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Internet-based Indoor Navigation (IIN) architectures organize signals collected by crowdsourcers in Finger-

print Maps (FMs) to improve localization given that satellite-based technologies do not operate accurately

in indoor spaces where people spend 80%–90% of their time. In this article, we study the Quality-of-Position

(QoP) assessment problem, which aims to assess in an offline manner the localization accuracy that can be

obtained by a user that aims to localize using a FM. Particularly, our proposed ACCES framework uses a

generic interpolation method using Gaussian Processes (GP), upon which a navigability score at any location

is derived using the Cramer-Rao Lower Bound (CRLB). We derive adaptations of ACCES for both Magnetic and

Wi-Fi data and implement a complete visual assessment environment, which has been incorporated in the

Anyplace open-source IIN. Our experimental evaluation of ACCES in Anyplace suggests the high qualitative

and quantitative benefits of our propositions.
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1 INTRODUCTION

Site survey tools (e.g., Ekahau.com, tamos.com, inssider.com) are typically used to generate ra-
dio coverage heatmaps of indoor spaces based on readings collected during measurement cam-
paigns by mobile devices equipped with Wi-Fi sensors. Such heatmaps visualize the signal strength
around the Wi-Fi Access Points (AP), deployed in an indoor space using a color map. Similar tools
running on modern sensor-rich smartphones are available for surveying the magnitude of earth’s
magnetic field inside a building to deliver the corresponding magnetic signal heatmap. Looking at
such heatmaps at different granularities, one can determine where sensor readings are deteriorated
by cabling, electronics, appliances, or physical barriers and subsequently improve the situation by
installing additional APs or by incentivizing users to contribute more data. Even though such
heatmaps are useful, they only provide limited information about the location accuracy that one
will experience using an indoor localization system. For example, the Wi-Fi APs that are deployed
to serve users inside a large open-plan area will have relatively strong signals across this area; yet
the positioning accuracy might be low, because the signals do not vary significantly to distinguish
different locations effectively. This is because in open-plan areas the WiFi signals become weaker
as the user walks away from a WiFi AP and the distance between them is increased; however, this
distance can be several (even a few tens of) meters for the drop in the WiFi signal to be larger than
the signal noise, which makes the signal values fluctuate when the user is not moving.

In other words, in open-plan areas two locationsA and B that are several meters away may have
only slightly different WiFi signal values (i.e., below the noise level) and a positioning algorithm
that relies on these data can wrongly estimate that the user is at location B, while he/she is in fact at
location A, thus leading to high positioning error. However, in an indoor space if there is a wall or
obstacle separating locations A and B, then this will introduce additional signal attenuation so the
signal values at the two locations will differ significantly and the positioning algorithm will be able
to estimate the correct location. Similarly, the magnetic field will be rather stable if there are no
sources of magnetic disturbance (e.g., power cables, metal surfaces, elevators, escalators) leading to
poor location accuracy. When there is only Earth’s magnetic field, the magnetic data, i.e., the three
components of the magnetic field, that are stored in a database will be very similar at locations
A and B. Therefore, a positioning algorithm that compares the magnetic data observed when the
user resides at locationAwith the data in the database may output the wrong location B. However,
if there is a source of magnetic disturbance close to location A this will greatly affect the magnetic
values. Consequently, the magnetic data at location A will differ significantly from the magnetic
data at location B and the positioning algorithm will be able to estimate the correct user location.

Accurate and robust indoor location information could be used to extend the services of
location-based social networks (e.g., Reference [41]) to large indoor areas such as shopping malls,
train stations, and airports, for analyzing the presence of people using crowdsensing [46], or to
identify stop-by behaviors [49]. At the same time, however, the underlying localization systems
are expected to deliver not just bare location estimates, but also information about their reliability,
i.e., how accurate these estimates are. For example, after a location request in any popular mobile
navigation application it typically also displays a “blue disc” centered at the user’s location, whose
radius reflects the uncertainty (i.e., level of accuracy) associated with his/her location. Such infor-
mation about the computed location is highly desirable and greatly improves the user experience.
Nevertheless, it is only available to the user online (i.e., after the location request) based on the
type of localization technology (e.g., Wi-Fi, cellular, Bluetooth, RFID, or satellite-based localiza-
tion, among others).

From the perspective of the deployment staff, though, aiming for a higher-accuracy localization
service, it is important to know the anticipated location accuracy in different areas of a building
offline, i.e., shortly after the data for the signal maps are collected and prior to any user-initiated
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location request. On one hand, a system operator who is aware that high location error is expected
in some part of a building could take action to extend the localization infrastructure (e.g., install
additional APs or beacons) and/or offer incentives to crowdsourcers for contributing more data
in that area. On the other hand, a third-party application provider might choose not to offer a
service (e.g., location-based advertisements and coupons or gaming) inside a certain venue until a
minimum level of location accuracy is guaranteed.

Hybrid localization services [53] fuse multiple data sources to obtain both high accuracy and ro-
bustness in case of data shortages. To exploit such services, an indoor localization service provider
should be able to integrate new data sources and types. A common approach provides such inte-
gration capability by treating sensor measurements as fingerprints, each associated with a location.
In the offline phase, such fingerprints are collected into a Fingerprint Map (FM) and stored in a data-
base; subsequently, in the online phase, they are compared to readings from incoming user location
requests. This FM-based approach treats all data sources equally, representing each fingerprint as
a set of values associated with a location. For example, our in-house Anyplace Indoor Navigation
Service [58] utilizes crowdsourced fingerprint data and achieved an average localization error of
1.96 meters by using Wi-Fi and inertial sensor data [35].

Recently, we introduced a generic framework that provides offline positioning accuracy assess-
ment on arbitrary FMs. Our framework, titled ACCES (short for “ACCuracy EStimation”) [37],
achieves this by calculating a navigability score at any location of interest while disregarding data
origin. Our approach comprises three steps: First, we apply a black-box technique for interpolating
arbitrary fingerprints based on a widely used statistical tool called Gaussian Processes (GP) [42],
suitable for modeling smooth noisy data. This tool allows to: (i) predict sensor readings at chosen
locations given the initial input data contained in the FM; and (ii) estimate the uncertainty of such
predictions in the form of the variance of a Gaussian distribution. Then, given the predictive distri-
bution calculated with such interpolation technique, we derive a lower bound for the uncertainty
in the location estimate, i.e., the localization error, in the form of the Cramer-Rao Lower Bound

(CRLB). The CRLB is used in estimation theory to derive lower bounds on the variance of an esti-
mator. Obtaining such a lower bound on localization error is important for location and navigation
service providers as it: (i) highlights theoretical accuracy limitations of a service; and (ii) provides
insights on how real location accuracy could be improved. We utilize the derived CRLB as the
navigability score for FM at any location and apply it to real-world fingerprint data.

Visualized in a user-friendly form such as a heatmap, this navigability score can be used by a
location service architect or operator to either take actions towards improving the existing FM

(e.g., by increasing the density of fingerprints) or to decide on exploiting other data sources at
locations of low score. Figure 1 demonstrates that high fingerprint density does not guarantee
high location accuracy, as there are other factors that may negatively impact accuracy including
low signal variation and low dimension of the fingerprints (e.g., low number of Wi-Fi APs). For
instance, Figure 1(a) shows the colored magnetic field fingerprint density map over a set of in-
door corridors, where the green color indicates high density as opposed to low density (yellow
color). Even though sensor readings are very dense (i.e., most of the regions are green), and each
fingerprint contains more than one value (e.g., three components of a magnetic field vector), the
location accuracy downgrades at certain locations. This is due to insufficient signal variation, as
shown in Figure 1(b), where the yellow color indicates high location error (i.e., low accuracy) and
the green color low location error (i.e., high accuracy). Similarly for Wi-Fi data, the fingerprint
density might seem sufficient and comparable to other parts of a building floor; see Figure 1(c)
where the red color indicates high Wi-Fi fingerprint density as opposed to low fingerprint density
(yellow color). However, the resulting location accuracy may vary significantly from extremely

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 2, Article 10. Publication date: January 2021.



10:4 C. Laoudias et al.

Fig. 1. Spatial density of collected fingerprints in an indoor environment (a) magnetic data; (c) Wi-Fi data.
Resulting localization error in meters for magnetic data (b); resulting location accuracy for Wi-Fi data (d).
The plots imply that there is a mismatch between fingerprint density and actual location accuracy.

low (red color) to very high (green color) accuracy, as shown in Figure 1(d). This is due to the
presence of less Wi-Fi APs covering the top wing, as opposed to the bottom wing.

This article builds on our previous works in Reference [37], in which we presented the design
and preliminary results of our ACCES operator for indoor location accuracy estimation that is
applicable to magnetic fingerprint data, and in Reference [3], where we presented our Fingerprint
Management Studio (FMS) that is a spatio-temporal platform for indoor signal data curation. In
this article, we propose ACCES+, which incorporates several new improvements, especially a novel
accuracy estimation operator coined ACCES-w, which is tailored to multi-dimensional Received
Signal Strength (RSS) data from Wi-Fi routers. In particular, ACCES+ is a novel architecture for of-
fline evaluation of Quality-of-Position (QoP) using multi-source fingerprint maps comprising two
separate quality assessment operators, i.e., the ACCES operator for magnetic data and the ACCES-
w operator for Wi-Fi data. As such, ACCES+ paves the way towards a deep understanding of where
location data fails to provide the expected localization accuracy at the pre-deployment, rather than
the post-deployment, stage. All our propositions are evaluated using real indoor localization data
in a prototype architecture we have developed and fully integrated into our Anyplace1 Indoor Nav-
igation Service [58] with over 70K users and over 250K interactions. The overall contributions of
our work are summarized as follows:

• We propose a generic interpolation technique for arbitrary fingerprint maps by Gaussian
Process Regression (GPR), allowing to predict both measurements and their uncertainty at
any location of a venue.

• Given the interpolation of fingerprints and corresponding uncertainties, we derive a theo-
retical upper bound on localization accuracy in the form of a CRLB, which can be utilized
as a navigability score.

