], we do not crack leaf nodes holding objects no more than
cracking threshold 6, which effectively delimits the height of the
AV-tree. We thus expect average leaf size to converge to ¢/> and
tree height to 1 +log, %. We call such leaves that are not cracked
further fixed leaves. When a query reaches a fixed leaf, we obtain
query results therefrom by linear scan.

4.3.3 Distance Caching. As distance computations consume most
of the query evaluation cost, reducing their amount would pay off
in efficiency. We may do so by caching query-to-object distances.
That is, while cracking, we can keep each object’s distance to the
current query. Thereby, we get the distance of each object in a
leaf v to the leaf’s parent node p(v). Next time we visit v while
processing another query g, we may use the triangle inequality
on d(p(v), q) and the cached distance d(p(v), 0) for each object 0 €
v to check whether o can be a query result and either prune o or add
it to the result set R accordingly, avoiding the associated distance
computation.

Nevertheless, triangle-inequality calculations may sometimes be
ineffective and thus cause an unnecessary overhead. We thus apply

distance caching conservatively; only in fixed leaves, we cache the
distance of each object o in leaf v to the leaf’s parent node p(v), and
sort those objects by distance to p(v). We utilize this sorted order
to conduct only a few comparisons to cached distances with early
termination and and to prune distance computations for objects for
which we can directly determine whether they are query results.

Algorithm 3 Search and Cracking with Caching

1: procedure SEARCH-AND-CRACK-CACHING(data array O, query pt g, bound €, node
o, result R, threshold 0)

2 if v.q is null then

3 if v.size < 0 then > fixed leaf node
4: gDist = distance(v,q)

5: p(0) = parent of v

6: if v.isLeftChild() then
7 if gDist > € then > Case L1
8: low = first 0 € o, such that d(p(v),0) > gDist — €

9: high =last 0 € v, such that d(p(v),0) < gDist +€

10: for o € v from low to high do

11: if d(q,0) < € then

12: R=RU {0}

13: else > Case L2
14: low=firsto € v,s.t. d(p(v),0) > € — qDist

15: for o € v from start until low (excl.) do

16: R=RU {0}

17: for o € v from low until end do

18: if d(g,0) < € then

19: R=RuU {o}

20: else > v is right child of p(v)
21: if gDist < €+ p(v).€ then > Case R2
22: low=firsto € v

23: else > Case R1
24: low = first o € v, such that d(p(v),0) > gqDist — €

25: high =last 0 € v, such that d(p(v),0) < qDist +¢€

26: for o € v from low to high do

27: if d(q,0) < € then

28: R=RU{o}

29: else > non-fixed leaf
30: Lines 3—4 of Algorithm 1

31: if v.left.size < 6 then > ov.left is fixed
32: qsort(v.left)

33: if v.right.size < 0 then > v.right is fixed
34: qsort(v.right)

35: Lines 6-15 of Algorithm 1

Algorithm 3 shows how we handle fixed leaves using cached
distances, modifying procedure SEARCH-AND-CRACK in Algorithm 1.
We show the differing part for range queries; for kNN queries,
we use the distance to the item at the top of the result heap as a
threshold in comparisons in place of € and update the kNN result
set when accessing qualifying data objects. We now discuss in
detail how we prune distance computations in each of four cases,
as depicted in Figure 5: two for left-child fixed leaves v that point
to data within their parent’s query range (p(v), p(v).€) and two for
right-child fixed leaves pointing to data outside the query range.

In Case L1, d(q, p(v)) > e. Then, by the triangle inequality, ob-
jects o with d(p(v),0) < d(q,p(v)) —eord(p(v),0) > d(q,p(v))+e
cannot be query results. We then find, by binary search among
sorted cached distances, the position of the first object 0 € v
with d(p(v),0) > d(q,p(v)) — € and that of the last object 0 € v
with d(p(v),0) < d(q, p(v)) + €, scan objects in-between, and in-
clude in the result those having distance to g at most € (Lines 10-14).
In Figure 5a, assume p(v) is the parent of fixed leaf v, with objects p1
to ps sorted by distance to p(v). Objects other than p3 and p4 can-
not be query results; we compute distances to g only for those two,
yielding p4 as a result.

In Case L2, d(q, p(v)) < €. Then, objects o with d(p(v),0) < e—
d(gq, p(v)) are surely query results. Hence, we find, by binary search,
the position of the first object 0 € v with d(p(v),0) > € —d(q, p(v))
(e.g., p3 in Figure 5b), add all objects heretofore to the query result
(e.g., p1 and py in Figure 5b), and conduct distance computations
only for objects thereafter (Lines 17-24).

