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Abstract

The motivation for this project is to understand the failures made in the past in order to
avoid repeating them. There were two main reasons for the fall of DVD encryption. One
is a very insecure cryptosystem and the other is poor key management. Our focus will be
on the former and we will spend a great deal of time describing and analyzing CSS, and
the attacks on it. To fully understand and demonstrate those attacks, we will implement
two of the attacks.. These are not the only two, but should be enough to understand the
weaknesses in CSS
This paper is for a large part based on information retrieved by reverse engineering CSS.
This is because the DVD encryption was supposed to be a closed source encryption
scheme.
As a closure we will take a short look on the succeeding encryption schemes for HD-DVD
and Blu-ray and what have been learned from the failures of CSS.
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Chapter 1

About DVD

1.1 Securing the DVD

The DVD was developed as a successor to the analog VHS (Video Home System) by
Toshiba in the early 1990s and after a struggle with other companies the final specifica-
tions were released in September 1998.

There are different types of DVDs, 8 cm or 12 cm with either a single or dual layer. The
vast majority of DVD movies sold, are on 12 cm dual layer (9.5 GB). Writable DVDs,
however, are usually 12 cm single layer (4.7 GB). The data on a video DVD is divided
into sectors of 2048 bytes.

Right from the start DVD was implemented with two types of security. The Motion
Picture Association of America(MPAA) would like to control where the disc could be
played, so that movies would not leak into parts of the world ahead of first showing in
cinemas. This was done using region codes, so that a player and a disc must have a region
code that matches.

This paper will not go into the region code and the technology behind it.

The other type of security is concerned with making sure that a user is not able to make
unauthorized digital copies of the DVDs. This is done by requiring the player and the disc
drive to authenticate each other and by encrypting the data on the DVD. We will primarily
be concerned with the latter.
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1.2 The hidden sector

There is a hidden sector on the DVD that contains the key to decrypt the data on the DVD.
This key is known as the disc key. That key itself is encrypted with what is known as a
player key. All DVD players (software or hardware) must have a player key to enable it
to play a DVD. There are a number of different player keys, so in order to make a DVD
playable on different players with different keys, the disc key is encrypted with all the
possible player keys. All sources we have found claim that there are 409 different player
keys, but we have found that the number is in fact much lower than this. We will return to
this later. The hidden sector contains the following 5 byte blocks:

• Disk key encrypted with the it self (referred to as the hash of the disc key)

• Disk key encrypted with player key 1

• Disk key encrypted with player key 2

• ...

It is possible to buy a dual layer writable DVD, but in order to prevent making a direct
copy of a movie, those have the hidden area filled with all 0s. This makes it impossible to
make a copy of the hidden area and hence decrypt the data on the DVD.

2



Chapter 2

Mutual authentication

As a part of the security measures used to protect the data on the DVD there is a mutual
authentication between DVD drive and the DVD player. This is done to agree on a key1

that can be used to encrypt data sent on the bus, and to ensure that it is only legal programs
that reads the output from the DVD drive.

Ideally this will result in that the data is protected from a man in the middle attack on the
bus commutation line. In order to do this, they have a private key as a shared secret prior
to the authentication.

The encryption in this part is done using the Content Scrambling System(CSS), used in
mode 32.

The host, in this case the computer that hosts the DVD drive, request an Authentication
Grant ID (AGID). This is done by first invalidating the AGID that was used for the last
session and then requesting a new AGID from the drive. The AGID is used as an ID for
the session. The AGID is either a value of 0x00, 0x40, 0x80 or 0xC0 which is added on
the subsequent communication between the host and the drive. After agreeing on a AGID,
the host generates pseudo random bits and sends it as a nonce to the drive, which responds
with an encryption of the nonce using the shared secret. There are actually 32[1] different
encryptions (often called variants). The difference is a simple permutation of the nonce
prior to the encryption. The host then decrypts the respons with the same shared secret,
going through all 32 permutations and authenticates the drive, if one of the decryptions
matches the nonce sent. The hosts notes which variant was used and the first 5 bytes of
the encrypted nonce is called KEY1.

Since this is a mutual authentication, the drive performs the same operations. The drive
generates a nonce sends it to the host, the host encrypts it with the variant noted earlier and
sends it back. The drive decrypts it and accepts and authenticates the host, if it is equal

1Session key
2Table 3.1
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to the nonce it sent. The first 5 bytes of the encrypted nonce is called KEY2. Now the
host and drive have authenticated each other and combined KEY1 and KEY2 by XORing
them and then encrypts them using the shared secret. The result is used as a session key.
The host is now able to request the hidden sector (more on this later) on the DVD and
decrypt it using the session key.

Figure 2.1: The host and drive authentication.

4



Chapter 3

Description of CSS

CSS is a simple synchronous stream product cipher[8, p. 21] using two Linear Feedback
Shift Registers(LFSR)[8, p. 23] as the keystream generator. The set of plaintexts and
ciphertexts are any 40 bit string and as we will see so are the keystream alphabet.

We will describe the decryption part of CSS. Encryption is simply doing the reverse func-
tion1 .

3.1 Keys

The DVD encryption/decryption scheme is based on symmetric-key algorithms and utilize
a hierarchical key structure. Clearly it should be impossible to gain knowledge of any of
the keys, and even if an attack should gain such knowledge, he should not be able to move
upwards in the hierarchy.

This section will give a brief overview of the six keys used, all keys are of length 40 bits
(5 bytes).[6]

1In the case of the LFSRs, this is actually just doing the same with the same key
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Figure 3.1: DVD Keys

• Authentication Key: This permanent key is used in the authentication process be-
tween the host and the drive, as the shared secret. This key must be in the firmware
of all DVD drives2.

• Session Key: This temporary key is created when the disc is inserted and used to
keep the communication on the bus between the host and the drive secret. This
prevents someone reading the information in the hidden area from the bus.

• Player Key: This permanent key is licensed to the manufacturer of the player and
is stored inside the player. This key is used to decrypt the disc key by methods
described later.

• Disc Key: Each DVD has its own unique disc key, which is used to decrypt the title
key(s) the same way as the player key was used to decrypt the disc key.

• Title Key: Each title on a DVD3 has its own unique title key, which is used to de-
crypt the sector keys by XORing with some specific bytes on each sector (basically
a one time pad).

• Sector Key: This key is the last key in the chain and is used to decrypt the actual
data on the DVD by methods described below. It is different for each sector.

To verify that the player is allowed to gain access to the disc, it does the following.
Using its player key kplayer it attempts to decrypt dk1, which is the disc key Kdisc en-
crypted with the first player key.

Kdisc = DA(dk1, Kplayer)

And to verify that Kdisc is correct its checks the following:

Kdisc = DA(hash,Kdisc)

The check works because hash = EA(Kdisc, Kdisc).
If this check fails, the player it will continue with the next encryption of the disc key (dki)
until it finds the correct disc key.

2And is therefore not so private anymore:55, D6, C4, C5, 28[1]
3As an example, "Behind the scenes" and the actual movie are two different titles
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3.2 Linear Feedback Shift Registers

In general LFSRs are shift registers which are meant to be capable of produce a continuous
and apparently random output giving a fixed sized random start state. It is run by shifting
all the bits one position to the right, hence pushing a bit out, which is the random output,
and put itself into a different state using one or more input bits. The new state is a linear
function of the previous state. Because there are a only a finite number of possible states,
it will contain cycles - although good LFSRs will have very long cycles and appear to be
random. In the case of DVD encryption, we generate random bits using two LFSRs, one
with 17 state bits and one with 25 state bits. This seems like a 42 bit encryption scheme,
but is really only 40 bit, because two bits are fixed to being 1’s, to ensure that the LFSR
not go into a cycle of all zeros. [4]

Notice that throughout this section we will refer to the least significant bit (LSB), eg. the
rightmost bit, as the first bit in sequence.

