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A. AN OPTIMAL SOLUTION TO THE ERROR-BOUNDED HAAR+ PROBLEM

In this Appendix, we examine how the ideas of Section 6.1 apply to the general
case of a Haar+ tree. The error-bounded Haar+ problem we consider in this case
is defined as follows:

Problem A.1. Given a data vector D and an error bound ε for a (weighted)
maximum-error metric Lw

∞, construct a Haar+ representation H of D that pro-
duces an approximation D̂, such that Lw

∞(‖D − D̂‖) ≤ ε and the number of
occupied nodes B∗ in D̂ is minimized.

As in Section 6.1, we are interested in the behavior of an S(i, v) function:
the minimum space budget needed by a Haar+ triad Ci and its descendants in
order to satisfy a Lw

∞-error bound ε with incoming value v at ci. For a given i,
S(i, v) is defined for every v ∈ IR and takes values in IN. In Theorem 4.2 we
have shown that each triad in a Haar+ representation H needs to contain at
most one non-zero coefficient. We have used this property in order facilitate
our computation of E(i, v, b) in Section 5.2. Still, now we relax our observation
of this property; it is not useful to us in this case; this relaxation allows us to
delimit the value set of S(i, v), as the following theorem shows.

THEOREM A.2. Let s∗
i be the minimum value of S(i, v), for any v, on a triad

C of a Haar+ tree representation H, v ∈ IR. Then, ∀v, S(i, v) ∈ {s∗
i , s∗

i + 1, s∗
i + 2}.

PROOF. Let ṽ be an incoming value with which the minimum of S(i, v) is
obtained: ∀v, S(i, v) ≥ S(i, ṽ) = s∗

i . Let p, q, r be the optimal values assigned
to the head, left and right supplementary coefficients of C, respectively, with
incoming value ṽ, resulting in the state C = [ṽ, p, q, r] and the contribution
vector [ṽ + p+ q, ṽ − p+ r]. For any other incoming value v′, we may adjust the
values assigned at the two supplementary coefficients in C so as to produce the
same contribution vector (i.e., incoming values to the left and right subtrees of
C). Specifically, the state C = [v′, p, q + ṽ − v′, r + ṽ − v′] produces the same
contribution vector [ṽ + p + q, ṽ − p + r]. Hence the solution thereafter can
be maintained as with incoming value ṽ. The value adjustment increases the
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Fig. 1. Adjustment operation in Theorem A.2.

number of non-zero terms in C and its descendants by at most 2. Specifically,
the number of non-zero terms is increased by 1 if exactly one of the performed
value adjustments turns a zero value to a non-zero one, while it is increased
by 2 in case both adjusted values turn from zero to non-zero. Hence, S(i, v′) ≤
S(i, ṽ) + 2 = s∗

i + 2. In effect, ∀v, S(i, v) ∈ {s∗
i , s∗

i + 1, s∗
i + 2}.

Figure 1 depicts the adjustment operation used in Theorem A.2; the right-
side triad with incoming value v′ in the figure produces the same contribution
vector as the left-side one with the minimal-space incoming value ṽ.

Theorem A.2 implies that all possible incoming values v ∈ IR to a triad Ci can
be grouped in three sets: (i) the set of values with which the minimum space
S(i, v) = s∗

i is achieved, (ii) the set of those values for which S(i, v) = s∗
i + 1, and

(iii), the rest, worst-case values, for which S(i, v) = s∗
i + 2. We can express each

of these sets as a union of intervals of IR.
In our value adjustment operations, we have not affected the head coeffi-

cient (ci in Figure 1). In fact, Lemma 4.1 implies that, when computing the
value of S(i, v), five options are available in each triad Ci: either all coefficients
are left unoccupied (i.e., zero-value), or the head, left or right supplementary
coefficient is occupied (i.e., nonzero-value), or both supplementary coefficients
are occupied. For a given incoming value v, the option with which the mini-
mum total space is required in Ci and its descendants is adopted as the value
of S(i, v). We now look at this computation more closely.