In Case R1, the ranges of query g and p(v) are disjoint, i.e.,
d(q,p(v)) > p(v).€ + €. Then, objects o outside the query range
of p(0) withd(p(v),0) < d(g, p(v))—€ord(p(v),0) > d(q,p(v))+e
(e.g., p1 and p3 in Figure 5¢) cannot be query results; thus, as in
Case L1, we find, by binary search, the range of candidate query
results and compute distances only for those. Case R2 applies when
d(q,p(v)) < p(v).€ + € and is similar to Case R1, except that now
there are no objects o with d(p(v), 0) < d(q, p(v)) — € outside the
query range (p(v), p(v).€), hence a single binary search suffices.

guaranteed no results

(a) case L1

\\\'Pz

guaranteed no results

guaranteed no results guaranteed no results

(c) case R1 (d) case R2
Figure 5: Use of cached distances at AV-tree leaves

In addition, when possible, we avoid binary search to compute
the range of positions in which to scan objects and compute dis-
tances. For example, in Case L1, if p(v).€ < d(q, p(v)), then there
are no objects within the query range of p(v) with d(p(v),0) >
d(q, p(v)) + €, hence high is the last position of v. Similarly, in Case
L2,if d(q, p(v))+p(v).€ < €, then all objects within the query range
of p(v) are query results, hence we need not do any comparisons.
We also exploit the fact that, as objects in fixed leaves are sorted,
the first and the last object in v provide lower and upper bounds
to d(p(v),0), respectively. Thus, in Cases R1 and R2, if the last
cached distance dLast is dLast < d(q, p(v)) + €, then we set high
to the last object position in v and eschew binary search.

4.4 Cost Analysis

Here, we analyze the cost of the AV-tree index with all enhance-
ments. Assuming that AV-tree leaves of size no larger than 6 are
not cracked, we expect the tree to reach its maximum size after a
large number of queries, whereupon no more cracks are performed.
In this state, each leaf has ¢/> objects on average, so the expected

number of leaves is %” where n is the number of objects in O. Since
the AV-tree is a binary tree, the expected number of nodes is %" -1,
hence the index space complexity is O("/o). The worst-case cost of
query processing is O(n), accessing all leaves and data objects and
computing their distances to g. So is the cost of the first query over
an uncracked array. However, after a large number of queries, we
expect the cost per query to drop and to converge to that of using a
fully built VP-tree [47], since the AV-tree is expected to be balanced
thanks to mediocre cracks (see Section 4.3.1) dividing leaves into
two pieces of roughly equal numbers of objects. Lastly, the space
overhead of distance caching (Section 4.3.3) is negligible as we only
store one scalar (i.e., a float) per object. Thus the space requirements
of caching are O(n), whereas those for storing the D-dimensional
data array are O(Dn).

5 EXPERIMENTAL EVALUATION

We evaluate AV-tree against the following competitors:

e Linear scan computes distances d(g,0) for all o € O and does
not perform any data array re-organization or indexing.

e SimplePivotis described in Section 2. After experimental tuning,
we opted to set the number of pivots m to 5, which yields the
best performance; this parameter value selection is consistent
with the experimental setup in [7].

o MVP-tree [6] is the best performing high-dimensional index
for memory-resident data, according to [7]. We used the same
implementation® as in [7]. MVP-tree has two parameters, bucket
size (equivalent to the threshold 0 in AV-tree) and arity (i.e.,
number of children per node). Through experimentation, we
determined that MVP-Tree performs the best with bucket size 64
and arity 5.

o AKD-tree [39] is the state-of-the-art adaptive index for multi-
dimensional points; we used the authors’ implementation?. To
prevent excessive tree growth, we select 128 as the size threshold
after experimentally assessing various values. The original im-
plementation handles rectangular queries, i.e., the L4 distance
metric. To adapt it to the Ly distance metric, we first perform
an Ly gx-query for the surrounding tangent box using the given g
and €, and then filter false positives by a Ly-based linear scan.

e SAT is an implementation® of the Spatial Approximation Tree [38]
(see Section 2.1.2), which has no construction parameters.