• We extend the notion of the ACCES operator, which is applicable to magnetic data, and in-
troduce the ACCES-w operator that processes the ubiquitous Wi-Fi signals for the provision
of reliable location accuracy estimates inside buildings.

• We augment the FMS capabilities to orchestrate the collection of location-dependent fin-
gerprints and qualitatively assess the Wi-Fi coverage and data rates by implementing the
ACCES-w operator as a plugin, while fully integrating FMS into the Anyplace service soft-
ware stack to indicate areas where crowdsourcers should collect more data or new Wi-Fi
APs should be installed to improve the localization accuracy.

1Available at: https://anyplace.cs.ucy.ac.cy/.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 2, Article 10. Publication date: January 2021.

https://anyplace.cs.ucy.ac.cy/


Indoor Quality-of-position Visual Assessment Using Crowdsourced Fingerprint Maps 10:5

• We evaluate our work with extensive experimentation and analysis on real data, including
both small-scale magnetic datasets for micro-benchmarking, as well as large scale Wi-Fi
datasets obtained through our award-winning Anyplace service that hosts thousands of
buildings and associated localization data.

The rest of the article is structured as follows: Section 2 overviews the related work on in-
door localization methods and location accuracy estimation techniques. The proposed ACCES+

architecture for offline quality assessment of fingerprint maps is described in Section 3, while the
domain-specific operators for Magnetic and Wi-Fi data are presented in Section 4. The prototype
implementation of ACCES+ and integration with FMS into the Anyplace service is presented in
Section 5. The performance evaluation results using real magnetic and Wi-Fi data are discussed in
Section 6. Section 7 summarizes concluding remarks and directions for future work.

2 BACKGROUND AND RELATED WORK

In the following, we outline the related work on indoor localization methods, as well as on tech-
niques to estimate location accuracy with a fingerprint map.

2.1 Indoor Localization

The localization literature is very broad and diverse, as it exploits several technologies [26, 27, 58].
Satellite positioning is ubiquitously available but has an expensive energy tag, may be negatively
affected by the environment (cloudy days, forests, downtown areas), and is not available indoors.
The localization research community has proposed numerous alternative solutions, including In-
frared, Bluetooth [1, 5], Wireless LANs [7, 14, 56], Ambient Magnetic Field [17], Artificial Quasi-
static Electromagnetic Field [8], Visual and Acoustic Analysis [13], Inertial Measurement Units
(IMU) [16], Ultra-Wide-Band (UWB), and Sensor Networks, and their combinations in hybrid sys-
tems [34].

In terms of data modeling, indoor localization algorithms can be categorized into: (i) pure mod-

eling, where locations are estimated based on user-collected online measurements and a priori sys-
tem information, e.g., positions of the Wi-Fi APs or Bluetooth beacons and an indoor signal propa-
gation model that translates each signal measurement (e.g., timing, angle, or signal strength) to dis-
tance from the associated transmitter [15, 55]; (ii) fingerprint-aided modeling, where both user and
AP locations are estimated based on user-collected online measurements and some pre-collected
location measurements called fingerprints [9, 11, 18, 38, 48]; and (iii) pure fingerprint-based, which
is based solely on the similarity of online measurements with pre-collected fingerprints [13, 17,
25, 39, 40, 50, 56].

An advantage of these pure fingerprint-based indoor localization algorithms is their applica-
bility regardless of the underlying data sources. Several techniques collect sensor measurements,
e.g., radio signals from Wi-Fi APs or Bluetooth beacons, magnetometer, and light sensor readings,
and store them in a database at high density; see Reference [30] for an extensive survey of Wi-Fi
fingerprint-based approaches. For instance, any commercial smartphone can collect Wi-Fi signal
strength fingerprints from the surrounding Wi-Fi routers as part of the standard passive wireless
network monitoring functionality. For indoor localization purposes, such fingerprints are collected
at certain locations (x ,y), pin-pointed on a building floor map (e.g., every few meters) in an offline
phase. Subsequently, these fingerprints are joined in an N × R matrix, the Fingerprint Map (FM),
where N is the number of unique locations and R is the number of Wi-Fi routers. Users can then
compare the observed RSS measurements against the FM to find the best match, using pattern-
matching methods including deterministic algorithms such as k Nearest Neighbor (kNN) [4] and
its popular Weighted kNN (WkNN) variant [33] or probabilistic algorithms [43, 56]. This approach
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is also applicable to magnetic data, where a smartphone’s magnetometer fingerprints consist of 3
values each, corresponding to the magnitude and direction (with respect to the measuring device’s
reference frame) of the earth’s ambient magnetic field combined with the magnetic field from other
sources, such as electronic devices.

2.2 Accuracy Estimation

The goal of estimating localization accuracy is to predict the error between the computed location
and the actual location of a user given noisy measurements along with fingerprint and/or system
information that are used by pure modeling techniques. In this article, we focus on estimating the
achievable accuracy offline given only a fingerprint map, in the context of pure fingerprinting.
Here, we present the literature on the accuracy estimation problem.

Regarding online location accuracy estimation, i.e., while location requests are sent to the ser-
vice, an approach for localization confidence estimation is presented in Reference [12], which
does not require knowledge of the underlying localization algorithm. In the case of probabilistic
fingerprint-matching algorithms the estimated location error can be quantified by means of the
covariance matrix of the expected user location given the observed Wi-Fi RSS fingerprint [28].
Authors in Reference [32] propose the use of low-level features (i.e., RSS values from Wi-Fi APs)
measured at different locations as well as their respective localization errors, to train different re-
gression models that allows to predict the localization errors at new locations given new observed
values of the low-level features at these locations. However, both methods can be applied to esti-
mate accuracy only when using the localization service to have newly observed fingerprints. Along
the same line, authors in Reference [22] evaluate four FM construction methods based on Wi-Fi
RSS data, i.e., point-by-point manual data collection, a walking survey, semi-supervised learning,
and unsupervised learning, in terms of the location error attained by various fingerprint-matching
algorithms using online test data. The work in Reference [54] focuses on estimating online the ac-
curacy of raw sensor measurements (e.g., Wi-Fi or inertial sensors) rather than the accuracy of the
computed locations.

With respect to offline accuracy estimation, i.e., prior to running the location service, algorithms
based on the diversity of spatial measurements are proposed in Reference [31]. One of the proposed
approaches involves splitting the indoor environment into small clusters and merging adjacent
clusters based on the similarity of RSS distributions. A cluster’s final size indicates the localiza-
tion accuracy that can be achieved at its area. While practical enough, this solution lacks a formal
model to allow providing strong guarantees. Authors in Reference [24] present an algorithm named
TBNPD (Tolerance Based - Normal Probability Distribution) that calculates the correlation level
between each pair of fingerprint entries forming the FM. This approach offers the possibility to
assess the uniqueness of each fingerprint and evaluate the quality of FMs; however, it is applica-
ble only to Wi-Fi RSS data. A solution by the mapping company Here computes a quality metric
for the sufficiency of the collected fingerprints and another metric for the quality of the wireless
infrastructure (e.g., Wi-Fi APs or Bluetooth beacons) to indicate areas where more data should
be collected or more beacons should be installed [20]; however, no insight is provided about the
expected location accuracy in problematic areas to assess the criticality of collecting more data
and/or installing more beacons. The RMID (Radio Map Inherent Difficulty) parameter, introduced
in Reference [44], attempts to quantify the “difficulty” of an FM with respect to expected location
error, i.e., tries to estimate how hard it would be to achieve good location accuracy with a given
FM. However, this approach provides a single value for the quality of the entire FM that may span
a large indoor environment, thus cannot deliver the fine-grain QoP information provided by our
solution. Authors in Reference [6] use the gradient of the FM to generate an expected location
accuracy map of the environment assuming that fingerprint data are collected in every location.
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Table 1. Used Notation

Notation Description

I Indoor space
FM , N Fingerprint Map and its size
L, M Set of locations of interest and its size
r, dr Coordinate-vector and its dimensionality

m, dm Measurement vector and its dimensionality
θ ,dθ Estimated parameter and its dimensionality
x,dx Observed random-vector and its dimensionality
p (x|θ ) Likelihood of observing x given θ
I (θ ) Fisher Information Matrix

E(·),D(·) Expectation and Dispersion of a random variable
| · |, (·)−1, tr (·) Determinant, inverse and trace of a square matrix

cov (·) Covariance matrix of a random vector

However, this may affect the applicability of this approach in the case that real data are sparsely
collected.

To obtain a strict theoretical estimate, works such as References [15, 19, 47] employ the CRLB,
which provides a lower bound on the variance of estimators. In particular, Reference [15] uses
a CRLB to estimate the localization accuracy for several motion models and wireless sensor
measurements (e.g., signal strength, time of arrival) and investigates whether particular policy
requirements can be met; Reference [19] uses CRLB to estimate the accuracy achieved by the
Signal Strength Difference (SSD) on a signal strength propagation model. Likewise, Reference [47]
uses CRLB to estimate the localization accuracy for wireless data and optimize AP placement.
Nevertheless, in all the above techniques the predicted accuracy depends on the particular mea-
surement model. This fact constrains their generality and consequently limits their applicability
if the model is unknown, as in the case of ambient magnetic field data. The first work to propose
fingerprint-based localization using Gaussian Process Regression was Reference [29]; however,
it does not provide estimates on the accuracy of localization with CRLB as we do in this article,
but rather on the parameters of GPR. Authors in Reference [45] propose an analytical model
based on proximity graphs to determine the probability of correct localization in fingerprint-based
localization systems. However, this model is not geared towards predicting or bounding the actual
localization error.

3 THE ACCES+ ARCHITECTURE

In this section, we present ACCES+, which is a novel architecture for offline quality assessment of
fingerprint maps comprising two separate quality assessment operators, i.e., the ACCES operator
for magnetic data and the ACCES-w operator for Wi-Fi data. First, we formalize our system model
assumptions, upon which a problem definition is provided. The main notation we use is presented
in Table 1. First, we describe the internal calculation steps of ACCES+ pertaining to fingerprint

prediction and accuracy estimation. Next, we discuss how these are applied to magnetic data for
the ACCES operator and to Wi-Fi data for the ACCES-w operator.