At the bottom-most Haar+ tree level, the values of S(i, v) are directly com-
puted from the affected data. Since our purpose is to minimize a general-case,
weighted maximum-error metric Lw

∞, each data item di with associated error
weight wi defines a tolerance interval [di − ε

wi
, di + ε

wi
]; approximation values

within this interval satisfy the error bound ε for di. A bottom-level Haar+ tree
triad Ci approximates two data values. These two values define two tolerance
intervals. Let the tolerance interval for the value at the left(right) leaf of Ci be
[a, b] ([c, d ]). If [a, b] ∩ [c, d ] �= ∅, then the minimum value of S(i, v) is 0, obtained
for v ∈ [a, b] ∩ [c, d ]; such an incoming value itself satisfies the error bound ε for
both approximated data values. Otherwise, the minimum value of S(i, v) is 1,
obtained, for example, when v ∈ [a, b] and a non-zero value in z ∈ [c − v, d − v]
is assigned to the right supplementary coefficient. Besides, S(i, v) ≤ 2, since
any incoming value can be accommodated by using two supplementary coeffi-
cients for the two approximated data values. We examine the cases in which
S(i, v) = 1 in more detail. The value 1 is assumed by S(i, v) when (i) a single
non-zero supplementary coefficient suffices to satisfy the error bound ε on both
data values at the leaves of Ci, and when (ii) a stand-alone (as Lemma 4.1
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Fig. 2. Two cases in which S(i, v) = 1 in a bottom-level triad C.

prescribes), nonzero head coefficient is sufficient for that purpose. We analyze
these cases.

—The former case (nonzero supplementary coefficient) occurs if and only if
either v ∈ [a, b] or v ∈ [c, d ], while v /∈ [a, b] ∩ [c, d ]; that is, more succinctly,
when v ∈ [a, b] 
 [c, d ], where A 
 B is the symmetric difference of A and B,
A 
 B = A∪ B − A∩ B = (A − B) ∪ (B − A). If v ∈ [a, b], then any value
z ∈ [c−v, d −v] suffices to be assigned to the right supplementary coefficient.
Otherwise, if v ∈ [c, d ], then any value z ∈ [a − v, b − v] should be assigned
to the left supplementary coefficient.

—The latter case (nonzero head coefficient) occurs if and only if the given in-
coming value v allows for an assigned value z at the head coefficient that
satisfies the given error bound in both data leafs of Ci. This requirement
translates to:

a ≤ v + z ≤ b
∧

c ≤ v − z ≤ d

⎫⎬
⎭ ⇔

⎧⎨
⎩

a+c
2 ≤ v ≤ b+d

2∧
max{a − v, v − d } ≤ z ≤ min{b − v, v − c}

(1)

Naturally, if [a, b] ∩ [c, d ] �= ∅, then it follows that M =
[a+c

2 , b+d
2 ] ∩ [a, b] ∩ [c, d ] �= ∅. Incoming values v ∈ M give S(i, v) = 0,

as explained before, hence should not be included in the present case
of S(i, v) = 1. For convenience in notation, we define1 [a, b] � [c, d ] =
[a+c

2 , b+d
2 ] − [a, b] ∩ [c, d ]. Hence, more succinctly, the case that a stand-

alone nonzero head coefficient suffices to satisfy the error bound ε on both
data values at the leaves of Ci occurs when v ∈ [a, b] � [c, d ]. Appropriate
values of z are given in Equation (1).

Figure 2 presents the two cases in which S(i, v) = 1 on a bottom-level triad
Ci with incoming value v; the left side of the figure depicts a case where a single
nonzero (right) supplementary coefficient is assigned at Ci; the right side shows
the case where a stand-alone nonzero head coefficient is assigned.

Summing up, S(i, v) at a bottom-most-level triad Ci is defined as:

S(i, v) =
⎧⎨
⎩

0, v ∈ [a, b] ∩ [c, d ]
1, v ∈ [a, b]
[c, d ] ∪ [a, b]�[c, d ]
2, v /∈ [a, b] ∪ [c, d ] ∪ [a, b]�[c, d ]

(2)

In order to represent the full value range of S(i, v), we only need to store two
sets: (i) the set Pi = [a, b] ∩ [c, d ], possibly empty, such that v ∈ Pi ⇔ S(i, v) = 0,

1In fact, if [a, b] ∩ [c, d ] �= ∅, then [a, b] � [c, d ] ⊆ [a, b] 
 [c, d ].

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 18, Publication date: August 2008.



18:4 • P. Karras and N. Mamoulis

and (ii) the union Qi = [a, b] 
 [c, d ] ∪ [a, b] � [c, d ] = [a, b] ∪ [c, d ] ∪ [a+c
2 , b+d

2 ] −
[a, b] ∩ [c, d ], that is, a union of two or three distinct v-value intervals, such that
v ∈ Qi ⇔ S(i, v) = 1. For the rest values of v it is inferred that S(i, v) = 2.