Table 1: Datasets used in experiments

Dataset Cardinality dimensionality distance size (MB)

MNIST 70k 5, 20, 50, 100 Ly, L, 3-55

Words 650k 2-33 edit distance 8
Synthetic | 50k, 100k, 200k, 500k 100 Ly, L, 20-450

5.1 Experimental Settings

Datasets. We use two publicly available real datasets and syn-
thetically generated high-dimensional vectors. Table 1 summarizes
statistics about the data with the default values of parameters and
distance metrics shown in boldface. We provide more details below.
e MNIST” is a database of 70K handwritten digits [11]. Each digit is
stored as a grayscale image with a size of 28x28 pixels. MNIST has
3https://github.com/kaarinita/metricSpaces

*https://github.com/pdet/Multidimensional Adaptivelndexing
Shttp://yann.lecun.com/exdb/mnist/

been used in numerous similarity search studies (e.g., [3, 28, 34]).
We use the UMAP [36] dimensionality reduction method to create
various vector representations of the data with D in 5-100.

e Words is a database of 650K proper nouns, acronyms, and com-
pound words, taken from the Moby project®, with lengths vary-
ing from 2 to 33 characters. On Words, the query goal is to find
words that are similar to a given query string by edit distance.

o Synthetic are generated clustered datasets of 10 non-overlap-
ping, equally sized clusters comprising 20K-500K points in 100
dimensions, generated as isotropic Gaussian blobs by the make_-
blobs function of the sklearn [41] Python library with a standard
deviation of 0.5.

Queries. To evaluate the performance of all methods, we ran work-
loads of range and kNN queries. In line with previous work [24, 39],
our query workload consists of 1000 randomly sampled query
points from the target dataset’ For range queries we tuned € to
ensure that queries return the desired number of results. We do
experiments with selectivity of 20-1000 (default 100). For ANN
queries, we seet k to 20 by default and let it range in {5, 20, 50, 100}.

Cost measures. In accordance with previous work on adaptive
indexing [18, 24, 25, 27, 39], we evaluate all methods by their (i) cost
per query and (ii) cumulative cost, as the query workload progresses;
we average results over 5 runs. As SimplePivot, MVP-tree, and
SAT are built in advance, we add their construction cost to the
cumulative cost prior to the first query. Linear scan, AV-tree, and
AKD-tree do not bear preprocessing costs.

5.2 Enhancements and parameter tuning

5.2.1 Effect of AV-tree enhancements. First, we evaluate different
AV-tree versions with 1000 queries on the 50D MNIST dataset, in-
cluding the performance of linear scan for reference. We compare
the basic version of AV-tree, which uses standard cracking with-
out any enhancements (labeled ‘standard’) to (i) its variant using
mediocre cracking (Section 4.3.1, ‘mediocre’); (ii) a variant using
mediocre cracking and threshold 0 = 128 (Section 4.3.2, ‘mediocre-
128’); and (iii) a variant that applies all enhancements including
caching (Section 4.3.3, ‘mediocre-128 caching’).

Figures 6a and 6b show the per-query and cumulative costs, re-
spectively, of all AV-tree variants on MNIST, while Figures 6¢ and 6d
show their cumulative costs on Sythetic and Words. Notably, both
mediocre cracking and thresholding boost performance, with the
effect of thresholding being smaller on MNIST. Mediocre cracking
creates a balanced tree, as each crack splits a leaf in two partitions
of roughly equal size, while thresholding avoids building an exces-
sively tall tree, which would be detrimental to performance, as its
traversal does not pay off compared to the achieved savings. On the
other hand, caching pays off in cases where distance computation
is expensive, e.g., on the Words data, where we use edit distance.

Table 2 shows the cumulative costs, distance computations and
number of AV-tree nodes after 1000 range queries on the 50-di-
mensional MNIST. The fully optimized AV-tree surpasses all other

®https://en.wikipedia.org/wiki/Moby_Project

7In most real applications in metric spaces, queries are not ad hoc, but follow the data
distribution. For example, in image similarity search, query images are typically taken
from the queried collection; in kNN-based classification, samples to be classified are
part of the same collection as the training data.

‘<>Iinear scan

standard () mediocre Q mediocre-128

mediocre-128 caching

100 | !
1073

=
1

Time(sec)
Time(sec)

1074

3
&

L

Time(sec)

10! T

Time(sec)

103 I

100 10! 10
Number of queries

(b) Cumulative time (MNIST50)

10! 10%

Number of queries

(a) Time per query (MNIST50)

100

(c) Cumulative time (Synthetic)

10! 10%

Number of queries
(d) Cumulative time (Words)

10! 10%

Number of queries

Figure 6: AV-tree versions, 100 selectivity range workload.

versions in all respects. While on these data Mediocre without
threshold performs similarly to Mediocre-128, it incurs a significant
space overhead by building an AV-tree even bigger than Standard.
The same also holds for all other datasets; we omit the correspond-
ing tables in the interest of space.