3.1 System Model and Problem Formulation

We assume an indoor area I , with the dr -dimensional location coordinates in this area denoted
as r ∈ Rdr . A fingerprint map FM of some data source for this area is a set of fingerprints, each
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Fig. 2. System Model: (i) a user (empty circles) moving in an area with probability p (m|r) to measure m at
r; (ii) Fingerprint Map FM .

represented as a pair of vectors: (i) a measurement vector (e.g., containing Wi-Fi RSS values or
magnetometer readings) and (ii) an associated position vector where the measurement vector was
collected, i.e., FM = {(ri ,mi ) : i = 1, . . . ,N , ri ∈ Rdr , mi ∈ Rdm }, where N is the size of the FM
and mi is the dm-dimensional vector of measurements at location ri . Figure 2 depicts the system
model including a user moving in area I with probability p (m|r) to observe measurement m at
location r and a simple example of the FM.

We formulate the task of offline accuracy estimation for fingerprint-based localization in two
steps: (i) given a fingerprint map FM , find the likelihoodp (m|r) that m will be measured at location
r; (ii) given the likelihood p (m|r) find the smallest possible achievable Root Mean Square Error

(RMSE) of the estimated position at some location r. Such a bound on the RMSE at an arbitrary
location can be used as a navigability score, which represents the associated QoP.

3.2 Outline of the Solution

To compute the navigability score for each indoor location given arbitrary fingerprint maps, we
consider two steps:

• Fingerprint Prediction: Given a set of fingerprints, we interpolate them to any location
on the floor plan map. The data interpolation method in our fingerprint prediction approach
is based on the powerful GPR technique [42]. According to this technique, the interpolation
output comprises the predicted values and their uncertainty in the form of a Gaussian dis-
tribution’s mean and variance, respectively, while the Gaussian is a typical choice for the
underlying distribution. This step allows to construct the picture of the possible signal (e.g.,
magnetic or Wi-Fi) distribution over the whole floor plan map along with the confidence in
such distribution.

• Accuracy Estimation: Given such an interpolation of the fingerprints, we derive a bound
on the achievable location accuracy, which we set as our ACCES+ navigability score. This
step helps in finding the best accuracy (or equivalently the lowest localization error) that
can be possibly achieved at each location given the confidence in the constructed signal
distribution.

The first step allows us to perform FM interpolation disregarding the data source to obtain
the possible data distribution over the indoor area along with a confidence in it, which capture
the uncertainty of the collected measurements, spatial sparsity of the fingerprints, and the spatial
smoothness of the underlying true data. This approach is similar to the interpolation proposed in
References [29] and [2]. With the second step, a bound on the smallest possibly achievable localiza-
tion error is calculated, given the knowledge and confidence about the collected and interpolated
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measurements. Similarly to Reference [47], we assume that this bound reflects the localization er-
ror that a user will experience in practice when employing the location service. In the analysis of
location systems, the CRLB is a bound on the localization error variance given the conditions in
the target area, including the number of signal sources and the noise in the signal measurements.
This puts a bound on the accuracy that a user is expected to experience at a specific location. This
should not be interpreted that accuracy will beX meters, but rather that accuracy cannot be better
than X meters at that location. Yet, as it will be discussed in Section 3.4, this bound is a powerful
tool to assess crowdsourced fingerprint maps and the adequacy of the underlying signal sources.
In particular, the CRLB is employed to compute a navigability score that reflects the expected lo-
cation accuracy as a qualitative metric (e.g., the relative location accuracy in an area of the indoor
space will be better compared to another area where true data are sparsely collected), rather than
as a quantitative metric (e.g., the absolute location accuracy in an area will beX meters as opposed
to Y meters in the area with lower data density).

Algorithm 1 presents an outline of ACCES+ calculation at a set of locations given a FM. This
algorithm implements the Fingerprint Prediction step based on the GPR technique and the Accu-
racy Estimation step based on the CRLB tool. In line 1, the semantics of the applied domain (e.g.,
magnetic, Wi-Fi, UWB, Bluetooth) are initialized. Consider for instance the Wi-Fi domain, where
signals are associated with Wi-Fi APs that are identified by a unique MAC Address. Measure-
ments are then compilations of these MAC addresses along with the corresponding RSS readings.
However, magnetic data contain the three components of the earth’s magnetic field without any
absolute reference points. As such, predictive frameworks like ACCES+ are expected to be appli-
cable to such highly diverse application domains. In line 2, the navigability scores for the locations
in the area of interest are initialized to 0. In line 3, fingerprint prediction takes place for the lo-
cations that have no real measured data using the collected data points in the FM. To this end,
the predictors for each component in measurement vector (i.e., fingerprint) are computed in the
form of a Gaussian distribution’s mean and variance; see Section 3.3 and Algorithm 2 for details.
In lines 4–6, the predictors are employed for accuracy estimation using the CRLB tool to compute
a score for each location; see Section 3.4 and Algorithm 3 for details. Finally, in line 7 the nav-
igability scores are returned to visualize the quality of position across the area of interest. The
topic of domain specialization is revisited in the next Section 4, where we describe the specifics
for adapting the ACCES+ architecture for both magnetic and Wi-Fi data. These adaptations are
thoroughly assessed in the experimental evaluation of Section 6.

3.3 Fingerprint Prediction with GPR

The key objective in fingerprint prediction is to construct a picture of location-dependent signals
(e.g., magnetic intensity or Wi-Fi signal strength) in an indoor space, i.e., a signal map that re-
flects the signal variation at different locations that span the area of interest. The main idea is
to leverage real signal measurements collected through crowdsourcing at specific locations and

ALGORITHM 1: ACCES+ (FM,L)

Require: Fingerprint Map FM = {(ri ,mi ), i = 1, . . . ,N }, locations of interest L = {rj , j = 1, . . . ,M }.
1: InitializeDomain() � Initialize the semantics of the applied domain

2: scorej = ∅, j = 1, . . . ,M � Navigability scores to return

3: predictors = FinдerprintPrediction(FM ) � Predictors for each component of a measurement vector

4: for all rj ∈ L do

5: scorej ← AccuracyEstimation(rj ,predictors )
6: end for

7: return score
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interpolate them to predict the multi-variate signal observations (i.e., fingerprints) at other loca-
tions, where no real data are available. In this way, the resulting FM, which contains the finger-
prints and associated location coordinates, has the required granularity in the physical space to
offer reliable accuracy estimation in the entire area by means of the proposed CRLB-based method
described in Section 3.4.

Due to the inevitable influence of noise to measuring systems and the difference in sensors
across devices, fingerprints should not be considered as deterministic, but rather as probabilistic
entities. Thus, fingerprint values should be defined with a probability distribution in the form of
a likelihood function, which shows how probable it is to measure a particular value at a location.
The likelihood function is usually constructed by considering the measured fingerprint values mi

(along with the noise) and interpolating them to any arbitrary location with coordinates r based
on the distances ‖r − ri ‖. In our approach, we use the predictive distribution of a GPR estimator to
define the likelihood function.

Algorithm Description: One can think of a fingerprint as a sample from a noisy function f
of some physical quantity (e.g., Earth’s magnetic field or Wi-Fi electromagnetic signal), where
noise is assumed to be Gaussian. To estimate the underlying function, one can apply a regression

technique to the measurement data to obtain a predictor that can be used to estimate unknown
values at arbitrary locations. Remarkably, with GPR, such a predictor also provides, along with
the predicted value, an uncertainty estimate per se as the Gaussian distribution’s variance. This
uncertainty estimate captures: (i) the spatial sparsity of the measurements (i.e., the more sparse
measurements are, the larger is the uncertainty); (ii) the variability of the measurements (i.e., less
complex functions are predicted more accurately); and (iii) the noise in measurements (i.e., larger
noise leads to worse accuracy).

Given a map of scalar fingerprints FM where measurements consist of single values (i.e.,dm = 1),
such as magnetic field magnitude, the output of the GPR algorithm is given by:

GPRScalar (FM ) → f (r) ∼ N (μ (r),σ 2 (r)), (1)

where N denotes a Gaussian random variable, and μ (r), σ (r)2 denote its mean and variance, re-
spectively. The mean and variance of the Gaussian random variable in Equation (1) come from the
predictive distribution of the GPR estimator, while learning is achieved through standard tech-
niques; see Reference [42] for techniques applicable to GPR. The likelihood function value at r is
given by the probability density of the GPR’s predictive distribution, which is Gaussian.

Figure 3 depicts the output of GPR applied on noisy scalar sinusoidal data with the uncertainty
shown as the standard deviation values. In this example application of GPR, the noise-free Initial

data are generated by the underlying sinusoidal function and are actually not available. Only the
Noisy data, i.e., initial data points perturbed by variable random noise, can be observed and mea-
sured. The objective is that the Prediction curve produced by GPR is as close as possible to the
Initial data. When x ≥ 6, the Uncertainty (shaded area) increases significantly, because there are
no measured data to help in the prediction. In this case, the Prediction curve can merely follow the
trend of the previously measured data and therefore deviates considerably from the Initial data.

Multidimensional data: As GPR cannot be directly applied to multidimensional (or vector) data
(i.e., dm ≥ 2), but only to scalar data (i.e., dm = 1), we need to assume that measurement channels
are independent, i.e., magnetic field components vary independently over an area, or separate
Wi-Fi APs do not interfere with each other [23]. Thus, GPR can be applied separately to each
component k = 1, . . . ,dm of fingerprint measurements to obtain dm predictors, each allowing to
estimate the parameters of a Gaussian distribution for one component of a vector-function f (r)
separately (see Algorithm 2). Combining these parameters into a single vector, one obtains the
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Fig. 3. Example application of GPR on the sin function. Noisy samples with smaller noise for 2 ≤ x ≤ 4 and
no data for x ≥ 6, GPR prediction and its uncertainty. In the interval of smaller noise, uncertainty decreases,
whereas in the region of data unavailability it increases dramatically.

following GPR output from a map FM of vector fingerprints:

GPR (FM ) → f (r) ∼ N
(
μ(r),diaд(σ (r))2

)
, (2)

where diaд(x) denotes a diagonal matrix with a diagonal equal to the vector x and N denotes a
Gaussian random vector. The likelihood function value at r is the respective probability density
function of the multivariate Gaussian distribution.