Thereafter, the computation proceeds in a recursive process, in which S(i, v)
at a triad Ci is defined from its values in the children triads of Ci. Specifically,
let CiL be the left child triad of Ci and CiR be its right child triad. The function
S applies on CiL for any incoming value v ∈ IR and assumes a minimum value
s∗
iL

|∀vIR, S(iL, v) ≥ s∗
iL

. Similarly, applied on CiR , S assumes the minimum value
s∗
iR

|∀vIR, S(iR , v) ≥ s∗
iR

. Then, according to Theorem A.2, S(iL, v) ∈ {s∗
iL

, s∗
iL

+
1, s∗

iL
+ 2} and S(iR , v) ∈ {s∗

iR
, s∗

iR
+ 1, s∗

iR
+ 2}. We assume that the computation of

S(iL, v) (S(iR , v)) has recursively returned a union of l (m) v-value intervals in
which S(iL, v) (S(iR , v)) achieves its minimum value s∗

iL
(s∗

iR
), as well as as the

union of all v-value intervals in which it achieves the value s∗
iL

+ 1 (s∗
iR

+ 1); this
assumption is valid in the bottom-level case; it will be recursively validated
thereafter. The appropriate assigned values for each incoming value can also
be derived from the stored information according to the preceding discussion.
Let Li = ⋃l

j=1 L j (Ri = ⋃m
j=1 R j ) be the former union of intervals, i.e. v ∈

Li ⇔ S(iL, v) = s∗
iL

(v ∈ Ri ⇔ S(iR , v) = s∗
iR

); likewise, let L1
i = ⋃s

j=1 L1
j

(R1
i = ⋃t

j=1 R1
j ) be the union of all intervals such that v ∈ L1

i ⇔ S(iL, v) = s∗
iL
+1

(v ∈ R1
i ⇔ S(iR , v) = s∗

iR
+ 1).

By analogy to the bottom-level case, if Li ∩ Ri �= ∅, then the minimum value
of S(i, v) is s∗

iL
+ s∗

iR
, obtained for v ∈ Li ∩ Ri; such an incoming value is itself an

optimal incoming value for both subtrees of Ci. Otherwise, the minimum value
of S(i, v) is s∗

iL
+ s∗

iR
+ 1. Besides, S(i, v) ≤ s∗

iL
+ s∗

iR
+ 2, since two supplementary

coefficients suffice to produce optimal incoming values to both CiL and CiR for
any incoming value to Ci. Hence, if Li ∩ Ri �= ∅, then S(i, v) ∈ {s∗

iL
+ s∗

iR
, s∗

iL
+ s∗

iR
+

1, s∗
iL

+ s∗
iR

+2}, otherwise S(i, v) ∈ {s∗
iL

+ s∗
iR

+1, s∗
iL

+ s∗
iR

+2}. In more detail, S(i, v)
assumes the value s∗

iL
+ s∗

iR
+ 1 in the following cases.

—When a single nonzero supplementary coefficient suffices to produce an op-
timal incoming value to both subtrees of Ci. It occurs so if and only if
v ∈ Li ∪ Ri − Li ∩ Ri = Li 
 Ri. If v ∈ Li, then any value z such that v+z ∈ Ri
suffices to be assigned as a right supplementary coefficient. Otherwise, if
v ∈ Ri, then any value z such that v + z ∈ Li should be assigned as a left
supplementary coefficient.

—When the given incoming value v allows for a stand-alone (as Lemma 4.1
prescribes), nonzero head coefficient to produce an optimal incoming value
to both subtrees of Ci. It occurs so if and only if:

v + z ∈ Li
∧

v − z ∈ Ri

⎫⎬
⎭ ⇒ v ∈

⋃
j=1...l
k=1...m

L j � Rk (3)

The notation Li � R j excludes values v ∈ L j ∩ Rk . Still, in fact, any incoming
value v ∈ Li ∩ Ri (that is, in any intersecting pair of intervals) should be
excluded from the present case of S(i, v) = s∗

iL
+ s∗

iR
+ 1, as it belongs to the

case S(i, v) = s∗
iL

+ s∗
iR

. Hence, for convenience in notation, we define the �
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operator for a union of l continuous intervals A = ∪l
i=1 Ai and a union of m

continuous intervals B = ∪m
i=1 Bi as follows:

A � B =
⋃

i=1...l
j=1...m

Ai � Bj − A ∩ B. (4)

As Equation (4) shows, the � operator, applied on the pair {A, B}, returns
the union of all intervals Ai � Bj , for all i, j pairs, minus the intersection
of A and B. In effect, the case that a stand-alone nonzero head coefficient
suffices to produce an optimal incoming value to both subtrees of Ci oc-
curs, more succinctly, when v ∈ Li � Ri. For v ∈ L j � Rk = [a, b] � [c, d ] =
[a+c

2 , b+d
2 ] − [a, b] ∩ [c, d ], the appropriate assigned values z are z ∈ [max{a−

v, v − d }, min{b − v, v − c}] as in Equation (1).
—When the incoming value to Ci is itself an optimal incoming value to one

subtree of Ci and a suboptimal incoming value that requires one space unit
more than the minimum one in the other subtree. This case occurs so if and
only if v ∈ Li ∩ R1

i or v ∈ L1
i ∩ Ri. In both cases, S(i, v) = S(iL, v) + S(iR , v) =

s∗
iL

+ s∗
iR

+ 1.