Table 2: AV-tree versions, MNIST50, post 1k range queries

cum. time | cum. distance comp. | #nodes
Linear Scan 1.8548 70000 -
Standard 1.4831 38818.553 11983
Mediocre 0.1215 1602.105 85809
Mediocre-128 0.1019 1735.236 1843
Mediocre-128 caching 0.1002 1555.677 1843

‘<>Iir|ear scan /\ standard () mediocre O mediocre-128 - mediocre-128 caching
T T T

10'F |

100

Time(sec)
Time(sec)

. . .
102 100 10! 10?

.
10° 10!

10 108
Number of queries Number of queries
(a) MNIST50 (b) Synthetic

Figure 7: L; distance, 100-selectivity range workload

Figure 7 shows the cumulative cost of AV-tree variants on MNIST
and Synthetic using L; distance instead of Ly (Euclidean). Note
that the performance difference when using L; is insignificant.
Henceforward, we adopt all enhancements in the AV-tree and use Ly
as a distance measure on MNIST and Synthetic.

T T T T T T T
il | o—/g\ﬂ——e——e—e
40 - q
< o
L 0.6 (7]
- —+— AV-tree | &2 —#— AV-tree
] AKD-tree E 30| —6— MVP-tree
g —e— MVP-tree | .=
B oo4f =B
—
i M)
0.2 -
10| w—* 4
| \ | | | | | \ \ | | | , \
32 64 128 256 512 1024 2048 32 64 128 256 512 1024 2048
0 0
(a) MNIST50 (b) Words

Figure 8: Parameter Tuning, 100 selectivity range workload

5.2.2 Parameter setting. To set parameter values for all indexes,
we tuned them on the MNIST50 and Words data. The AV-tree uses
a single threshold parameter, similar to that of the AKD-tree and
the MVP-tree, while the MVP-tree requires one more parameter,
tree arity, which we set to 5, as both our own evaluation and [7]
suggest. Figure 8 plots the total cost for an 1K-query workload vs.
different threshold values. As the plot shows, the optimal threshold
values for AV-tree, AKD-tree, and MVP-tree, are 128, 128, and 64
respectively.

5.3 Comparative study

5.3.1 MNIST. Next, we try the fully enhanced AV-tree vs. the com-
petitors listed in Section 5 with range and kNN queries on MNIST.

Dimensionality Figure 9 shows the per-query and cumulative cost,
as the query workload (selectivity s = 100) progresses, on MNIST
datasets of varying dimensionality. AV-tree exhibits the ideal be-
havior of an adaptive index: its per-query cost gradually drops and
reaches that of the MVP-tree. Its cumulative cost outpaces all com-
petitors and eventually matches the MVP-tree. This progression
is slower on lower dimensionality; on higher dimensionality, the
two lines meet after around 100 queries. The AKD-tree performs
competitively to the AV-tree only on very low dimensionality (D=5),
where hyperplane-based partitioning works satisfactorily. Until it
reaches the size threshold, the AKD-tree creates 2D new levels per
crack, leading to an exorbitantly tall tree that is expensive to tra-
verse, hence its disadvantage on higher dimensionality. SimplePivot
is inferior to MVP-tree and SAT, especially when D is small. These
results are consistent with the findings in [7]. MVP-tree has lower
per-query cost than SAT in data of medium dimensionality, but the
two costs are similar in high-dimensional spaces. Still, SAT incurs
a very high start-up (i.e., construction) cost compared to MVP-tree.
Figure 10 repeats the experiment with kNN queries, setting k
to 20. We excluded the AKD-tree from the comparison, as it does
not support kNN queries. Our findings reaffirm those for range
queries, as the data are reorganized (i.e., cracked) similarly in both
cases, leading to a good data structure, while the use of the two
priority queues in the AV-tree prevents redundant search.

Selectivity Figure 11 juxtaposes all methods on workloads of vary-
ing selectivity s; their relative performance is largely unaffected by
selectivity, with the discernible exception of the AKD-tree, which is
sensitive to large s due to the expensive Ly-filtering; as s grows, the
items to be scanned increase. Cost is largely unaffected by k in kNN
queries, as Figure 12 shows. The AV-tree is robust to selectivity, as

[k AV-tree (DAKD-tree /\ MVP-tree {)

Linear Scan () SimplePivot [] SAT‘

107

107

Time(sec)
Time(sec)
Time(sec)

1074

2

3

Time(sec)

100

Time(sec)
Time(sec)
Time(sec)

107!