Choosing parameters: Although GPR is a non-parametric technique and can be used as a black
box, some parameters, dependent on the origin of the fingerprints and localization scenarios, must
be selected to obtain sensible error estimate values.

First, we should choose a Kernel Function or a kernel, which, in the case of GPR, denotes how
spatially near measurements are correlated or, in other words, influenced by each other. We opt for
the popular Radial Basis Function (RBF) kernel, which has the following form:

KRBF (ri , rj ) = exp

(
−
‖ri − rj ‖2

2�2

)
, ri , rj ∈ Rdr , (3)

where � is a scaling factor. RBF kernels are good to model arbitrary non-periodic and smooth
functions, which is the case for physically driven data, e.g., magnetic and electromagnetic.

Second, we should consider the uncertainty due to noise and limited sensor accuracy, which can
be directly incorporated in the kernel as follows:

K (ri , rj ) = KRBF (ri , rj ) + σ
2
kδi jk , (4)

where σ 2
k

is a noise level for measurement k , and δi jk is a multi-index Kronecker delta. Note that
no more hyper-parameters are required, other than the Kernel hyper-parameters � and σk that can
be optimized using Maximum Likelihood Estimation (MLE) or its variations [21].

Reducing complexity: A drawback of GPR is its computational complexity. Regression takes
O (N 3) operations, where N is the number of data samples. Therefore, the GPR calculation may be
very costly for large fingerprint maps. However, such a calculation is rarely necessary to be carried
out in an online manner as the FM changes slowly and in cases of change, the GPR calculation can
be carried out in an offline manner. Clearly, there is a trade-off between the accuracy of the GPR
model, which affects the subsequent location accuracy estimation with CRLB and the efficiency
of the proposed solution in terms of time to compute the predictors with GPR, especially when
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ALGORITHM 2: FinдerprintPrediction(FM )

Require: Fingerprint Map FM = {(ri ,mi ), i = 1, . . . ,N }.
1: predictorsk = ∅, k = 1, . . . ,dm � Predictors for each component of a measurement vector

2: for k = 1 . . .dm do

3: FMk
i = ∅, i = 1, . . . ,N � A sub-map of FM , containing kth component of each fingerprint

4: for all (ri ,mi ) ∈ FM do

5: FMk
i ← (ri ,m

k
i ) � Constructing the sub-map

6: end for

7: predictor = GPRScalar (FMk ) � Obtaining a scalar GPR predictor from the sub-map

8: predictorsk ← predictor
9: end for

10: return predictors

new collected data are contributed to the FM and the predictors need to be re-evaluated. To over-
come this limitation, we propose to split the indoor area I into parts, with each part containing
a moderate amount of measurements, i.e., split each building into floors, floors into rooms, corri-
dors, and so on, and calculate GPR only locally. This seems to be a natural solution, even though
the fingerprints on each area edge affect each other. This can be justified by the fact that distant
fingerprints are not interrelated. Moreover, the collected fingerprints contained within the walls
of a room are more relevant for predicting the signal strength values at other locations inside the
room than fingerprints collected outside.

3.4 Accuracy Estimation with CRLB

The key objective in our accuracy estimation is to derive a qualitative indication of the relative
position accuracy that a user is expected to experience at an area in an indoor space compared
to another area. As this QoP measure can be computed offline, i.e., before the fingerprint-based
localization service starts receiving location requests, it offers valuable knowledge to indoor loca-
tion service operators for taking corrective actions towards improving the location accuracy where
needed. The main idea is to exploit the real and predicted signal fingerprints in the FM and employ
the CRLB tool to estimate location accuracy solely on the characteristics of the signals in the FM,
e.g., sparsity of real data at an area implies worse accuracy compared to another area where the
collected data are more dense or higher signal variation suggests that the location accuracy will
be better than the case that the signals are relatively stable.

In estimation theory, the CRLB indicates that the covariance matrix of the estimation error vec-
tor is greater than or equal (i.e., lower bound) than the inverse of the Fisher Information Matrix

(FIM). In our context, the FIM contains information about the number of signal sources and asso-
ciated noise in the signal measurements at a given location r, while the estimator can be any finger-
printing algorithm that uses RSS measurements to estimate the unknown user location. The covari-
ance matrix of the estimation error vector is a 2-D matrix that conveniently reflects the expected
localization error at a given location [15] and the CRLB can be viewed as a lower bound on the accu-
racy that a user will experience in practice. Therefore, the CRLB implies that accuracy at a specific
location cannot be better than the computed bound. As discussed in Section 3.2, due to the assump-
tions in CRLB computation, this bound should be interpreted as a qualitative (i.e., relative accu-
racy), rather than a quantitative (i.e., absolute accuracy) metric. In particular, the CRLB becomes
larger (i.e., lower accuracy should be expected) when the number of collected data are smaller (i.e.,
lower fingerprint density), or fewer signal data sources are available, or the spatial gradient of the
measurements is low at different locations or the noise disturbing the measurements is high.

For instance, the density of the fingerprint map is reflected in the CRLB and consequently the
proposed ACCES score. For the GPR model, as shown in Figure 3 (right-hand side), the predictive
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ALGORITHM 3: AccuracyEstimation(r,predictors )

Require: Location r, fingerprint predictors
1: I = evalF IM (r,predictors ) � Calculate Fisher Information Matrix as in Equation 12

2: crlb = sqrt (tr (inv (I)))
3: return crlb

variance becomes equal to the prior distribution, thus reflecting the navigability score as desired,
i.e., (i) the predictive mean converges to a constant value asymptotically and (ii) the predictive vari-
ance increases and then converges to constant value asymptotically. This means that the predictive
distribution tends to become less and less indistinguishable with each small step while moving to
the right due to the missing data, so our ACCES navigability score will decrease as expected (seen
from Equations (5) and (6)).

Given the interpolated fingerprint values obtained by GPR, we can derive the CRLB on the
best possibly achievable accuracy of any localization algorithm. We emphasize that our interest is
neither in the CRLB’s absolute value, nor in the possibility of some localization algorithms out-
performing this bound; we are rather curious about the CRLB’s behavior that reflects the relative
performance of an arbitrary localization algorithm in different parts of the building or even the
same floor. Algorithm 3 provides an outline of the CRLB calculation for accuracy estimation.

Algorithm Description: The CRLB computation requires the intermediate calculation (line 1 of
Algorithm 3) of the FIM, which shows how much information an observable random variable (or
vector) carries about some deterministic parameter it depends on, e.g., how much sensor measure-
ments at an unknown location could shed a light on the location coordinates.

Now, we discuss an analytical representation of the FIM, inferred from the GPR interpolation,
with the derivations available in the Appendix. Let θ ∈ Rdθ denote a vector-parameter that is
being estimated and x ∈ Rdx denote a random vector, the distribution of which is dependent on
θ . Then, the FIM is

I (θ ) = [I (θ )i j ]
dθ ,dθ

i, j=1 = −E
(
∂2 logp (x|θ )

∂θ i∂θ j

)
, (5)

where θ i denotes the ith component of θ , I (θ )i j denotes an element of the matrix I (θ ) in the
ith row and the jth column, p (x|θ ) is a likelihood showing the probability of sampling x from its
distribution given the parameters θ , and mathematical expectation E is taken over x. In the case
of GPR, the likelihood is given by the probability density function of a Gaussian distribution.

The CRLB is given by the following bound on the RMSE of the location estimation:

RMSE ≥
√
tr (I−1 (θ )) = crlb, (6)

where we let crlb to be such bound that represents the ACCES+ navigability score. Low navigability
score means high QoP and vice versa.

Numerical Calculation: As it is shown in Equation (12) in the Appendix, computation of the
FIM involves evaluation of a Hessian matrix, which raises a concern about its computational over-
head. One approach is to derive it analytically from the expression for the predictive distribution
of GPR. The main drawback of this approach is that the analytical form depends on the particular
choice of kernel and is therefore not generalizable. Another approach is a numerical approxima-
tion based on finite difference schemes. With this approach, it is possible to evaluate a Hessian
matrix for any values of θ with sufficient precision. We stick to the latter approach, and for the
numerical calculation, we utilize the Numdifftools package for Python, assuming the conditions

for differentiability are satisfied. Last, we let θ
Δ
= r and x

Δ
= m and, thus, obtain the desired CRLB
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Fig. 4. Example application of ACCES+ on magnetic data. (a) Black circles denote locations of the collected
magnetic fingerprints, white circles denote locations, where measurements are not collected, but predicted
using GPR; (b) navigability scores calculated at a set of locations inside indoor environment with the finger-
print data comprising magnetometer readings.

for fingerprint-based localization accuracy estimation. Specifically, the corresponding probability
density functionsp (m|r) are required to compute the CRLB and these are always available through
the GPR technique in the Fingerprint Prediction step, which interpolates the collected data in the
FM to output a Gaussian probability density function (i.e., a predictor with a mean and a variance
computed from the collected data as the parameters). These Gaussian distributions (predictors) are
then used for the numerical calculation of the Hessian matrix that is required for the computation
of the FIM to obtain the CRLB for location accuracy estimation.

4 DOMAIN-SPECIFIC OPERATORS

In this section, we describe how the ACCES+ architecture incorporates two separate domain-
specific operators, namely, the ACCES operator for magnetic data and the ACCES-w operator
for Wi-Fi data.