Putting it all together, S(i, v) is expressed as:

S(i, v) =

⎧⎪⎨
⎪⎩

s∗
iL

+ s∗
iR

, v ∈ Li ∩ Ri

s∗
iL

+ s∗
iR

+ 1, v ∈ Li 
 Ri ∪ Li � Ri ∪ Li ∩ R1
i ∪ L1

i ∩ Ri

s∗
iL

+ s∗
iR

+ 2, v /∈ Li ∪ Ri ∪ Li � Ri ∪ Li ∩ R1
i ∪ L1

i ∩ Ri.

(5)

Equation (5) defines S(i, v) recursively throughout a Haar+ tree. Again, in
order to represent the full value range of S(i, v), we only need to store two
sets: (i) a set Pi, such that v ∈ Pi ⇔ S(i, v) = s∗

i , and (ii) a set Qi, such that
v ∈ Qi ⇔ S(i, v) = s∗

i + 1. For the set of the rest values of v, if nonempty, it is
inferred that S(i, v) = s∗

i + 2. This representation of the value range of S(i, v)
verifies the inductive step of our approach; we assumed that the value ranges
of S(iL, v) and S(iR , v) were so represented at two children triads, and we have
shown that S(i, v) is then so represented at the parent triad; the assumption
holds at the bottom Haar+ tree level; hence, this representation is inductively
propagated through the Haar+ tree in a bottom-up fashion with our recursive
scheme. The root case of the recurrence is as follows:

S(0, 0) =
{

s∗
1, 0 ∈ C0

s∗
1 + 1, 0 /∈ C0,

(6)

where C0 is the set of incoming values v that achieve the minimum space
S(1, v) = s∗

1 at triad C1. The computation of S(0, 0) derives the minimum-space
solution. We only need to trace backwards through the choices made at each
triad after the solution at the top of the Haar+ tree has been established. Be-
sides, we may follow the space-efficiency paradigm suggested by Guha [2008];
after the solution is established a the topmost level, we solve the two half-size
problems at the two subtrees of the root, and recursively recompute the respec-
tive solutions, by the same strategy.
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Complexity Analysis. The space required to store the sets (unions of inter-
vals) Pi and Qi representing the value domain of S(i, v) for a triad Ci grows
with the level of the Haar+ tree in which Ci resides. In a bottom-level triad
Ci, exactly three distinct value intervals need to be stored. Each interval is
represented by the pair of its defining values, along with auxiliary informa-
tion that assists in the computation of appropriate assigned values z at Ci for
an incoming value v in that interval. If [a, b] ∩ [c, d ] �= ∅, then these distinct
intervals are [a, b] ∩ [c, d ] = Pi and [a, b] − [c, d ] with [c, d ] − [a, b] whose
union makes Qi; otherwise, if [a, b] ∩ [c, d ] = ∅, then the distinct intervals
[a, b], [c, d ] and [a+c

2 , b+d
2 ] whose union makes up Qi, need to be stored. In a

worst-case scenario, the parent triad Ci at the next-to-bottom level receives
a union of three intervals from both its bottom-level children triads CiL and
CiR as the sets of incoming values Li, Ri that achieve the minimum space at
them. The space required to store the respective sets representing the value
range of S(i, v) at Ci is dominated2 by the results of the Li � Ri operation; in
the worst case, this operation returns a union of 3 × 3 = 32 = 9 intervals. By
induction on the remaining levels, it follows that the space required to repre-
sent the value range of S(i, v) at a triad Ci in level � of the Haar+ tree (where
for the bottom level � = 0) is O(32�

). This complexity also expresses the time
needed to compute these intervals and also absorbs the time for the auxiliary
intersection and symmetric difference set operations. Since at most log n + 1
triad value domains arrays need to be concurrently stored (one at each level
on a root to leaf path, plus for the last triad’s sibling), the space complexity is
O(

∑log n
�=0 32�

) = O(3n). Similarly, level � contains n
2�+1 triads, hence the total time

complexity is O(
∑log n

�=0 32� n
2�+1 ) = O(3n). That is also the space complexity of the

algorithm without use of the space-efficiency technique. We observe that the
space-efficiency technique does not create a complexity difference; however, it
does prune the required storage space in practice.

2The other, intersection and symmetric difference set operations are linearly dependent on the
sizes of their operand sets.
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