1072

I I I I 10-3 I I I I

Time(sec)

100 10! 107 10° 10° 10! 10 10 100 10! 10 10° 10° 10! 10 10
Number of queries Number of queries Number of queries Number of queries
(a) 5D (b) 20D (c) 50D (d) 100D
Figure 9: Effect of dimensionality, MNIST data & 100-selectivity range workload, per query (top) and cumulative time (bottom).
1070
T T T T
E E E E
= = = =
107 0 ‘1 ‘2 3 0 . 1 ‘2 3
10 10 10° 10° 10° 10 10 10
Number of queries Number of queries
ol
9 o o 9 <
& 3 &3 8
T T T T
E E - E E
= o = E
1073
10° u‘)‘ 1<‘12 108 10° 1(;‘ 1(;2 10 10 12)‘ 13)2 108 10° 16‘ 12)2 10
Number of queries Number of queries Number of queries Number of queries
(a) 5D (b) 20D (c) 50D (d) 100D
Figure 10: Effect of dimensionality, MNIST data & 20NN workload, per query (top) and cumulative time (bottom).
100 10 100
T T o T T 10
£ E £ E
= = e | =
1072 1072 10-2
10° 11‘)‘ 1(‘11 10° 100 1(‘1‘ 1&2 108 100 u‘)‘ 1(‘7’ 10° 100 1(‘1‘ 11‘)2 108
Number of queries Number of queries Number of queries Number of queries
(a) s=20 (b) s=100 (c) s=500 (d) s=1000

Figure 11: Effect of selectivity, MNIST50 data & range workload, cumulative time.

cracking is insensitive to the number of query results and thanks
to the data structures it uses to manage kNN query results.

Cost breakdown Figure 15 breaks down the total runtime of the de-
fault range workloads for the AV-tree and AKD-tree on the default
MNIST50 and Synthetic datasets. Total time comprises the costs for:

(i) searching the index for relevant partitions (Index Search); (ii) in-
dex restructuring, i.e., creating new nodes and swapping (Adap-
tation); and (iii) scanning data objects in fixed leaves that are not
being cracked further (Scan) — in the AKD-tree, Scan includes
the time for L, filtering. All costs are higher for the AKD-tree: (i)
index-search cost due to the ineffectiveness of hyperplane-based

‘7'(AV-tree MVP-tree <> Linear Scan Q SimplePivot [] SAT ‘

. .
10! 10

Number of queries

(b) k=20

. .
10! 107

Number of queries

(a) k=10

1073

.
100 10! 10?

Number of queries

(d) k=100

. .
10! 10

Number of queries

(c) k=50

Figure 12: Effect of selectivity, MNIST50 data, kNN workload, cumulative time.

T 102 F

10°

Time(sec)

107!

I
10! 10%

Number of queries

(b) wl=6

I I
10! 10 103

Number of queries
(a) wl=4

10°

I
10! 10%

Number of queries

(d) wl=10

I I
10! 10 103 100
Number of queries

(c) wil=8

Figure 13: Effect of query length, Words data, edit-distance € = 2, cuamulative time.

Time(sec)
Time(sec)

T T T T
10% -

100

Time(sec)
Time(sec)

. .
10! 10?
Number of queries

(b) e=2

. .
10! 10
Number of queries

(a) e=1

. .
10! 10
Number of queries

(d) e=4

I
10%

.
10!
Number of queries

(c) e=3

Figure 14: Effect of query selectivity, Words data, 6-letter-word queries, range workload, cumulative time.

partitions and the larger index size, (ii) adaptation cost due to gen-
erating more (hyperplane-based) partitions than the AV-tree, (iii)
scan cost due to refining spherical range queries.

T
- [Scan B
[] Adaptation

Index Search

Total time(sec)
Total time(sec)

AV-tree

i
EEE o

AV-tree

ARD e ARD e
(a) MNIST50 (b) Synthetic
Figure 15: Cost Breakdown

5.3.2 Words. We next compare all methods for range and kNN
query workloads on the Words data. We omit the AKD-tree, as it
does not support non-vector data and non-L, distance measures.
Recall that the data includes words of various lengths. First, we cre-
ate range query workloads by picking 1000 random words of fixed
length (4 to 10), set € = 2, and measure the cumulative cost of all
methods. As Figure 13 shows, AV-tree outperforms all competitors,
and fares better on smaller query word lengths. With longer words,

the curse of dimensionality comes into play and all index-based
methods acquire costs similar to linear scan; yet even then, the AV-
tree outpaces the pre-built SimplePivot and matches the MVP-tree.
Remarkably, SimplePivot dominates the MVP-tree on queries of
smaller length.