The two registers used in DVD encryption are referred to as LFSR-17 and LFSR-25.

3.2.1 LFSR-17

This register is initialized with the first 2 bytes (16 bits) of the 5 bytes (40 bits) in the key,
plus an extra bit set to 1. This is bit number 9 (letter i) in the register, making a total of 17
bits. As mentioned before this is done to ensure that it does not return a cycle containing
only zeros. Giving the 16 bit key is written out as jklmnopq abcdefgh, the start
state of the LFSR-17 is qponmlkj i hgfedcba. For each round, the LSB (1st bit) is
XOR’ed with the 15th bit. The register is shifted one position to the right, and the result
bit of the XOR operation is placed in the newly empty tab in the left end at position 17,
and is also used as our random output bit.

Figure 3.2: LFSR-17 register
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3.2.2 LFSR-25

This is basically the same as the LFSR-17. It is initialized with the last 3 bytes (24 bits)
of the 5 bytes (40 bits) in key, plus a extra bit a position 22 (letter V) is set to 1. This
makes a total of 25 bits. Giving the 24 bit key written out as QRSTUWXY IJKLMNOP
ABCDEFGH, the start state of the LFSR-25 is Y XWVUTSRQ PONMLKJI HGFEDCBA.
For each round the bits from position 1, 4, 5 and 13 are XOR’ed. The register is shifted
one position to the right, and the result bit of the XOR operation is placed in the newly
empty tab in the left end at position 25, and also used as our random output bit.

Figure 3.3: LFSR-25 register

3.2.3 LFSR optimization

To speed up the process, it is possible to do 8 rounds at one time. This will produce one
byte which is the 8 MSBs. The state after the first 8 rounds of the LFSR-17 is

hgfedcba q ponmlkji
⊕ edcbaqpo 0 00000000
⊕ baqpo000 0 00000000
⊕ po000000 0 00000000

and the state of the LFSR-25 it is

HGFEDCBA YXWVUTSRQ PONMLKJI
⊕ KJIHGFED 000000000 00000000
⊕ LKJIHGFE 000000000 00000000
⊕ TSRQPONM 000000000 00000000

This can be generalized to every 8bit-round step by again viewing the LFSR states as ei-
ther qponmlkjihgfedcba or YXWVUTSRQPONMLKJIHGFEDCBA, before doing the
above operations.

8
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3.2.4 LFSR addition (Keystream generation)

The two LFSR’s are run eight times each, as shown above. The 8 MSBs of the new states
is exactly the bits that are used for output from both of the LFSRs. These bit strings are
added together to produce an output byte and a carry bit in case there is an overflow. The
carry bit is saved and added to the next output byte. These 8 bits are what we mean when
we refer to the total output of the LFSRs. The output of the individual LFSRs will not be
used for anything other than to produce this keystream.

To use CSS to both key and data decryption, CSS has 4 modes of operation. This is done
by inverting the output of one or both of the LFSRs before the addition. Table 3.1 shows
the modes of CSS and if the result of the LFSRs must be inverted.

Mode LFSR-17 LFSR-25
Authentication Y N

Session Key N N
Title Key N Y

Data Y Y

Table 3.1: Invert Output of the LFSRs

3.3 Decryption

There are two different ways of decrypting, depending on whether it is a key or an sector
of data that is being decrypted. We assume the reason was that the DVD player has to
be able to decrypt large amount of data in very little time, and the it time it takes to go
through the many steps involved in decrypting the keys were considered too much to be
done in real time when watching a movie. Therefore simpler encryption rules were used
the actual data.

3.3.1 Decrypting the sectors (actual data)

First the sector key is decrypted by XORing the title key on the 80th, 81st, 82nd, 83rd and
84th byte of the sector, producing a new 40 bit key. The LFSRs are then initialized with
this key vector as described above. The LFSRs are then run 8 times to produce a one byte
key for each byte of sector data4, and is then XORed with the sector byte, producing the
plaintext byte. Hence the LFSRs (the keystream generator) combined with the XORing

4Starting at the 129th byte of the sector, as the first 128 bytes are plaintext containing information about
the sector
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(encryption rules) are used as a stream cipher, as shown in figure 3.4 (the first part as
mangling is not used when decrypting sectors).

3.3.2 Decrypting the keys

Decryption of the keys uses a more complicated encryption rule. Depending on whether
it is the disc key or the title key that is to be decrypted, the LFSRs are seeded with the
player or disc key, respectively. The LFSRs are used to produce a total of 5 bytes of output
as in figure 3.4. Only one key of 40 bits are produced from the LFSRs and are divided
up into one byte keys, which are called mangling keys (mKey[0 ... 4]). The 5 bytes of
the encrypted keys are called the hash (hash[0 ... 4]). These bytes are then put through a
so-called mangling step pictured in figure 3.5 and produce the state2[0 ... 4] output bytes
which are then the decrypted key. The stage1[0 ... 4] bytes are some intermediate results
between the first and second step of the decryption and T is a non-linear 8 bit substitution
table shown starting on line 6 in tables.h 5.

Figure 3.4: Encryption scheme

5Appendix section 9.4.1 on page 39
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Figure 3.5: Key mangling
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Chapter 4

Attacks made on CSS

4.1 A word on time complexity

Time complexity in this chapter is specified as the number of times we have to decrypt a 5
byte key. However, we will not actually be doing entire CSS decryptions in the inner for
loops. Instead we will do things that relate to the actual decryption such as reconstructing
the start state of the LFSR-25. As such the time complexities should be considered rough
estimates.

4.2 Attacking the hashed disc key

4.2.1 Description of Attack

As mentioned earlier, the first 5 bytes of the hidden sector is a hash of the disc key. It’s
simply the disc key encrypted with the disc key. Using nothing but those 5 bytes it is
possible to obtain the disc key. Because of the encryption being non-linear there will be
collisions and hence unusually more than one possible disc key (and sometimes none).
This is a ciphertext Only Attack[2] without any assumptions about the distribution of the
plaintext1. It is the special condition that plaintext is actually the key used to encrypt, that
enables us to find it in much less time(225), than what the 40 bit key would suggest. The
attack was originally developed by Frank A. Stevenson[5] shortly after the DeCSS source
code was released in late October 1999. We will describe his attack and show how we can
greatly reduce the (rather high) space complexity of the algorithm. We highly recommend
you keep the diagram of the mangling step used for encrypting the keys handy for review
(Fig. : 3.5 on the previous page). You might even want to have a pen to cross out the bytes

1Except, of course, for the fact that we know it is 5 bytes long.
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as the encryption scheme breaks down.

4.2.2 The attack

As input we have hash[0 ... 4] (the disc key encrypted) and we wish to get stage2[0 ... 4]
(the disc key in plaintext). First we guess the two first bytes of the disc key. This gives
us the bytes stage2[0] and stage2[1]. Then we guess the single byte stage1[0]. This is a
total of (224) possibilities and apart from guessing a single bit later in the process this is
all that is needed to find all the bytes of the disc key.