Figure 4 exemplifies the application of the proposed ACCES+ architecture in the case of magnetic
data where the ACCES operator is invoked. An indoor environment with the ambient magnetic
field serving as the source of fingerprint data is assumed in Figure 4(a). Black circles represent loca-
tions that constitute an FM collected during offline phase. White circles represent locations, where
magnetometer measurements were not collected, but are predicted using GPR to obtain a picture
of how the magnetic field could be distributed over the whole indoor area. Figure 4(b) depicts the
navigability scores calculated for a set of locations (of both collected and predicted measurements)
inside an indoor environment during the offline phase. Lower navigability scores (dark green cir-
cles) values imply higher QoP, i.e., better accuracy during the operation of the location service,
whereas higher scores (light yellow circles) imply lower QoP, i.e., the user will experience worse
accuracy. We make the following observations: (i) in the room with the microwave and fridge ad-
ditional magnetic perturbations occur, and accuracy is expected to be higher than in another area;
(ii) in other parts of the building close to the escalator, elevator, and water dispenser, where mag-
netic disturbances occur, accuracy is expected to be relatively good; and (iii) far from magnetic
disturbance, like in the top left part of the building, accuracy is expected to be worse, which also
applies to locations across the corridors where magnetic field does not vary significantly.

4.1 The ACCES Operator for Magnetic Data

Typically, the magnetic signal is quite stable and does not vary significantly in the geographi-
cal area covered even by large buildings. However, the magnetic signal can be disturbed indoors
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due to various sources, including metal surfaces, power cables, electrical appliances, operating
equipment, elevators, escalators, and so on. Such disturbances are prevalent in modern indoor en-
vironments, which make it possible to distinguish between distant locations by using magnetic
fingerprints. For the ACCES operator, first, we must select the values of � and σk to be used for
fingerprint prediction in Equation (3) and Equation (4), respectively. We may pick � as the smallest
achievable motion magnitude in the particular localization setting, which could be the smallest
wheeled robot movement or human’s foot size; the noise level σk can be expressed as the sensitiv-
ity of the sensors, which is 150 to 600nT for typical smartphone magnetometer readings. However,
such sensitivity may underestimate the true noise level and, thus, it is preferable to obtain the noise
level from empirical data, e.g., collect multiple measurements for each location r and calculate the
standard deviation. Besides, it is not necessary to infer parameter values directly; they can rather
be derived using a parameter estimation technique to get the best approximation of the data with
GPR. Thus, one may consider choosing � and σk manually when the fingerprint map is sparse and
some prior information is available, or automatically using parameter estimation methods when
the map is dense. In our experiments with magnetic data, we employed the automatic optimization
approach because of the high density of the magnetic fingerprints (see Figure 1(a)). In particular,
we provide reasonable bounds for the parameters and the outputs of the optimization are optimal
parameter values (within those bounds) for different FMs.

4.2 The ACCES-w Operator for Wi-Fi Data

As part of the functionality in Wi-Fi networks (i.e., IEEE 802.11 standard) the Wi-Fi APs trans-
mit periodically beacon packets that contain hardware-specific information (e.g., MAC address of
the AP) and connection options (e.g., encryption protocol). These packets are received by Wi-Fi-
enabled mobile devices that scan sequentially the frequency channels to discover available Wi-Fi
APs. Upon reception, the RSS value pertaining to each AP is measured by the mobile device as an
indicator of the signal quality to the corresponding AP. The resolution of the RSS readings reported
by modern smartphones is in the range [0.5 . . . 1.0]dBm.

Typically, in open spaces the RSS values follow a log-distance attenuation model and become
weaker as the distance from the Wi-Fi AP increases. In indoor environments, the presence of walls,
doors, equipment, furniture, and people moving introduce additional signal attenuation. Moreover,
due to the multi-path signal propagation (e.g., reflections on walls) the RSS values at a specific
location are not stable and may fluctuate significantly. This behavior is demonstrated in Figure 5,
where the histograms of the RSS samples collected at two distinct locations from the same Wi-Fi AP
over a period of several minutes are plotted. These histograms suggest that when enough data are
collected at a single point in space, then the σk parameter could be set equal to the sample standard
deviation in the RSS histogram. However, in crowdsourced location systems the crowdsourcers
rarely stand still at the same location for enough time to collect multiple measurements (Wi-Fi
readings are reported by modern smartphone every few seconds) and typically record fingerprint
data while walking. Therefore, it is not feasible to build reliable RSS histograms. In such a case,
the σk parameter is selected manually and setting it equal to the sensitivity of the Wi-Fi adapter,
i.e., σk = 1.0dBm in Equation (4), works well in practice. This is because the RSS values pertaining
to the same Wi-Fi AP are blended with the respective RSS values from neighboring locations with
the selection of the � parameter in Equation (3), as described next.

Wi-Fi RSS and its inherent noise characteristics do allow the determination of transmitter-
receiver distance with uncertainty, which leads to room-level localization accuracy. It is impor-
tant to notice that this level of accuracy is in many application scenarios [36] (e.g., smart facto-
ries, hospitals, and ships) adequate and useful to a wide range of applications. In case additional
location-related measurements (e.g., timing, angle of arrival) are available together with RSS data,
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Fig. 5. Histograms of Wi-Fi RSS values pertaining to the same Wi-Fi AP and two distinct locations:
(a) Location A at distance dA from the Wi-Fi AP; (b) Location B at distance dB > dA from the Wi-Fi AP.

then the CRLB can be properly adapted to consider all data sources, thus improving the accuracy
estimation. We observe that the RSS values at location A with distance dA from the Wi-Fi AP
are in the range [−58 . . .−80]dBm, fluctuate around the mean value −69dBm, and can be ap-
proximated by a Gaussian distribution, as shown in Figure 5(a). Similar behavior is observed at
a nearby location B with distance dB > dA from the Wi-Fi AP, where the RSS values are in the
range [−60 . . .−93]dBm and the mean value of the Gaussian bell (−80dBm) is shifted to the right,
i.e., the signal is weaker; see Figure 5(b). Note that the same behavior could occur if locations A
and B were at the same distance from the Wi-Fi AP, but location B was behind a wall or obstacle.
Fingerprint-matching algorithms are able to capture this behavior and exploit the RSS values from
multiple Wi-Fi APs that are readily available on commercial smartphones to distinguish indoor lo-
cations. Note that the signals at a location in a new environment most likely will not match any of
the Gaussian distributions shown in Figure 5. In a new environment, however, a different FM will
be available (e.g., through data crowdsourcing) and the associated RSS data can be used to obtain
the corresponding signal distributions at each location in the new environment. In case the RSS
histogram can be better approximated by a different distribution, then the associated probability
density function (e.g., skewed, multimodal, non-Gaussian) can be used with a different modelling
technique [52], instead of the GPR that relies on the normality assumption, to improve the finger-
print prediction accuracy. In this way, the proposed method for accuracy estimation, as well as
any fingerprint-based localization algorithm, are applicable to a different indoor area.

Obviously, there is an overlap in the two histograms that reflects the spatial correlation of the
RSS values at nearby locations. The closer two locations are in the physical space (assuming no wall
or obstacle is between them) the larger the spatial correlation of RSS values and vice versa. Two lo-
cations that are far from each other (e.g., tens of meters) are not expected to have highly correlated
RSS values. In addition, two neighboring locations that are within 2–3 meters but are separated by
a wall or obstacle, which causes a large shift in the mean RSS value, will not have highly correlated
RSS values. In this sense, there is a natural way to select the � parameter of the exponential kernel
in Equation (3). In large open spaces where the Wi-Fi signal decays smoothly as the distance from
an AP increases without any abrupt changes, � can be set in the range [5 . . . 10]meters; whereas for
locations that are far from each other or are separated by walls or obstacles smaller values should
be used to impose low spatial correlation in the RSS values. Note that when fingerprint predic-
tion with GPR is performed separately for separate rooms, as discussed in Section 3.3 (Reducing
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Fig. 6. Anyplace Logger and Navigator. This is a native Android application that enables fine-grain indoor
localization (up to 1.96 m accuracy [35]) through the use of RSS fingerprints contributed by the crowd.

complexity), then it is not necessary to select a small value for � to consider the impact of walls
to the correlation of RSS values that lie at different sides of a wall. However, when obstacles are
present, then this is recommended, because the RSS values in the fingerprints, which are separated
by an obstacle that lies inside a room, will be less correlated (due to the additional signal attenu-
ation); yet, these fingerprints will be considered together for spatial regression even if rooms are
treated separately.

In practice, for simplicity a single value can used for the � parameter. Similar to magnetic data, �
can be selected automatically using parameter estimation algorithms when the Wi-Fi FM is dense.
Alternatively, � can be selected empirically when the Wi-Fi FM is sparse, as in most practical
application scenarios. We selected � = 3 meters, which yields adequate fingerprint estimation per-
formance in our experimental evaluation.

5 PROTOTYPE IMPLEMENTATION

5.1 Anyplace Service Architecture & Software Stack

Our Anyplace system [57] follows a service-oriented architecture design that allows to plug-n-
play additional modules, either for extending system capabilities—by implementing new features—
or for enhancing user-experience, by improving existing functionalities (e.g., map-matching and
sophisticated data fusion to increase localization accuracy). The public Anyplace service has to this
date supported more than 250K real user interactions, with many more users using its standalone
installations.

The Anyplace native Android application is composed of the Navigator and the Logger that can
benefit from Wi-Fi fingerprinting [35, 40] available under this platform. The Logger application en-
ables users to record Wi-Fi readings from nearby Wi-Fi APs and upload them to our Server through
a Web 2.0 API (in JSON). It is used by volunteers for contributing Wi-Fi data and for crowdsourc-
ing the FMs of buildings [10] (i.e., four directional fingerprinting in multiple rounds to remove
noise). The Navigator allows users to see their current location on top of the floorplan map and
navigate between Points-of-Interest (POI) inside the building with high accuracy (i.e., 1.96 meters

at the Microsoft Indoor Localization Competition at ACM/IEEE IPSN’14 [35]). When the Naviga-

tor is launched, the building map and the associated POIs are automatically loaded by using the
rough user location provided by the Google Geolocation API (see Figure 6). Then, the applica-
tion downloads the FM of the relevant floor (subsequently the complete building) and displays the
user location on top of the map. Moreover, users may search for POIs and get navigation direc-
tions from their current location. The Navigator also uses the on-board smartphone sensors (i.e.,
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accelerometer, gyroscope, and digital compass), which are seamlessly integrated in our tracking
module to smooth the Wi-Fi locations and enhance the navigation experience.