Figure 14, we juxtapose all methods the same workload of length-
6 queries, tuning the values of €, i.e., varying selectivity. With more
selective queries (lower €), index-based methods outperform linear
scan, and the AV-tree gains an advantage. However, indexes are
less effective with less selective queries (e = 4), thus the AV-tree
advantage diminishes. Lastly, Figure 16 shows the performance of
AV-tree on kNN queries vs. the value of k. The results resemble those
for range queries of varying selectivity. Overall, AV-tree presents
an ideal behavior on the Words dataset, as its cumulative cost is
consistently below that of all other methods, with the difference
being more striking in the first few hundreds of queries.

5.3.3 Synthetic data. We now compare the performance of all
methods against synthetically generated datasets of different scale,
generated as described in Section 5.1. Figure 17 shows cumulative
costs on range query workloads. Noticeably, the superior perfor-
mance of the AV-tree is insensitive to data scale; its cost is close
to that of linear scan in the first few queries and matches that of

‘* AV-tree (P AKD-tree /

MVP-tree <> Linear Scan () SimplePivot [] SAT‘

10

Time(sec)
Time(sec)

Time(sec)

10%

Time(sec)

10! 102 10! 102
Number of queries Number of queries

(a) k=10 (b) k=20

10! 102 10! 102
Number of queries Number of queries

(c) k=50 (d) k=100

Figure 16: Effect of k, Words data, 6-letter-word kNN queries, cumulative time.

Time(sec)

Time(sec)
Time(sec)

10
Number of queries
(a) 50K

I I I
10! 10! 10

Number of queries

(b) 100K

.
10
Number of queries

(d) 500K

I I
10 10!

Number of queries
(c) 200K

I
10!

Figure 17: Effect of data size, Synthetic 100D data, 100-selectivity range workload, cumulative time.

107!

Time(sec)
Time(sec)

1072

Time(sec)

Time(sec)

10! 10
Number of queries
(a) 50k

10%
Number of queries

(b) 100k

10!

10! 102 10! 102
Number of queries Number of queries

(c) 200k (d) 500k

Figure 18: Effect of data size, Synthetic 100D data & 20NN workload, cumulative time.

MVP-tree after a few hundreds of queries, while linear scan re-
mains too slow. AV-tree is equally robust to data scale on kNN
query workloads, as Figure 18 shows.

5.4 Index Size

Lastly, we compare the eventual index sizes of AV-tree, AKD-tree,
and MVP-tree, after the default workload of 1K range queries of
selectivity 100. As Table 3 shows, the AV-tree is a ligthweight in-
dex, as it has size controlled by a threshold and caches at most
one distance per object. Compared to the size of the corresponding
datasets in Table 1, the AV-tree occupies little space; this is yet an-
other advantage of our method. Remarkably, if we eschew distance
caching in AV-tree (2nd column), the index becomes even smaller
than the MVP-tree, at the price of a small overhead in the search
performance.

Table 3: Index size (MB) after 1K range queries.

AV-tree | AV-Tree (no cache) | AKD-tree | MVP-tree
MNIST 0.3989 0.1189 2.7989 0.2864
Words 3.2654 0.6654 - 2.7
Synthetic 0.5682 0.1682 2.6732 0.2909

6 CONCLUSIONS

We introduced the adaptive vantage tree (AV-tree), the first, to our
knowledge, adaptive index tailored for high-dimensional metric
spaces. In manner reminiscent of previously proposed adaptive
indices for single columns [18, 24] and for a few attributes [39, 40],
the AV-tree gracefully adapts to a query workload to progressively
build a complete high-quality index. Nevertheless, unlike previ-
ous adaptive indexing methods, the AV-tree partitions the space
around query centers into units defined by hyperspheres using
mediocre distance bounds that naturally adapt to the data distribu-
tion, rather than into rectilinear units. Our experimental study on
two real datasets of different natures, with diverse distance met-
rics, demonstrates that the AV-tree achieves low cumulative query
cost compared to (i) iteratively applying a linear scan; (ii) using a
pre-built MVP-tree, the state-of-the-art index for metric spaces; and
(iii) employing the AKD-tree, the state-of-the-art adaptive index for
multidimensional data. In the future, we intend to investigate the
performance of a multiway AV-tree (MAV-tree), which will divide
the space around each query into multiple layers based on several
distance bounds, in contrast to the current binary space partitioning
by mediocre distances.