The first 8 bit output of the LFSR’s, the mangling mKey[0], can be found as

mKey[0] = T [stage1[0]] ⊕ stage2[0]

Using the diagram it’s also easy to see that,

stage1[4] = stage1[0]⊕ T [hash[0]] ⊕ mKey[0]

and
mKey[4] = stage1[4]⊕ hash[3] ⊕ T [hash[4]]

Next step is to aquire mKey[1] from stage1[0] and stage2[1]. Look at the diagram we can
see that the following equation is true:

stage2[1] = stage1[0] ⊕ mKey[1]⊕ T [hash[0] ⊕ T [hash[1]] ⊕ mKey[1]]

Unfortunately T is a non-linear function and it’s not clear at all how this could be in-
verted, to make mKey[1] a function of stage1[0] and stage2[1]. Luckily, however, there’s
a simple brute force method that only adds 216 time and 216 space. We add an initializing
phase before running the algorithm where we create a table we call K1T. The table takes
stage1[0] and stage2[1] as index and return mKey[1]. It is made by running through all
possible stage1[0] and mKey[1] values, calculating stage2[0] and adding mKey[1] to the
index of stage1[0] and stage2[1]. Since T is non-linear we might have multiple results
which is why we make room for MAXCOLLISIONS keys at each index. Setting the
number to 8 is enough, but this is not something we will prove. Using this table we are
now able to get mKey[1]. Looking the diagram we see that

stage1[1] = hash[0]⊕ T [hash[1]] ⊕ mKey[1]

What is more important is that we have the three bytes mKey[0], mKey[1] and mKey[4].
These are the first, second and last output bytes of LFSR’s. We can get all the output
bytes we want from the LFSR-17, because we started the algorithm guessing the first 2
bytes of the disc key, and the disc key is encrypted with itself, which means the two bytes
are also the first two bytes of the key and the LFSR-17 start state is, as mentioned earlier,
derived directly from these 2 bytes. The 1st, 2nd and 5th output byte of the LFSR-25

13
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can be found simply by subtracting the same output bytes of the LFSR-17 from the total
output bytes of the LFSR’s. There’s a small issue concerning the carry, that is solved by
adding 1 to the 2nd output byte, if there were overflow on the 1st output byte. Because we
don’t know anything about the 4th output byte, and hence nothing about a possible carry
for the 5. output byte, we are trying both possibilities, giving the total complexity of the
algorithm, 225.

This gives us output byte 1, 2 and 5 from the LFSR-25. As we will show later there is a
one to one mapping of these bytes to the start state, and given the start state it is trivial to
get there the 3 byte key used for the LFSR-25. Retrieving these 3 bytes is the final piece of
the attack, since the entire disc key is the 2 bytes of the LFSR-17, which we are guessing,
and these 3 bytes of the LFSR-25. There is a back tracing algorithm to get the start state
(except for the highest bit) from the 1st, 2nd and 3rd output bytes of the LFSR-25, but
there is no clear way to do this for byte 1,2 and 5. We’ll describe two possibilities. The
first one is based Frank A. Stevensons attack and the second is our own method which
require much less memory.

The big LFSR-25 table

One way of doing it is to repeat the trick for the mKey[1] byte. We simply try all possible
keys of the LFSR-25 and compute the corresponding (1st, 2nd and 5th) output bytes.
From these bytes it is possible to build a table which have the 3 output bytes as index and
the key for the LFSR-25 as value. Finding the key giving the output bytes is a simple look
up in constant time. This table is called LFSR-25T in the code. We can add this to the
initializing phase, calculating the output bytes 224 times and using 224 ∗ 24 = 48MB of
space. In the code we use an 32 bit integer type2 for the key which uses a total of 64MB
of memory. One thing to note is that this table is the same for all disc keys, which mean
it can be stored for later use.

Getting rid of the big table

The reason for creating the K1T was that we had a non-linear function, but the LFSR-25
is obviously linear (hence the name). We will use this fact to get rid of the big table.

Each bit of the output is directly related to each of the bits of the start state. Using the
same convention as on figure ?? all the bits are named using the letters A through Y (you
might want to review that section). If we run the LFSR-25 five times and name the output
of the first 16 and last 8 bits3 as b1 to b24, it is possible the relations can be written as:

2Only assumed to be true on 32bit platforms
3Getting 1st, 2nd and 5th output byte of the LFSR-25

14



Crypto 2006 December 15, 2006

Out bits Start bits
1st byte
b1 HKLT
b2 GJKS
b3 FIJR
b4 EHIQ
b5 DGHP
b6 CFGO
b7 BEFN
b8 ADEM
2nd byte
b9 CFGOPST
b10 BEFNORS
b11 ADEMNQR
b12 MPQY
b13 LOPX
b14 KNOW
b15 JMNV
b16 ILMU
5th byte
b17 ADEMNOQRUW
b18 MNPQTVY
b19 LMOPSUX
b20 KLNORTW
b21 JKMNQSV
b22 IJLMPRU
b23 HIKLOQT
b24 GHJKNPS

Table 4.1: The 1st, 2nd and 5th output bytes of the LFSR-25 as a function of its keys

Now we have the 3 output bytes expressed as a function of the start state. Unfortunately
we want the inverted function, having the start state (or key) expressed as a function of
the 3 output bytes, so we need to solve these 24 linear equations. You might have noticed
there are 25 unknowns, but we know that V is always 1, which reduce the number to 24.
This is easily solved and can be done in much less time than 224 and stored in O(242)
space. We will not discuss the methods here, but simply state the result, having the bits of
the key 4 as a function of the bits of the output.

4The 3 byte key for the LFSR-25 is A through Y excluding the V
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Key bit Output bits
Q 1 ⊕ b1 ⊕ b7 ⊕ b9 ⊕ b11 ⊕ b12 ⊕ b17 ⊕ b19 ⊕ b20 ⊕ b22 ⊕ b24
R 1 ⊕ b7 ⊕ b10 ⊕ b11 ⊕ b12 ⊕ b14 ⊕ b22 ⊕ b24
S 1 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b6 ⊕ b8 ⊕ b9 ⊕ b13 ⊕ b14 ⊕ b15 ⊕ b16 ⊕ b18 ⊕ b19 ⊕ b23
T b1 ⊕ b3 ⊕ b5 ⊕ b7 ⊕ b9 ⊕ b11 ⊕ b12 ⊕ b14 ⊕ b16 ⊕ b17 ⊕ b21 ⊕ b22
U b1 ⊕ b3 ⊕ b4 ⊕ b7 ⊕ b8 ⊕ b12 ⊕ b13 ⊕ b16 ⊕ b20 ⊕ b21 ⊕ b22 ⊕ b23 ⊕ b24
W 1 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b6 ⊕ b7 ⊕ b9 ⊕ b10 ⊕ b11 ⊕ b12 ⊕ b13 ⊕ b14 ⊕ b15 ⊕ b20 ⊕ b21 ⊕ b22 ⊕ b23
X b1 ⊕ b3 ⊕ b5 ⊕ b6 ⊕ b10 ⊕ b12 ⊕ b14 ⊕ b15 ⊕ b16 ⊕ b18 ⊕ b19 ⊕ b20 ⊕ b22
Y 1 ⊕ b1 ⊕ b2 ⊕ b4 ⊕ b5 ⊕ b10 ⊕ b11 ⊕ b15 ⊕ b17 ⊕ b18 ⊕ b21
I b3 ⊕ b7 ⊕ b8 ⊕ b9 ⊕ b10 ⊕ b12 ⊕ b13 ⊕ b14 ⊕ b16 ⊕ b17 ⊕ b19 ⊕ b21 ⊕ b22 ⊕ b23 ⊕ b24
J 1 ⊕ b3 ⊕ b8 ⊕ b14 ⊕ b16 ⊕ b18 ⊕ b19 ⊕ b20 ⊕ b21 ⊕ b24
K 1 ⊕ b1 ⊕ b3 ⊕ b7 ⊕ b8 ⊕ b10 ⊕ b11 ⊕ b13 ⊕ b14 ⊕ b16 ⊕ b17 ⊕ b20 ⊕ b21 ⊕ b23
L 1 ⊕ b2 ⊕ b8 ⊕ b9 ⊕ b10 ⊕ b13 ⊕ b14 ⊕ b15 ⊕ b18 ⊕ b20 ⊕ b21 ⊕ b23 ⊕ b24
M 1 ⊕ b2 ⊕ b3 ⊕ b7 ⊕ b9 ⊕ b10 ⊕ b11 ⊕ b12 ⊕ b13 ⊕ b15 ⊕ b16 ⊕ b17 ⊕ b18 ⊕ b20 ⊕ b21 ⊕ b22 ⊕ b23
N b2 ⊕ b7 ⊕ b11 ⊕ b13 ⊕ b14 ⊕ b15 ⊕ b17 ⊕ b18 ⊕ b19 ⊕ b20 ⊕ b23 ⊕ b24
O 1 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b7 ⊕ b9 ⊕ b10 ⊕ b11 ⊕ b15 ⊕ b16 ⊕ b17 ⊕ b18 ⊕ b24
P 1 ⊕ b1 ⊕ b2 ⊕ b7 ⊕ b9 ⊕ b10 ⊕ b12 ⊕ b15 ⊕ b17 ⊕ b18 ⊕ b19 ⊕ b21 ⊕ b22 ⊕ b24
A 1 ⊕ b1 ⊕ b9 ⊕ b10 ⊕ b13 ⊕ b14 ⊕ b19
B b2 ⊕ b3 ⊕ b11 ⊕ b12 ⊕ b15 ⊕ b16 ⊕ b21
C b1 ⊕ b2 ⊕ b10 ⊕ b11 ⊕ b14 ⊕ b15 ⊕ b20
D 1 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b8 ⊕ b10 ⊕ b11 ⊕ b14 ⊕ b15 ⊕ b16 ⊕ b18 ⊕ b19 ⊕ b21
E b1 ⊕ b3 ⊕ b7 ⊕ b8 ⊕ b10 ⊕ b11 ⊕ b14 ⊕ b16 ⊕ b17 ⊕ b20 ⊕ b21
F b1 ⊕ b3 ⊕ b9 ⊕ b11 ⊕ b12 ⊕ b13 ⊕ b16 ⊕ b19 ⊕ b20 ⊕ b22 ⊕ b23 ⊕ b24
G 1 ⊕ b1 ⊕ b2 ⊕ b8 ⊕ b9 ⊕ b11 ⊕ b12 ⊕ b13 ⊕ b14 ⊕ b15 ⊕ b18 ⊕ b21 ⊕ b22 ⊕ b23
H b1 ⊕ b2 ⊕ b3 ⊕ b7 ⊕ b9 ⊕ b10 ⊕ b12 ⊕ b14 ⊕ b15 ⊕ b16 ⊕ b17 ⊕ b18 ⊕ b20 ⊕ b22