The localization function loc () of Anyplace comprises the following phases: In the first offline
phase, it records the Wi-Fi RSS fingerprints at certain locations (x,y) pin-pointed on a building floor
map (e.g., every few meters). In the second offline phase, the Wi-Fi fingerprints are merged into
the FM, which is essentially an N ×M matrix where N is the number of unique fingerprints and
M the total number of APs. Finally, in the online phase, a user can compare its currently observed
RSS fingerprint against the FM to find the best match, either on the server side or in situ at the
smartphone device after downloading the whole FM by using known algorithms such as KNN or
WKNN [33].

The KNN and WKNN fingerprint methods used in Anyplace have been reported to achieve
higher accuracy in real-life deployments than the standard NN fingerprint-matching method,
which returns the location coordinates associated with the fingerprint in the FM that has the lowest
distance from the observed fingerprint during localization. This is due to the fact that the noise in
the signal values (e.g., the fluctuations in the RSS values at the same location shown in Figure 5) can
cause the NN method to return another location with a similar fingerprint that can be several me-
ters away. In contrast, the KNN and WKNN methods considerK locations with the lowest distances
in the signal space and are able to smooth out the effect of noise to some extend and thus achieve
higher localization accuracy. In addition, fingerprint methods have several advantages compared
to traditional positioning methods, i.e., pure modeling methods [15, 55], described in Section 2.1.
These methods require a priori system information including the positions of the Wi-Fi APs or
Bluetooth beacons and a signal propagation model that translates each signal reading (e.g., timing,
angle, or signal strength) to a distance measurement from the associated transmitter, while the
user location is estimated at the intersection or overlapping area of the circles defined by multiple
distance measurements. However, in indoor application scenarios the transmitter locations may
not be available or are hard to obtain (e.g., a large mall typically has its Wi-Fi infrastructure and
individual stores deploy additional Wi-Fi APs without keeping any record of the installation loca-
tion). Moreover, it is very challenging to derive an accurate signal propagation model for indoor
environments where signal reflections and multi-path propagation, as opposed to line-of-sight
channels, prevail due to walls and obstacles. This severely degrades the accuracy of traditional po-
sitioning methods indoors. In contrast, fingerprint methods such as those employed in Anyplace,
do not require knowledge of the transmitter locations, while they can model reliably data sources
such as ambient magnetic and light intensity that are not emitted by specific transmitters and can-
not be modeled by traditional positioning methods. In addition, signal variations due to reflections
and multi-path conditions are captured in the data collected and stored in the FM; thus, fingerprint
methods employ powerful data-driven pattern-matching techniques to estimate user location and
consequently outperform traditional positioning methods in terms of location accuracy.

5.2 Fingerprint Management Studio and ACCES+ Integration

The FMS is a signal management studio fully integrated in Anyplace, which provides a spatio-
temporal platform to manage the collection of location-dependent sensor readings (i.e., finger-
prints) in indoor environments, estimate the expected localization accuracy based on the collected
fingerprints, and assess Wi-Fi coverage and data rates. FMS comprises the following components:
(i) CSM (Crowd Signal Map), which is a map-based visual management environment to orchestrate
the crowdsourcing effort of indoor signals for ethical benefit; (ii) ACCES-w (Accuracy Estimation

for Wi-Fi data), which enables the qualitative assessment of location accuracy before deploying
the localization service; and (iii) WS (Wi-Fi Surveying), which enables the qualitative assessment
of Wi-Fi coverage using the signals collected by crowdsourcers. In the following, we outline the
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Fig. 7. The Fingerprint Management Studio (FMS) provides a spatio-temporal platform to: (i) manage the
collection of location-dependent fingerprints in indoor environments; (ii) estimate the localization accuracy
based on the collected fingerprints; and (iii) assess Wi-Fi coverage and data rates.

technical details of the CSM and WS components and describe how they interplay with the newly
developed ACCES-w component.
CSM (Crowd Signal Map): is a map-based visual management environment to orchestrate
the crowdsourcing effort of indoor signals. We provide multi-granular visual analytic structures
(heatmap and coverage maps) that enable the management of data in space and time exposing
both performance and high resolution. Figure 7 shows one such example where the stencil bar on
the left provides quick access to all functionality of FMS. Particularly, the user observes through
the heatmap where fingerprints have been sampled (red shows high density). It also shows with
purple squares where the Wi-Fi signal strength is between −90dBm and −100dBm (i.e., intermit-
tent connectivity). A histogram time selector at the bottom enables the user to focus on different
time ranges.

ACCES-w (Accuracy Estimation for Wi-Fi data) is our novel operator for the offline QoP as-
sessment based on Wi-Fi data collected at arbitrary locations, as discussed in Section 4.2.

WS (Wi-Fi Surveying): surveying formally refers to the process of planning and designing a wire-
less network so Wi-Fi APs are positioned optimally, with respect to wireless coverage, data rates,
network capacity, roaming capability, and Quality of Service (QoS). Given that an AP network is
already in place when an IIN architecture is deployed, the aim of FMS is to provide retrospective
visual analytics to network architects for subsequent decision support, e.g., where to install new
APs and stronger antennas or where to change the SSID broadcast channels to avoid collisions at
the MAC layer. The WS component shows the reception quality of Wi-Fi in five classes, based on
the RSS indicator of the MAC addresses. It also records in a database the prefixes (3-Byte to 5-Byte)
of the 6-Byte MAC addresses for various manufacturers (we use Wireshark.org OUI database). AP
inference is carried out with a weighted threshold algorithm: If all signals for an AP MAC address

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 2, Article 10. Publication date: January 2021.



10:20 C. Laoudias et al.

are stronger than a given threshold (e.g., −60 dBm), we derive the AP location using the centroid
of the AP signal strengths. Otherwise, the AP location is derived based on the strongest signal.

Notably, the ACCES-w component expands the FMS workflows by interplaying with CSM and
WS to optimize certain scenarios with particular focus on improving the QoP of the localization
system and consequently the overall indoor location experience. Indicative scenarios include the
following novel FMS workflows where the system operator is able to:

• visualize the fingerprint density through the CSM fingerprint heatmap and compare it side-
by-side with the expected accuracy though the ACCES-w heatmap to identify where ad-
ditional effort is needed to collect more Wi-Fi data and direct crowdsourcers to sparsely
sampled areas.

• visualize the approximate Wi-Fi AP location and number of detected APs in each location
through the WS component and easily correlate with the expected accuracy provided the
ACCES-w heatmap to get hints on where to install additional APs for increasing the dimen-
sion of the Wi-Fi fingerprints and thus their ability to discriminate among distant locations.

6 PERFORMANCE EVALUATION

This section presents an experimental evaluation of the ACCES+ architecture.

6.1 Series-1: ACCES-w Real-Life Usage

In this series, we evaluate the performance of the proposed ACCES+ framework and focus in
particular to the assessment of the ACCES-w operator using real-life Wi-Fi data from the Anyplace

indoor navigation service.

6.1.1 Experimental Wi-Fi Data. We consider the following Wi-Fi datasets that are readily avail-
able through the Anyplace platform:

University of Cyprus Campus: The CSUCY dataset was collected at the Department of Com-
puter Science (CS), University of Cyprus. In particular, it consists of 5,000 reference fingerprints
taken from ∼266 Wi-Fi APs installed in the four floors of the CS and neighboring buildings. We
collected our data by walking over a path that consists of ∼2,900 locations. The density of the
collected fingerprints at floor 0, which covers around 2,500m2, is shown in Figure 8(a).

Mall of Cyprus: The MALL dataset was collected at the Mall of Cyprus. In particular, it consists
of 800 reference fingerprints taken from ∼279 Wi-Fi APs installed in the two floors of the mall and
neighboring buildings. The fingerprint density at floor 1, which covers around 18,500m2, is shown
in Figure 8(b).

6.1.2 Methodology. The objective of this experimental series is to assess qualitatively the per-
formance of the ACCES-w operator under real-life conditions, thus demonstrating the benefits
for the location service providers to improve the delivered localization accuracy. In particular, we
perform two experiments, namely:

• E1 – In this scenario, we selectively remove from the FM a subset of the Wi-Fi fingerprints
collected in the corresponding locations inside a specific area of a building floor, which
corresponds to the case where no data have been collected in that area.

• E2 – In this scenario, we consider all the fingerprints in the FM (as opposed to experiment
E1), but we tamper the fingerprints by removing the RSS measurements from a subset of
randomly selected Wi-Fi APs, which corresponds to the case that the fingerprints in an area
contain measurements only from a few Wi-Fi APs.
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Fig. 8. Wi-Fi datasets. The heatmaps indicate the density of the collected crowdsourced signal strength fin-
gerprints: (a) University of Cyprus Campus and (b) Mall of Cyprus.

6.1.3 Experimental Evaluation. Next, we present the details and discuss our findings with re-
spect to the experiments E1 and E2.

E1 – The goal of this scenario is to show the accuracy degradation in that area, due to the absence
of data, through the heatmap visualization powered by ACCES-w. From the system operator’s
viewpoint, this provides useful information on where to direct crowdsourcers for collecting data.
We consider floor 0 of CSUCY dataset to demonstrate the behavior of the ACCES-w operator in
case real data are not available for a specific section of the floor. We emulate this by manually
removing from the original FM the subset of fingerprints collected at the corresponding locations
in that section. Figure 9 portrays the density of the collected fingerprints as a heatmap produced
by the CSM component overlaid with the accuracy heatmap computed by ACCES-w. The color bar
indicates the QoP expected at various locations across the floor. In the case that all fingerprints in
the original FM are considered, we can make the following interesting observations; see Figure 9(a).
First, in those locations where real data have been collected, the accuracy score indicates that the
users will experience very high QoP (i.e., low location error). Second, in the locations where users
have not crowdsourced real data but are surrounded by data collection points, high or moderate
QoP will be delivered. This shows the ability of the GPR function within ACCES-w to reliably
interpolate real data and produce artificial, yet realistic, fingerprint data.