REFERENCES

(1]

[2

[

(3]
(4]

[10]

[13]

[14

[15]

[23]

[24

Tenindra Abeywickrama, Muhammad Aamir Cheema, and David Taniar. 2016.
k-Nearest Neighbors on Road Networks: A Journey in Experimentation and
In-Memory Implementation. Proc. VLDB Endow. 9, 6 (2016), 492-503.

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path
distance queries on large networks by pruned landmark labeling. In SIGMOD.
349-360.

David Alvarez-Melis and Nicolo Fusi. 2020. Geometric Dataset Distances via
Optimal Transport. In NeurIPS 2020.

Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Asso-
ciative Searching. Commun. ACM 18, 9 (1975), 509-517.

Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999.
When Is “Nearest Neighbor” Meaningful?. In ICDT. 217-235.

Tolga Bozkaya and Meral Ozsoyoglu. 1999. Indexing Large Metric Spaces for
Similarity Search Queries. ACM Trans. Database Syst. 24, 3 (1999), 361-404.

Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Chris-
tian S. Jensen. 2023. Indexing Metric Spaces for Exact Similarity Search. ACM
Comput. Surv. 55, 6 (2023), 128:1-128:39.

Lu Chen, Yunjun Gao, Baihua Zheng, Christian S. Jensen, Hanyu Yang, and
Keyu Yang. 2017. Pivot-based Metric Indexing. Proc. VLDB Endow. 10, 10 (2017),
1058-1069.

Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An Efficient Access
Method for Similarity Search in Metric Spaces. In VLDB. 426-435.

Richard Connor. 2016. A Tale of Four Metrics. In Similarity Search and Applica-
tions - 9th International Conference, SISAP (Lecture Notes in Computer Science),
Vol. 9939. 210-217.

Li Deng. 2012. The MNIST Database of Handwritten Digit Images for Machine
Learning Research [Best of the Web]. IEEE Signal Processing Magazine 29, 6
(2012), 141-142.

Nicki Skafte Detlefsen, Seren Hauberg, and Wouter Boomsma. 2022. Learning
meaningful representations of protein sequences. Nature Communications 13,
1914 (2022).

Ada Wai-Chee Fu, Polly Mei-shuen Chan, Yin-Ling Cheung, and Yiu Sang Moon.
2000. Dynamic vp-Tree Indexing for n-Nearest Neighbor Search Given Pair-Wise
Distances. VLDB 7.9, 2 (2000), 154-173.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461-474.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland,
UK. Morgan Kaufmann, 518-529.

Goetz Graefe and Harumi A. Kuno. 2010. Self-selecting, self-tuning, incrementally
optimized indexes. In EDBT, Vol. 426. ACM, 371-381.

Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD. 47-57.

Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap. 2012. Sto-
chastic Database Cracking: Towards Robust Adaptive Indexing in Main-Memory
Column-Stores. Proc. VLDB Endow. 5, 6 (2012), 502-513.

C. A.R. Hoare. 1961. Algorithm 64: Quicksort. Commun. ACM 4, 7 (1961), 321.
Dorit Hochbaum and David Shmoys. 1985. A Best Possible Heuristic for the
k-Center Problem. Mathematics of Operations Research - MOR 10 (1985), 180-184.
Pedro Holanda and Stefan Manegold. 2021. Progressive Mergesort: Merging
Batches of Appends into Progressive Indexes. In EDBT. 481-486.

Pedro Holanda, Stefan Manegold, Hannes Miihleisen, and Mark Raasveldt. 2019.
Progressive Indexes: Indexing for Interactive Data Analysis. Proc. VLDB Endow.
12, 13 (2019), 2366-2378.

Pedro Holanda, Matheus Nerone, Eduardo C. de Almeida, and Stefan Manegold.
2018. Cracking KD-Tree: The First Multidimensional Adaptive Indexing (Position
Paper). In DATA. 393-399.

Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Cracking.
In CIDR. 68-78.

(30]

[31

(32]

(34]

(35

[36

[38

[39

[40

[41]

[42]

[44

[45

[46]
[47]

(48

Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Updating a Cracked
Database. In SIGMOD. 413-424.

Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2009. Self-organizing
tuple reconstruction in column-stores. In SIGMOD. 297-308.

Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. 2011. Merging
What’s Cracked, Cracking What’s Merged: Adaptive Indexing in Main-Memory
Column-Stores. Proc. VLDB Endow. 4, 9 (2011), 586-597.

Omid Jafari, Parth Nagarkar, and Jonathan MontaAgo. 2020. Improving Locality
Sensitive Hashing by Efficiently Finding Projected Nearest Neighbors.

H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang. 2005.
iDistance: An adaptive B -tree based indexing method for nearest neighbor
search. ACM Trans. Database Syst. 30, 2 (2005), 364-397.

Anders Hammershgj Jensen, Frederik Lauridsen, Fatemeh Zardbani, Stratos
Idreos, and Panagiotis Karras. 2021. Revisiting Multidimensional Adaptive In-
dexingJExperiment & Analysis]. In EDBT. 469-474.

Richard M. Karp, Rajeev Motwani, and Prabhakar Raghavan. 1988. Deferred
Data Structuring. SIAM J. Comput. 17, 5 (1988), 883-902.

Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos Mamoulis. 2017. FEXIPRO:
Fast and Exact Inner Product Retrieval in Recommender Systems. In SIGMOD.
835-850.

Shuo Li, Kang Li, Jun Yang, Yiwen Liu, Wenqiang Han, and Yaping Luo. 2023.
Research on the local regional similarity of automatic fingerprint identification
system fingerprints based on close non-matches in a ten million people database
- Taking the central region of whorl as an example. Journal of Forensic Sciences
68, 2 (2023), 488-499.

Wenye Li, Jingwei Mao, Yin Zhang, and Shuguang Cui. 2018. Fast Similarity
Search via Optimal Sparse Lifting. In NeurIPS. 176—184.

Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824-836.

Leland McInnes, John Healy, and James Melville. 2018. UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction. CoRR abs/1802.03426
(2018). arXiv:1802.03426 http://arxiv.org/abs/1802.03426

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In ICLR, Workshop Track
Proceedings.

Gonzalo Navarro. 2002. Searching in metric spaces by spatial approximation.
VLDB 7. 11, 1 (2002), 28-46.

Matheus Agio Nerone, Pedro Holanda, Eduardo C. de Almeida, and Stefan Mane-
gold. 2021. Multidimensional Adaptive & Progressive Indexes. In ICDE. 624-635.
Mirjana Pavlovic, Darius Sidlauskas, Thomas Heinis, and Anastasia Ailamaki.
2018. QUASIIL: QUery-Aware Spatial Incremental Index. In EDBT. 325-336.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Yong Rui, Thomas S. Huang, and Shih-Fu Chang. 1999. Image Retrieval: Current
Techniques, Promising Directions, and Open Issues. j. Vis. Commun. Image
Represent. 10, 1 (1999), 39-62.

Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. 2013. The Uncracked
Pieces in Database Cracking. Proc. VLDB Endow. 7, 2 (2013), 97-108.

Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. 2016. An Experimental
Evaluation and Analysis of Database Cracking. The VLDB Journal 25, 1 (2016),
27-52.

Tomas Skopal, Jaroslav Pokorny, and Vaclav Snasel. 2004. PM-tree: Pivoting
Metric Tree for Similarity Search in Multimedia Databases. In ADBIS.

Yao Tian, Xi Zhao, and Xiaofang Zhou. 2022. DB-LSH: Locality-Sensitive Hashing
with Query-based Dynamic Bucketing. In ICDE. 2250-2262.

Peter N. Yianilos. 1993. Data Structures and Algorithms for Nearest Neighbor
Search in General Metric Spaces. In SODA. 311-321.

Fatemeh Zardbani, Peyman Afshani, and Panagiotis Karras. 2020. Revisiting the
Theory and Practice of Database Cracking. In EDBT. 415-418.

http://arxiv.org/abs/1802.03426

	Abstract
	1 Introduction
	2 Related Work
	2.1 Indexing metric spaces
	2.2 Adaptive indexing

	3 Definitions and Preliminaries
	4 The AV-tree
	4.1 Range Query
	4.2 Nearest-Neighbor Query
	4.3 Enhancements
	4.4 Cost Analysis

	5 Experimental Evaluation
	5.1 tealExperimental Settings
	5.2 tealEnhancements and parameter tuning
	5.3 tealComparative study
	5.4 Index Size

	6 Conclusions
	References