Table 4.2: The key for the LFSR-25 as a function of the 3 output bytes 1, 2 and 5. The 1s
are a result of the 22nd bit always being set to 1

In practice it is rather slow to do all these XORs for every iteration, so instead we build 3
tables, one for each output byte. Each byte has an independent contribution to the key, so
we can run through all possibilities for the 1st, calculate its contribution to the key, then
repeat this for the 2nd and 5th byte resulting in 3 tables of 28 integers5 and doing only 28

iterations for each byte. We call these tables LFSR-25t0, LFSR-25t1 and LFSR-25t4 for
the 1st, 2nd, and 5th byte respectively. By comparing the function buildLFSR-25Tables
in table.c 6 to table 4.2 it should be clear how these tables are constructed. The key can
now be calculated simply by looking up each byte in the corresponding table and XORing
the result. This is done on line 148 of the dehash.c7.

Making 3 tables of 28 integers compared to 1 table of 224 is a huge improvement on the
space usage.

5As with the big LFSR-25 table, only 24 bits are actually needed, but it is convenient to use integers
6Appendix section 9.4.2 on page 40
7Appendix section 9.2.3 on page 34
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4.2.3 Conclusion on the hashed disc key attack

The fact that it is possible to find the disc key in 225 and hence decrypt the entire DVD,
shows that the CSS cryptosystem is completely broken. Tests show that our attack on the
hashed disc key take less than 2 seconds8 on a 3 GHz Pentium4 to find possible disc keys
(usually between 0 and 3 on random input). Finding the correct key could be done by
actually decrypting a DVD and watch the output.

4.3 Attacking the player key

4.3.1 Description of attack

This attack takes as input the 5 byte disc key and the disc key encrypted with a player
key, which is also 5 bytes. It can therefore be considered a Known plaintext attack9 with
still no assumptions on the plaintext distribution. As the hashed disc key attack, this
attack was also originally developed by Frank A. Stevenson[5] and released about the
same time. Apparently he has made an error and switched the ciphertext and plaintext.
We will switch it back and make other small modifications that take advantage of the
tables LFSR-25t0, LFSR-25t1 and LFSR-25t4 described earlier in section 4.2. Again we
recommend keeping the mangling diagram and a pen handy.

4.3.2 The attack

As input we have hash[0 ... 4] (the disc key encrypted) and stage2[0 ... 4] (the disc key in
plaintext). We wish to find the player key (or start state of the LFSR’s) that was used to
encrypt the disc key.

First we guess the value of mangling key mKey[4] and the encryption falls apart like this:

stage1[4] = T [hash[4]]⊕ hash[3]⊕mKey[4]

stage1[3] = T [stage1[4]]⊕ stage2[4]⊕mKey[4]

mKey[3] = stage1[3]⊕ hash[2]⊕ T [hash[3]]

stage1[2] = T [stage1[3]]⊕ stage2[3]⊕mKey[3]

mKey[2] = stage1[2]⊕ hash[1]⊕ T [hash[2]]

stage1[1] = T [stage1[2]]⊕ stage2[2]⊕mKey[2]

8Using the big LFSR-25 it takes about 6 seconds
9Note that the plaintext was found with a ciphertext Only Attack

17



Crypto 2006 December 15, 2006

mKey[1] = stage1[1]⊕ hash[0]⊕ T [hash[1]]

stage1[0] = T [stage1[1]]⊕ stage2[1]⊕mKey[1]

mKey[0] = stage1[0]⊕ stage1[4]⊕ T [hash[0]]

This gives us all the bytes you see on the mangling diagram mangling keys. Using this we
will find the start states of the LFSR’s. But first, to reduce the number of possible values
for mKey[4], we can check if our guess for the mangling key was a good guess by testing
if this is true.

stage2[0] == (mKey[0]⊕ T1[stage1[0]])

There will be some collisions, but practice have shown that there will rarely be more than
3 possible values for mKey[4].

Having all the mangling keys means we have 5 bytes of output of the LFSR’s. So for
each possible mangling key we will, much like in the previous attack, run through all
possible values for the key for the LFSR-17. Giving the key for LFSR-17, we can easily
get the start state and produce 5 output bytes. Given 5 bytes of total output of the LFSR’s
and the output of the LFSR-17, we can find 5 bytes of output of the LFSR-25 simply by
subtracting the output of the LFSR-17 from the total output. Repeating the procedure for
the attack on the hashed disc key we take the 1st, 2nd and 5th output byte of the LFSR-25
and find its start state. We now produce the 3rd and 4th output byte from the LFSR-25,
add it with the LFSR-17 and compare it to the total output of the LFSR’s. If they match
we save the key as a possible player key.

4.3.3 Conclusion on the player key attack

A player key can be verified by repeating this for several different DVDs and eliminating
those that do not repeat. The algorithm runs through all possible keys for the LFSR-17
for each possible mangling key. As mentioned there is rarely more than 3 mangling keys
(and usually only 1), so it is fair to claim that the algorithm runs in 216.