Figure 9(b) depicts the location accuracy heatmap after removing the fingerprints collected
across the bottom wing of the floor (marked with blue dashed line). The color of the locations
in that part of the floor turn from dark or light green to orange/red indicating that significantly
worse QoP (i.e., higher location error) will be experienced by users traversing that area. This is due
to the absence of real data, as predicted by the ACCES-w operator. In this case, the system operator
can direct volunteers to that area for collecting Wi-Fi data and eventually reach the level of QoP
shown in Figure 9(a). Even though this might seem like an obvious conclusion for the operator
when Wi-Fi data are missing, the proposed solution offers additional insights. First, with the vi-
sualization feature the operator can quickly identify the indoor spaces (e.g., rooms, corridors) that
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Fig. 9. (E1) Performance of the ACCES-w operator when real data are not available for a specific section of
the floor: (a) All fingerprints in the original FM; and (b) Fingerprints removed from the bottom wing of the
floor.

suffer from missing or low-density data as the estimated QoP is conveniently displayed on top of
the indoor floor plan map. In contrast, without the proposed solution, the operator can only see
the locations of the collected data in the FM and it is not easy to tell in which area new data should
be collected by simply looking at location coordinates with no underlying floor plan map. Second,
when crowdsourcers are directed to the target area for collecting additional data, the QoP in that
area will start improving as new data comes in and the operator can easily see when sufficient
location accuracy is reached. Thus, unnecessary crowdsourcing effort in that area is avoided and
crowdsourcers can be utilized more efficiently, e.g., direct them to other areas of low QoP.

E2: The goal of this scenario is to demonstrate through the ACCES-w heatmap the accuracy
degradation in those parts of the floor where the tampered fingerprints contain RSS values only
from a few APs. In this case, the system operator receives valuable insight on where additional Wi-
Fi APs could be deployed to improve the location accuracy. We consider the data in the Anyplace
service that correspond to floor 1 of the MALL dataset and investigate the behavior of the ACCES-
w operator when the collected fingerprints in some parts of the floor contain RSS measurements
from a few Wi-Fi APs. In this case, the fingerprints have limited discriminative power, i.e., they are
not capable to distinguish between locations that might be far from each other because of the low
dimension of the fingerprints. The location accuracy heatmap that corresponds to the original FM,
where all Wi-Fi APs are considered, is illustrated in Figure 10 (a). In total, there are 91 Wi-Fi APs
heard on this floor, while the number of APs sampled in the fingerprints across different locations
ranges from 1–23 APs.

We emulate this scenario by manually removing the RSS values pertaining to a subset of Wi-Fi
APs across all fingerprints in the original FM. Note that when an AP covers the floor partially,
which is the typical case in large indoor spaces, then disregarding that AP will affect only the
fingerprints within its coverage area. Figure 10(b) depicts the resulting location accuracy heatmap
when eight APs (marked with red color) have been removed. We see that in several parts of the
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Fig. 10. (E2) Performance of the ACCES-w operator when the fingerprints contain RSS measurements from
less Wi-Fi APs: (a) Fingerprints with measurements from all Wi-Fi APs; and (b) Measurements from eight
Wi-Fi APs (red color) are removed.

floor, where previously better QoP was anticipated, location accuracy will degrade significantly
due to the lower number of Wi-Fi APs in the fingerprints. For instance, two relatively large areas
that are now suffering worse QoP are indicated with blue dashed line. In this case, the system
operator can easily identify the problematic areas (i.e., those covered by a few Wi-Fi APs) and
decide to strategically deploy additional APs to increase the dimension of the fingerprints, thus
improving the QoP.

6.2 Series-2: ACCES Microbenchmarking

In this series, we focus on microbenchmarking of the ACCES operator using magnetic data. Since
both operators behave similarly in respect to the metrics described next, we only present the results
for magnetic data.

6.2.1 Real Magnetic Data. We use datasets covering magnetometer readings to show the appli-
cability of our analysis to fingerprint data of any modeling complexity. This dataset, obtained from
the UJIIndoorLoc-Mag database [51], consists of 270 continuous training and 11 testing samples
with each sample comprising a set of discrete samples collected along eight corridors of a 260 m2

lab, with a total of 40,159 discrete samples, each containing readings from the magnetometer, the
accelerometer, and the orientation sensor taken by an Android smartphone.

Training samples are split into two groups: “lines” and “curves.” Samples from the first group
represent a sequence of measurements taken along a single corridor in two opposing directions
with five passes for each line, whereas samples from the latter group are taken along each possible
pair of connected corridors with five passes for each curve. Testing samples represent a sequence
of measurements obtained over complex routes consisting of several corridors.

Dataset Construction: We consider this dataset consisting of 1-D data of fingerprints taken only
over corridors (similarly to the approach proposed in Reference [1]); thus, we consider the venue
being split into the sub-areas (corridors), which we study separately. For the quality assessment
of an FM, we are interested only in the three values of magnetometer readings, thus, we discard
accelerometer and orientation data. To simplify the localization scenarios, we use only “lines”
group of samples both for the FM construction and testing phases. Moreover, we consider only
passes in one direction, thus, we leave only five sequences of readings for each corridor. The FM

data used for the interpolation step consists of the four combined sequences of fingerprints per
corridor with the fifth used for navigability score calculation purposes during the testing step. In
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particular, for the sake of RMSE calculation, each of five attempt sequences are one by one chosen
as testing data and the rest four as FM data, thus, producing five FMs and five testing sequences.

6.2.2 Methodology. We conjecture that changes in the observed RMSE along locations would
be reflected in corresponding changes in the calculated score. We assess our hypothesis as follows:
(i) given the fingerprint map FM , we evaluate the navigability score and the RMSE of location
estimation using the WkNN algorithm at a subset of locations L = {rj : j = 1, . . . ,M }; and (ii) we
calculate the relative similarity between the respective values of RMSE and the navigability score.
Since the navigability score may be defined not only as a lower-bound on RMSE, but in arbitrary
manner carrying any unit measure and physical meaning, it is not possible to directly compare
real localization error with it. Therefore, we construct the relative similarity so it captures not
difference in the values, but rather difference in relative changes (over space) of the values. We
assume L to comprise not 2-D but 1-D locations (i.e., dr = 1) to simplify the calculations, and
moreover, without loss of generality, we assume they are sorted by coordinate values.

Metrics: Now, we describe how we calculate such relative similarity. LetX = X j andY = Yj denote
sets of values associated to the 1-D locations r j ∈ L. Then, we define a similarity measure between
these sets as follows: (i) to capture the behavior of X and Y , we calculate their Difference Quotients

(DQ), DQ (X j ) and DQ (Yj ) forX and Y at each location r j ∈ L; (ii) to evaluate the distance between
the respective DQs, we apply sequences similarity measure algorithm, which we choose to be
Dynamic Time Warping (DTW); and (iii) we normalize the obtained distance value to the [−1; 1]
domain, where 1 corresponds to identical behavior, 0 to dissimilar, and −1 to opposite behavior.

The navigability score is a qualitative metric of the location accuracy that a user is expected
to experience in practice. In other words, it indicates whether locations in an area of the indoor
environment will have better accuracy or not than the locations in another area, i.e., how location
accuracy changes over space. The DQ is a discrete approximation of a function’s derivative, show-
ing how the function grows or decreases (i.e., the measure for the average rate of change); thus,
it is suitable for a qualitative description of a function’s behavior. In our setting it is calculated as
follows:

DQ (X j ) =
X j − X j−1

r j − r j−1
, j = 2, . . . ,M . (7)

The boundary case for X1 can be treated differently and is not of significant importance, we let
DQ (X1) = DQ (X2), while DQ (Yj ) is calculated similarly.

DTW allows for the comparison of temporal sequences that may vary in speed, i.e., data values
may be shifted and/or stretched relatively. DTW accommodates such deformations, as a window

size parameter allows, and finds the dislocations that minimize a distance function. For example,
consider the sequenceX j = [0, 0.1, 0.2, 0.3, 0.4, 0.5] and its element-wise squareYj = X 2

j ; the sum

of element-wise absolute differences
∑ |X j − Yj | yields 0.95, whereas DTW with window size 2

gives value of 0.72, and, with window size 6, value 0.55.
The DTW result is a pair of optimally warped DQ-sequences DQ (X )′ and DQ (Y )′, on which the

optimal DTW distance function is obtained. Given these M ′ warped sequences, we compute the
Relative DQ-Similarity DQRelSim as follows:

DQRelSim(X ,Y ) =

= − 1

M ′

M ′∑
j=1

|DQ (X j )
′ − DQ (Yj )

′|
max ( |DQ (X j )′ |, |DQ (Yj )′|)

+ 1.
(8)

If DQ (X j )
′ = DQ (Yj )

′, then DQRelSim(X ,Y ) = 1, and if DQ (X j )
′ = −DQ (Yj )

′, then
DQRelSim(X ,Y ) = −1. Moreover, if, say, X is constant, and, thus, DQ (X j ) and DQ (X j )

′
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Fig. 11. FSSI: FSSIдr een = 4πρ2, FSSIr ed = 4πR2. Higher FSSI values correspond to locations of lower FM

density.

are all zero, whereas Y is varying, then, from the construction of the normalization step,
DQRelSim(X ,Y ) = 0. Note that the time-warped DQ-sequences DQ (X )fi and DQ (Y )fi may be of
different length. Therefore, common similarity measures, which typically assume sequences of
the same sample size, such as the correlation coefficient, are not directly applicable in our case. As
it is shown in the experimental section, two sequences X and Y (i.e., RMSE and the navigability
score values) are considered to behave similarly if DQRelSim(X ,Y ) ≥ 0.1.

Algorithms: The RMSE can be interpreted as the achieved position error in meters [15]. It is a
spatial average in the sense that it provides the expected position error at a specific location based
on a number of estimated locations computed by a location estimator (i.e., localization algorithm)
using noisy measurements. We consider the RMSE to be the true localization error computed at
specific test locations using the associated test data, i.e., one test fingerprint at each test location.
In this sense, a sequence of true position errors is obtained for a number of subsequent test lo-
cations and the derivative of RMSE, i.e., the corresponding DQ, is calculated using Equation (7).
For the real indoor localization scenario, we utilize the WkNN localization algorithm and obtain
the RMSE using the ground truth location from the dataset. Given the fingerprint map FM and
a currently observed fingerprint m, WkNN calculates the Euclidean distance against it and all of
the fingerprints, i.e., di = | |m −mi | |,∀(ri ,mi ) ∈ FM . Then, weights wi ∝ d−1

i are assigned to each
fingerprint and the k most significant are chosen. The user’s location is calculated using a convex
combination of those k fingerprints’ locations. In our experiments, we set k = 3.