4.4 CSS attacks in practice

4.4.1 Researching the hidden sector

Using a tool called tstdvd 7.1 on page 26 it is possible to authenticate a DVD and down-
load the hidden sector from the DVD and store it to disc. The sector is 2048 bytes making
room for a possible 409 different keys of 5 bytes, leaving 3 bytes unused10. It has been
widely reported that the disc key is encrypted with 409 different player keys on each

105 · 409 = 2045
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DVD. We have found, however, that this is not true. The sector actually only use mere
32 different player keys, which are the repeated throughout the sector in what seems as a
random order11. As an example the first player key at position 2 (that is byte 6 through 10
as each position is 5 bytes apart and the first position is the hashed disc key) is repeated at
the positions 50, 58, 84, 121, 137, 145, 209, 230, 260, 285, 337, 407. Each encrypted key
is repeated 12 or 13 times with position 114, 408 and 409 not containing a key. The reason
for this layout is unknown, one possibility is that, if a part of the sector is unreadable, it
might be possible to recover the disc key elsewhere in the sector.

4.4.2 Finding player keys

We used five different DVDs in our attempt to find player keys. We used the hashed disc
key attack to find each possible disc key for each DVD and then used the player key attack
to find possible player keys for each disc key for each DVD. Adding all these player keys
together we found that 53 player keys were found on all five DVDs and eight were found
on two of them, finding a total of 61 keys listed below in Table 4.3.

It might seem strange that we can find 61 different player keys when only 32 different
player keys has been used for encryption. It is possible that two false player keys match
just by random collision, but with 240 possible player keys and less than a 1000 being
compared it is so unlikely12 that we do not even consider it. There is, fortunately, another
explanation for this is, and it is that there is not a one to one mapping between the start
state of the individual LFSR’s and the total 5 byte output of the LFSR’s. In other words
there are sometimes more than one player key that produce the same 5 one byte mangling
keys. Only the mangling keys are of importance, when the disc key is decrypted, which
mean that any of the player keys that result in the same mangling keys can be used.

Not all keys are on all DVDs, which reduce the number of possible player keys even
further, since all DVDs has to be playable on all players. In particular, two DVDs, The
Fly (1986) and Pirates of the Caribbean: The Curse of the Black Pearl (2003), had eight
player keys that did not appear on any of the other DVDs. We were not able to find any
connection between these two movies13 so the reason for this remains unknown.

11Disc key from Pirates of the Caribbean: The Curse of the Black Pearl can be found here: [9]
12According to the birthday paradox this probability is 1 − e−(1000(1000−1))/(2∗240) = 4.542925 ∗ 10−7

and we have not found any reason not to think that false player keys are uniformly distributed
13Pirates of the Caribbean: The Curse of the Black Pearl is from Walt Disney Pictures, and The Fly is

from Brooks films and 20th Century Fox
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2 00 58 08 25 D3 5 01 AF E3 12 80 5 12 11 CA 04 3B
5 14 0C 9E D0 09 5 14 71 35 BA E2 5 1A A4 33 21 A6
5 26 EC C4 A7 4E 5 2C B2 C1 09 EE 5 2F 25 9E 96 DD
5 30 52 FE 1D 7D 5 33 2F 49 6C E0 5 35 5B C1 31 0F
5 36 67 B2 E3 85 5 39 3D F1 F1 BD 5 3B 31 34 0D 91
5 45 ED 28 EB D3 5 48 B7 6C CE 69 5 4B 65 0D C1 EE
5 4C BB F5 5B 23 5 51 67 67 C5 E0 5 52 CC 4F BA 12
5 53 94 E1 75 BF 5 54 35 3B AF 4B 5 57 2C 8B 31 AE
5 5F 5F 24 59 EA 5 63 DB 4C 5B 4A 5 69 D2 E3 92 AE
5 6E 4E 9B 31 22 2 6F 8E EA 50 75 5 71 F6 3E 92 CC
2 73 ED 89 7D C6 5 7B 1E 5E 2B 57 5 85 F3 85 A0 E0
5 90 32 62 54 1D 2 90 56 8D 62 C8 2 97 5A 73 EB 6D
5 99 D9 61 44 B8 5 A3 14 69 0E 4C 2 A5 74 B4 8C 86
5 AB 1E E7 7B 72 5 AB 36 E3 EB 76 5 B1 B8 F9 38 03
5 B7 3F D4 AA 14 5 B7 FE 8B 83 24 5 B8 5D D8 53 BD
5 BF 92 C3 B0 E2 2 C6 74 7C 55 B3 5 C9 DD DD DB B1
5 CE FD CA 02 CD 5 CF 1A B2 F8 0A 5 D2 49 27 50 53
5 DB AF 25 67 9D 5 E6 14 D8 28 6E 5 EC A0 CF B3 FF
5 EE C2 7B 19 AD 5 EF 49 73 01 F6 2 F0 1F 04 D6 47
5 F8 BE EE E9 7B 5 FB 9B FC 60 7A 5 FC 95 A9 87 35
5 FE 21 3C 0B C9 - - - -

Table 4.3: Player keys found from 5 different DVDs. The number indicating the number
of DVDs on which each player key was found
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Chapter 5

CSS issues

As we have just seen, CSS is a weak encryption. This is due to a number of different
issues and we will in this chapter explore the most important. Some of them are technical
and one of them are based of the more philosophical aspects of creating a secure system.

5.1 Key length

The most clear and obvious problem with CSS is the key length itself. The U.S. Govern-
ment would not allow a stronger encryption than the already broken DES 56bit encryption,
so the engineers settled for a 40 bit key. A key size of 40 bits is not enough to prevent
adversaries from brute forcing the key. With only 240 possibilities all keys can be tried in
less than 24 hours on a modern computer1.

5.2 Key management

Another of the major problems with the CSS encryption is the key management. The
weakest point of the encryption is often the top key in the hierarchy. The problem is
that at some point you cannot do anymore encryption and have to rely on physical, non-
cryptographic mean[3, p. 5]. As for the case of DVD, the top key is inside every DVD
player, either software or hardware. This is of course a problem that we cannot seem to
get rid of because the key obviously needs to be available to every player. Here is a real
need for being careful how this key is stored in software or hardware as one compromise
will compromise the encryption scheme permanently. They did not put in a way for
them to replace the player keys, which mean they were meant to be kept secret forever.
Considering the number of people who have access to player keys, it is just unimaginable

1We consider a computer with 3 GHz Pentium4 CPU and 1GB of RAM a modern computer
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that they can stay secret for that long a period. If you are not careful it can be fairly easy
to reverse engineer the software to obtain the player key, as you have the player on your
own hard drive and not just as a black box to use for deciphering. This is basically what
went wrong when Jon Johansen and two unnamed hackers released DeCSS in October
1999. The Xing DVD player had its object code disassembled in order to obtain a player
key.

5.3 Key hierarchy

As with any key hierarchy, it should be possible to go down, but not up. We have shown
that it is possible to get a player key from a disc key in about 216 iterations, which take
about 20 ms on a modern computer. Giving that it is of paramount importance to protect
the player keys we find this rather disturbing.

5.4 Security through obscurity

There has never been released an official description of the cryptosystem behind CSS.
Its creators must have based part of its security the fact that those algorithms were kept
unknown to the public, and thus ignoring Kerckhoffs’ principle[8, 26] that we must as-
sume that an opponent knows everything about our cryptosystem, except the key. This is
underlined by the large number lawsuits that were filed by the MPAA in the period after
this information was released in 1999.

5.5 Weak cryptosystem

As showed in the attacks the cryptosystem the actual time it takes to break to cryptosystem
is nowhere near what the 40 bit key would suggest. The 225 iterations could be done in
a couple of seconds on a modern computer. As mentioned earlier, CSS, uses a product
cipher of only 2, which is simply not enough to obtain security. In comparison, the Feistel
cipher[13] used for the 56 bit DES algorithm, it has 16 rounds of

• permutation

• substitution

• linear mixing using XOR
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The idea is that, even though each round is not enough to secure the system, adding more
rounds will make the scheme more secure. In CSS there is only two rounds and as we
have shown, there are attacks that use this fact2. Adding more rounds would as Shannon
described it, add a large amount of confusion and diffusion[7].

2As an example, the table for the mKey[1] would not have been so easily build, if there had been more
rounds, making mKey[1] into a function of all the mangling keys.
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Chapter 6

Advanced Access Content System

The future brings larger storage medias for better quality and while making new standards
for medias along comes new standards for encryption. The need for a stronger encryption
is obvious. It is clear that the new major standard have learned a lesson from the faults in
CSS by looking at what went wrong.

That is why the new Blu-ray[11] and HD-DVD[14] standards are encrypted under one or
more title keys using Advanced Encryption Standard (AES) [12] in the Advanced Access
Content System(AACS) [10]. The title keys are derived from several elements like the
media key, volume ID of the disc and a hash of the title usage rules.

In trying to prevent the same attacks made on CSS to apply to AACS the manufacturers
have made some new approaches.

One is that AACS provisions each individual DVD player with a unique set of decryp-
tion keys. This allows licensors to revoke individual players, or more specifically, the
decryption keys associated with the player. If a given players keys are compromised by
an attacker, the AACS licensing authority can simply revoke those keys in future content,
making the keys and the player useless for decrypting new movies.

And also Blu-ray discs have a digital watermark technology that all players must check is
correct. This is called the ROM-Mark and all Blu-ray device manufactures must have a
license to insert the ROM-Mark into a media during replication. The digital rights man-
agement believe this will prevent copying Blu-ray discs as easily as with DVD medias.

But the question is: Have they prevented people from copying the discs as it was the real
purpose of encrypting the media. It seems not to be the case.

Already attacks are made on Blu-ray, although the standard is yet to be acknowledged
properly. One attack is to just take screenshots of the window playing the movie and then
add sound later. This is of course a pretty straight forward way that you will always be able
to unless the information is first decrypted in the monitor. This is actually the purposes
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of HDCP1, but while the information is encrypted between the disc and the computer and
between the computer and the monitor it has to be in plaintext in the computer to enable
it to decode the MPEG-2 video stream, which has been shown to be a weak link. The
AACS cryptosystem has not been broken, however this clearly not enough to secure the
content.

Another simple attack is to have a PlayStation 3 running a Linux version and then simply
use the Linux command dd(Disc Dump) in to dump the content of the disc to the hard
drive2.

Now the only problem is to copy it to a blu-ray disc with the right digital watermark in
order to redistribute the disc, but you are although able to play the content from your hard
drive.

It remains doubt full that one will break the encryption itself as it is based on AES. How-
ever it was not the cryptosystem CSS that was compromised at first, but only a player key
- which led to a breake of CSS.

1High-Bandwidth Digital Content Protection[15]
2http://www.ps3news.com/forums/site-news/breaking-news-worlds-first-ps3-blu-ray-movie-dumped-

40441.html
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Chapter 7

Resources

7.1 Tstdvd

Tstdvd is an open source Linux tool to authenticate a computer with the DVD drive and
then reading the hidden sector containing the disc keys. Tstdvd have also a function to
descramble the DVD content and get more information about the DVD.

This tool was used to fake the authentication process and actually obtain the hidden sector
so we could break the code, get the disc key and thereby the player keys.

7.2 Libdvdcss

libdvdcss is a open source library to access DVDs developed by the team behind the
multiplatform media player VLC. Libdvdcss uses a set of predefined player keys to access
the DVD, but if that fails Libdvdcss initiate a 216 attack on the title key.

For more information:
http://developers.videolan.org/libdvdcss/

Used to compare found keys with others results and inspiration and understanding of the
decryption.
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Chapter 8

Conclusion

It should be clear by now that basing your security on the fact that nobody knows how
your encryption scheme works1 is not the best way to provide security.

CSS has so many issues and stands as one fine example of how not to define a cryp-
tosystem. The makers of AACS have clearly learned a lesson from the flaws in CSS and
have made a new standard based on cryptographic schemes that we today and for the near
future rely on to be secure.

The attack on the hashed disc key described by Frank Stevenson was already fast, but had
a pretty huge2 space complexity, and using about six seconds on a 40 bit key is pretty fast.
We have shown not how to implement an attack requiring much less space, and also gave
an optimized with regards to the speed, so the code actually runs a factor three faster than
the version by Frank Stevenson. As we have not focused on optimizing the code, it surely
could be optimized. The optimization is of course not of practical importance, since it
does not really matter if you permanently break the CSS encryption in two or six seconds
or use 64 or 1 MB of RAM. It was only made of cryptographic interest to see if it was
possible to improve the algorithm.

From a more general point of view encrypting public data such as a movie or book, it
will always be an extremely difficult task. Thinking that you can accomplish this without
making the algorithm available for extensive scrutiny by researches around the world can
not be recommended.

All the data must be available to the user, because nobody wants to buy a DVD that
is impossible to watch. So somewhere between the disc and your eyes, there must be
something that turns the encrypted data into plaintext. Postponing it as much as possible
would for the most part increase security.

1and suing anyone who finds out, which we hope does not include us
2especially for a computer in 1999
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Chapter 9

Appendix

This appendix contains all the source code for the attacks we have implemented. It is
implemented in the C language, and is compiled with gcc in a Linux environment.
In total there are three programs available:

• The ciphertext only attack on the hashed disc key. The main function is located in
dehash_main.c. The actual algorithm is implemented in dehash.c.

• The known plaintext attack on the disc key and encrypted disc key. The main func-
tion is located in playerkeyattack_main.c. The actual algorithm is imple-
mented in playerkeyattack.c.

• The combined attack, which takes a DVD hidden sector as input, and outputs all
possible player keys. The main function is located in fullattack.c.

Information about how to compile a program is descripted in the top of the file containing
the main function.

The source is available as a tarball at
http://www.daimi.au.dk/~rauff/crypto/source.tar
This tarball also includes three executable compile commands: cdehash, cpk and
cfullattack. When the programs are compiled, they can be executed by

• ./dehash

• ./playerkeyattack

• ./fullattack

A hidden sector to fullattack is available at
http://www.daimi.au.dk/~rauff/crypto/disc-key_pir

30

http://www.daimi.au.dk/~rauff/crypto/source.tar
http://www.daimi.au.dk/~rauff/crypto/disc-key_pir


Crypto 2006 December 15, 2006

9.1 playerkeyattack

9.1.1 playerkeyattack_main.c

1 /∗∗
2 Program f o r r u n n i n g t h e p l a y e r k e y a t t a c k o n l y .
3 Finds p o s s i b l e p l a y e r k e y s from a d i s c key and a e n c r y p t e d d i s c key .
4
5 Compile command :
6 gcc −Wall −o p l a y e r k e y a t t a c k p l a y e r k e y a t t a c k _ m a i n . c p l a y e r k e y a t t a c k . c l f s r . c u t i l . c t a b l e s . c
7 ∗∗ /
8
9