FSSI is a basic approach for FM assessment based on the map’s spatial sparsity. It measures the
spatial sparsity at a location r via a simple navigability score called Fingerprint Spatial Sparsity

Indicator (FSSI), defined as the area of a circle centered at r and touching its nearest fingerprint
(see Figure 11):

FSSI (r) = min
i ∈1, ...,N

‖r − ri ‖, (9)

where ri denotes the ith fingerprint in FM . Presumably, accuracy should be lower (equivalently,
RMSE should be higher) at locations with high FSSI values, as less information is obtained with
fewer collected fingerprints. This allows to capture the spatial sparsity of fingerprints and is evalu-
ated as in Equation (9). Larger FSSI values correspond to smaller numbers of fingerprints per area,
thus, potentially, worse accuracy. Yet, this approach will be shown to be inadequate, as, even with
high FM density, the measured values may vary a little over space, leading to accuracy degradation.

Note that FSSI can adequately reflect the density of the fingerprint data in an indoor space. Thus,
it is sufficient for identifying low-accuracy areas due to missing or low-density data. However, it
fails to capture other intrinsic characteristics of the signals, including the variation of the signals
or the number of data sources (e.g., number of Wi-Fi APs), which affects the dimension of the
fingerprints. For this reason, it might be misleading if the fingerprint density is high, but the signals
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do not vary significantly (e.g., Wi-Fi signal strength in open areas) or a few Wi-Fi APs are available.
In these cases, FSSI would wrongly estimate high location accuracy simply because of the high
fingerprint density, whereas in reality location accuracy will be degraded.

ACCES is the proposed navigability score, where GPR-based interpolation is done via the open-
source scikit-learn library for Python with kernel parameters optimized using the in-built Broyden–

Fletcher–Goldfarb–Shanno algorithm. As opposed to FSSI, the ACCES algorithm takes into consid-
eration not only the density of the fingerprint data, but also the level of signal variation and the
number of data sources to derive a more accurate and reliable navigability score. Therefore, the
ACCES score follows closely the true localization error RMSE and can better estimate the location
accuracy that the user will experience in practice.

The comparison of RMSE against the ACCES and FSSI values is performed via the DQRelSim
metric described above. For the given metric, we use a DTW window size equal to 20% of the
sequence length, which appeared to be provide a reasonable performance-utility trade-off in our
experiments.

To evaluate quantitatively the performance of ACCES, we compared ACCES and FSSI against
the RMSE values based on relative similarity in three experiments, namely:

• E3 – “cut” scenario, where a continuous sequence of measurements is removed from FM,
which corresponds to unavailability of a part of the venue during the FM construction. In
this scenario, the estimated location accuracy is expected to degrade significantly in the
part of the venue that was not available during the FM construction, i.e., no real data were
collected in that part, because fingerprints cannot be predicted reliably without real data.

• E4 – “flat” scenario, where a continuous sequence of measurements from FM is made con-
stant, which corresponds to insufficient magnetic field variation in the corridor of the build-
ing due to the lack of sources of magnetic disturbance. In this scenario, the estimated loca-
tion accuracy is expected to decrease considerably in that corridor, because the magnetic
signal has no variation, thus the signal stability will inevitably introduce ambiguity in the
estimated user location and accuracy in practice will be worse.

• E5 – “sparse” scenario, where fingerprints are removed from the FM uniformly, which relates
to variability of a sensor reading rate during fingerprint collection. In this scenario, the
estimated location accuracy is expected to become worse because of the lower density of
collected data, which leads to increased uncertainty in the fingerprint prediction.

6.2.3 Experimental Evaluation. To assess the behavior of ACCES and naïve FSSI approach, we
evaluate them over test locations along the eight corridors in the “cut,” “flat,” and “sparse” sce-
narios, and compare them against the respective RMSE values using the DQRelSim metric. The
graphs in Figure 12 and Figure 13 present the results pertaining to a subset of the corridors for
brevity; the DQRelSim values in all eight corridors and the corresponding graphs for additional
corridors can be found in Reference [37].

E3 – Figure 12(a) shows the distribution of the magnetic field magnitude for the complete and
“cut” FM data, when a sufficiently large interval of fingerprints is removed. Figure 12(b) shows the
respective distributions of the real localization error RMSE and navigability scores FSSI and ACCES
(normalized to the maximum value). Both FSSI and ACCES show reasonable behavior patterns and
yield good similarity values DQRelSim to RMSE that are greater than 0.2.

E4 – Figure 12(c) shows the distribution over the corridor of the magnetic field magnitude for
the initial and “flat” FM data, when a sufficiently large interval of the measurements is made con-
stant. Figure 12(d) shows the respective distributions of the real localization error RMSE and the
navigability scores FSSI and ACCES. Remarkably, ACCES shows a correspondence to the RMSE,
especially in the interval of measurements’ stagnation and yields DQRelSim values greater than
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Fig. 12. (E3, E4) Magnetic field magnitude and ACCES vs. FSSI vs. RMSE for four corridors;
DQRelSim(RMSE,ACCES ), DQRelSim(RMSE, FSSI ) values on top.

Fig. 13. (E5) ACCES and RMSE values for two corridors in the “sparse” scenario.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 2, Article 10. Publication date: January 2021.



10:28 C. Laoudias et al.

0.2, which indicates good similarity; however, FSSI does not detect any potentially problematic
areas, keeping a nearly constant value level over the corridors and yielding nearly zero DQRelSim
values, which indicates no similarity.

E5 – With respect to the “sparse” scenario, Figure 13 shows the ACCES values (Figures 13(a), (c))
and RMSE values (Figures 13(b), (d)) for three cases, i.e., (i) complete FM; (ii) half of fingerprints
removed uniformly from the FM; and (iii) 75% of fingerprints removed uniformly from the FM.
Overall, we note that both ACCES and RMSE values indeed grow as the number of fingerprints
decreases because collecting fewer data leads to accuracy degradation.

7 CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we study the Quality-of-Position (QoP) assessment problem, which aims to assess the
accuracy of FMs in an offline manner. Particularly, the proposed ACCES method operates in two
phases: the interpolation phase, in which an arbitrary fingerprint map is used as input for Gauss-

ian Process Regression, yielding the fingerprint prediction at any location in the form of a likelihood

function; and the accuracy estimation phase, in which the likelihood function is used for the calcu-
lation of Cramer-Rao Lower Bound on localization error, which is considered as a navigability score,
qualitatively describing the real localization performance and consequently the QoP. We have de-
rived adaptions of ACCES for both Magnetic and Wi-Fi data (ACCES-w) and implemented them
in a complete visual assessment interface, coined Fingerprint Management Studio (FMS), which
has been incorporated in the Anyplace open-source IIN. Our experimental study reveals that the
QoP visualization and the underlying navigability scores correspond well to the real localization
errors. Additionally, the FMS user interface allows indoor location service providers to fine-tune
the localization hardware infrastructure and to reduce in this way the deployment costs.

In the future, we aim to apply our framework to better cope with mobility assets (e.g., Wi-Fi
mesh topology that changes over time) in emergency-response scenarios (e.g., inside ships, trains,
and airplanes). Another major future challenge is to fuse multi-modal location-dependent sensing
data, coming from highly diverse, low-cost, and error-prone smartphone sensors to push indoor
accuracy to the limit. As such, we aim to derive extensions that will expand to other localization
technologies as well (e.g., BLE). Finally, given that the technology road-map is towards indoor GIS
integration where indoorgml.net, geojson.org, or any other standard may appear in the future and
become fully inter-operable, we aim to align the data formats in Anyplace and ACCES with these
developments.

A APPENDIX

In this section, we derive CRLB for the predictive distribution of the GPR. As we discussed, in
the case of GPR, the predictive distribution, i.e., the distribution of noisy function values for some
parameter value, is Gaussian

x|θ ∼ N (μ(θ ), Σ(θ )),

where x is the predicted value for the parameter value θ , μ(θ ) and Σ(θ ) are the mean vector and
the covariance matrix, respectively. We assume that the covariance matrix is diagonal. Thus, the
log-likelihood function for the predicted value x given the parameter θ is:

logp (x|θ ) ∼ − 1

2
(x − μ(θ ))T Σ−1 (θ ) (x − μ(θ ))−

− 1

2
log |Σ(θ ) |,

(10)
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where | · | denotes a determinant of a square matrix. Plugging Equation (10) into Equation (5)
results in the following expression for the FIM:

I (θ ) =
1

2
· E

[
∂2

∂θ i∂θ j

[
(x − μ(θ ))T Σ−1 (θ ) (x − μ(θ ))+

+ log |Σ(θ ) |
] ]
.

(11)

Subsequently, it can be transformed to

I (θ ) =
1

2

dx∑
k=1

[
(σ 2

k + μ
2
k )H (σ−2

k ) + H (μ2
kσ
−2
k )−

− 2μkH (μkσ
−2
k ) + 2H (logσk )

]
,

(12)

where we omit the arguments of the mean and variance for the sake of readability,H (·) is a Hessian

Matrix, μk is the kth component of μ and σk is the kth diagonal element of Σ. The CRLB is then
given by the inequality:

cov (θ̂ ) ≥ I−1 (θ ),

where θ̂ is any unbiased estimator of θ , and cov (·) its covariance matrix. Now the Root Mean
Square Error of the estimate is given by the square root of the trace of the covariance matrix, thus:

RMSE ≥
√
tr (I−1 (θ )). (13)

For the case of the scalar parameter θ , i.e., dθ = 1 (which is considered in our experimental eval-
uation), the FIM is a one-element matrix, and, thus, the derived formulas are directly applicable
with a Hessian matrix being just a second-order partial derivative.
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