10 # i n c l u d e < s t d i o . h>
11 # i n c l u d e " p l a y e r k e y a t t a c k . h "
12 # i n c l u d e " u t i l . h "
13
14
15 /∗∗
16 The main program . Takes a d i s c key and a e n c r y p t e d d i s c key as p a r a m e t e r s .
17 ∗∗ /
18 i n t main ( i n t nArgs , char ∗ppcArgs [ ] ) {
19 c o n s t unsigned i n t MAX = 1 0 ; / / maximum p l a y e r k e y s
20 unsigned char dKey [ 5 ] ; / / d i s c key
21 unsigned char edKey [ 5 ] ; / / e n c r y p t e d d i s c key
22 unsigned char pKeys [5∗MAX] ; / / o u t p u t p l a y e r k e y s
23 i n t nKeys ; / / Number o f p l a y e r k e y s found
24 i n t i ;
25
26 i f ( nArgs !=11 )
27 p r i n t E x i t ( " Usage : p l a y e r k e y a t t a c k DD DD DD DD DD EE EE EE EE EE ( d iscKey e n c r y p t e d D i s c K e y ) " ) ;
28
29 f o r ( i =0 ; i <5 ; i ++ ) {
30 dKey [ i ] = ge tArg ( ppcArgs [ i + 1 ] ) ;
31 edKey [ i ] = ge tArg ( ppcArgs [ i + 6 ] ) ;
32 }
33
34 p r i n t 4 0 b i t s ( " Disc key : " , dKey ) ;
35 p r i n t 4 0 b i t s ( " E n r y p t e d d i s c key : " , edKey ) ;
36
37 nKeys = p l a y e r k e y a t t a c k ( edKey , dKey , pKeys , MAX ) ; / / Running t h e a t t a c k
38
39 / / P r i n t s t h e o u t p u t :
40 p r i n t f ( "%d p o s s i b l e p l a y e r keys : \ n " , nKeys ) ;
41 f o r ( i =0 ; i <nKeys ; i ++)
42 p r i n t 4 0 b i t s ( " " , pKeys+ i ∗5) ;
43
44 re turn 0 ;
45 }

9.1.2 playerkeyattack.h

1 i n t p l a y e r k e y a t t a c k ( c o n s t unsigned char∗ edKey , c o n s t unsigned char∗ dKey , unsigned char∗ pKeys , c o n s t unsigned i n t
maxkeys ) ;

9.1.3 playerkeyattack.c

1 /∗∗
2 T h i s f i l e c o n t a i n s t h e a l g o r i t h m f o r t h e p l a y e r k e y a t t a c k .
3 For r u n n i n g t h i s a t t a c k only , s e e p l a y e r k e y a t t a c k _ m a i n . c f o r a main ( ) f u n c t i o n .
4 ∗∗ /
5
6 # i n c l u d e < s t d i o . h>
7 # i n c l u d e < s t d l i b . h>
8 # i n c l u d e < s t r i n g . h>
9 # i n c l u d e < c t y p e . h>

10 # i n c l u d e < s t d i n t . h>
11
12 # i n c l u d e " t a b l e s . h "
13 # i n c l u d e " u t i l . h "
14 # i n c l u d e " l f s r . h "
15
16
17
18 i n t ge tMangl ingKeys ( c o n s t unsigned char∗ s t a g e 2 , c o n s t unsigned char∗ edKey , unsigned char mKey4 , unsigned char∗ mKey

) ;
19 i n t c h e c k P o s s i b l e K e y ( c o n s t unsigned char ∗mKey , c o n s t unsigned char ∗pKey ) ;
20 void r e c o n s t r u c t L F S R 2 5 k e y ( c o n s t unsigned char ∗out17 , c o n s t unsigned char ∗mKey , unsigned char ∗ l f s r 2 5 k e y ) ;
21 void g e t P l a y e r K e y s ( c o n s t unsigned char ∗mKey ) ;
22
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23
24 / / t a b l e s f o r ou t25 { 0 , 1 , 4 } −−> LFSR−25 key
25 s t a t i c unsigned i n t l f s r 2 5 t 0 [ 2 5 6 ] ;
26 s t a t i c unsigned i n t l f s r 2 5 t 1 [ 2 5 6 ] ;
27 s t a t i c unsigned i n t l f s r 2 5 t 4 [ 2 5 6 ] ;
28
29 / / Ou tpu t b o o k k e e p i n g
30 s t a t i c unsigned char∗ o u t p u t s ;
31 s t a t i c unsigned i n t output_num , o u t p u t _ s i z e ;
32
33 / / Boolean v a l u e i n d i c a t i n g i f t h e s m a l l t a b l e s are b u i l d .
34 s t a t i c char b T a b l e s B u i l d = 0 ; / / f a l s e
35
36
37
38
39
40 /∗∗
41 The p l a y e r k e y a t t a c k a l g o r i t h m .
42 edKey : E n c r y p t e d d i s c key .
43 dKey : Disc key .
44 pKeys : Outpu t p l a y e r k e y s .
45 maxkeys : Maximum p l a y e r k e y s .
46 R e t u r n s t h e number o f p l a y e r k e y s found .
47 ∗∗ /
48 i n t p l a y e r k e y a t t a c k ( c o n s t unsigned char∗ edKey , c o n s t unsigned char∗ dKey , unsigned char∗ pKeys , c o n s t unsigned i n t

maxkeys ) {
49 unsigned char mKey [ 5 ] ; / / P o s s i b l e mangl ing key
50 unsigned i n t mKey4 ;
51
52 / / S e t up o u t p u t e n v i r o n m e n t
53 o u t p u t s = pKeys ;
54 o u t p u t _ s i z e = maxkeys ;
55 output_num = 0 ;
56
57 / / Only b u i l d t a b l e s i f t h e y n o t a l r e a d y are b u i l d
58 i f ( ! b T a b l e s B u i l d ) {
59 bui ldLFSR25Tables ( l f s r 2 5 t 0 , l f s r 2 5 t 1 , l f s r 2 5 t 4 ) ;
60 b T a b l e s B u i l d = 1 ; / / t r u e
61 }
62
63 f o r ( mKey4=0;mKey4 <256;mKey4++) { / / Guess mKey [ 4 ]
64 i f ( ge tMangl ingKeys ( dKey , edKey , mKey4 , mKey) ) { / / Find p o s s i b l e mangl ing k e y s
65 / / p r i n t 4 0 b i t s ( " P o s s i b l e mangl ing key : " , mKey ) ;
66 g e t P l a y e r K e y s (mKey) ; / / Find p o s s i b l e p l a y e r k e y s f o r a s i n g l e mangl ing key .
67 }
68 }
69 re turn output_num ;
70 }
71
72
73
74 /∗∗
75 C o n s t r u c t s t h e f u l l mangl ing key from t h e d i c s key ( s t a g e 2 ) , e n c r y p t e d d i c s key , and t h e 5 t h mangl ing key b y t e .
76 s t a g e 2 : P o i n t e r t o 5 b y t e s o f u n e n c r y p t e d d i s c key ( p l a i n t e x t ) .
77 edKey : P o i n t e r t o 5 b y t e s o f e n c r y p t e d d i s c key ( c i p h e r t e x t ) .
78 mKey4 : Value o f mKey [ 4 ] ( t h e 5 t h mangl ing key b y t e ) .
79 mKey : P o i n t e r t o 5 b y t e s o f o u t p u t mangl ing key .
80 R e t u r n s boo lean ( 1 / 0 ) , t r u e i f mKey4 p r o du c e s a p o s s i b l e mangl ing key , f a l s e o t h e r w i s e .
81 ∗∗ /
82 i n t ge tMangl ingKeys ( c o n s t unsigned char∗ s t a g e 2 , c o n s t unsigned char∗ edKey , c o n s t unsigned char mKey4 , unsigned char

∗mKey) {
83 unsigned char s t a g e 1 [ 5 ] ;
84
85 mKey [ 4 ] = mKey4 ;
86 s t a g e 1 [ 4 ] = T [ edKey [ 4 ] ] ^ edKey [ 3 ] ^ mKey [ 4 ] ; / / Now we have t h e e n t i r e l a s t column
87 s t a g e 1 [ 3 ] = T [ s t a g e 1 [ 4 ] ] ^ s t a g e 2 [ 4 ] ^ mKey [ 4 ] ; / / And we can use t h i s t o f i n d s t a g e 1 [ 3 ]
88 mKey [ 3 ] = s t a g e 1 [ 3 ] ^ edKey [ 2 ] ^ T [ edKey [ 3 ] ] ; / / Now we have t h e two l a s t columns
89
90 s t a g e 1 [ 2 ] = T [ s t a g e 1 [ 3 ] ] ^ s t a g e 2 [ 3 ] ^ mKey [ 3 ] ; / / We can f i n d s t a g e 1 [ 2 ]
91 mKey [ 2 ] = s t a g e 1 [ 2 ] ^ edKey [ 1 ] ^ T [ edKey [ 2 ] ] ; / / Now we have t h e t h r e e l a s t columns
92
93 s t a g e 1 [ 1 ] = T [ s t a g e 1 [ 2 ] ] ^ s t a g e 2 [ 2 ] ^ mKey [ 2 ] ; / / We can f i n d s t a g e 1 [ 1 ]
94 mKey [ 1 ] = s t a g e 1 [ 1 ] ^ edKey [ 0 ] ^ T [ edKey [ 1 ] ] ; / / Now we have t h e f o u r l a s t columns
95
96 s t a g e 1 [ 0 ] = T [ s t a g e 1 [ 1 ] ] ^ s t a g e 2 [ 1 ] ^ mKey [ 1 ] ; / / We can f i n d s t a g e 1 [ 0 ]
97 mKey [ 0 ] = s t a g e 1 [ 0 ] ^ s t a g e 1 [ 4 ] ^ T [ edKey [ 0 ] ] ; / / Now we have i t a l l
98
99 i f ( s t a g e 2 [ 0 ] == (mKey [ 0 ] ^ T [ s t a g e 1 [ 0 ] ] ) ) { / / Check i f t h e mangl ing k e y s g i v e t h e c o r r e c t r e s u l t f o r t h e f i r s t

b y t e o f t h e d i s c key .
100 re turn 1 ; / / t r u e
101 }
102
103 re turn 0 ; / / f a l s e
104 }
105
106
107
108
109 /∗∗
110 Finds p o s s i b l e p l a y e r k e y s from a p o s s i b l e mangl ing key .
111 mKey : P o i n t e r t o 5 b y t e mangl ing key .
112 ∗∗ /
113 void g e t P l a y e r K e y s ( c o n s t unsigned char ∗mKey ) {
114 unsigned char key [ 5 ] ; / / tmp key
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115 unsigned char l f s r 1 7 o u t [ 5 ] ;
116 i n t i ;
117 f o r ( i = 0 ; i < 256 ∗ 256 ; i ++) { / / Guess s t a r t key o f LFSR17
118 key [ 0 ] = ( i >> 8) & 0xFF ;
119 key [ 1 ] = i & 0xFF ;
120 l f s r 1 7 _ p r o d u c e 5 b y t e s ( i , l f s r 1 7 o u t ) ; / / Produce 5 b y t e s
121 r e c o n s t r u c t L F S R 2 5 k e y ( l f s r 1 7 o u t , mKey , &key [ 2 ] ) ; / / R e c o n s t r u c t s t a r t key o f LFSR25
122 i f ( c h e c k P o s s i b l e K e y ( mKey , key ) )
123 {
124 / / p r i n t 4 0 b i t s ( " P o s s i b l e p l a y e r key : " , key ) ;
125 i f ( output_num < o u t p u t _ s i z e ) {
126 memcpy ( o u t p u t s +output_num∗5 , key , 5 ) ;
127 } e l s e {
128 p r i n t f ( " Too many p l a y e r keys ! \ n " ) ;
129 }
130 output_num ++;
131 }
132 }
133 }
134
135
136 /∗∗
137 Takes a mangl ing key and a p l a y e r key , and t e s t s i f t h e c o m b i n a t i o n i s p o s s i b l e .
138 mKey : P o i n t e r t o 5 b y t e mangl ing key .
139 pKey : P o i n t e r t o 5 b y t e p l a y e r key .
140 R e t u r n s boo lean ( 1 / 0 ) , t r u e i f p o s s i b l e , f a l s e o t h e r w i s e .
141 ∗∗ /
142 i n t c h e c k P o s s i b l e K e y ( c o n s t unsigned char ∗mKey , c o n s t unsigned char ∗pKey ) {
143 unsigned char l f s r 1 7 o u t [ 5 ] ; / / o u t p u t from LFSR−17
144 unsigned char l f s r 2 5 o u t [ 5 ] ; / / o u t p u t from LFSR−25
145 unsigned char t o t a l o u t [ 5 ] ; / / 8 LSBs o f t h e sum o f t h e two p r e c e d i n g o u t p u t s
146 i n t i ;
147 i n t cc ; / / c a r r y (1 or 0 )
148
149 l f s r 1 7 _ p r o d u c e 5 b y t e s ( ( pKey [0] < <8) | ( pKey [ 1 ] ) , l f s r 1 7 o u t ) ;
150 l f s r 2 5 _ p r o d u c e 5 b y t e s ( ( pKey [2] < <16) | ( pKey [3] < <8) | ( pKey [ 4 ] ) , l f s r 2 5 o u t ) ;
151
152 cc =0;
153 f o r ( i = 0 ; i < 5 ; i ++) {
154 t o t a l o u t [ i ] = ( l f s r 1 7 o u t [ i ]+ l f s r 2 5 o u t [ i ]+ cc ) & 0xFF ;
155 cc = ( ( l f s r 1 7 o u t [ i ]+ l f s r 2 5 o u t [ i ]+ cc ) & 0 x100 ) >> 8 ;
156 i f ( mKey[ i ] ! = t o t a l o u t [ i ] )
157 re turn 0 ; / / f a l s e
158 }
159 re turn 1 ; / / t r u e
160 }
161
162
163
164
165 /∗∗
166 C o n s t r u c t s t h e LFSR−25 key from t h e o u t p u t o f LFSR−17 and a mangl ing key .
167 ou t17 : P o i n t e r t o 5 o u t p u t b y t e s from LFSR−17.
168 mKey : P o i n t e r t o 5 b y t e s mangl ing key .
169 l f s r 2 5 k e y : P o i n t e r t o 3 LFSR−25 key b y t e s ( o u t p u t ) .
170 ∗∗ /
171 void r e c o n s t r u c t L F S R 2 5 k e y ( c o n s t unsigned char ∗out17 , c o n s t unsigned char ∗mKey , unsigned char ∗ l f s r 2 5 k e y ) {
172 / / R e c o n s t r u c t LFSR25 o u t p u t ( b y t e 1 ,2 and 5) from t o t a l o u t p u t b y t e s o f LFSRs )
173 unsigned i n t t e s t ;
174 unsigned i n t k ;
175 unsigned char ou t25 [ 5 ] ;
176
177 t e s t = (0 x100+mKey [ 0 ] )−ou t17 [ 0 ] ;
178 ou t25 [ 0 ] = t e s t &0xFF ; / / 8 LSBs
179 i f ( t e s t &0x100 ) t e s t = 0 x100+mKey[1]− ou t17 [ 1 ] ; / / no c a r r y
180 e l s e t e s t = 0x100−1+mKey[1]− ou t17 [ 1 ] ; / / c a r r y
181 ou t25 [ 1 ] = t e s t &0xFF ; / / 8 LSBs
182
183 t e s t = (0 x100+mKey [ 3 ] )−ou t17 [ 3 ] ;
184
185 i f ( t e s t &0x100 ) t e s t = 0 x100+mKey[4]− ou t17 [ 4 ] ; / / no c a r r y
186 e l s e t e s t = 0x100−1+mKey[4]− ou t17 [ 4 ] ; / / c a r r y
187 ou t25 [ 4 ] = t e s t &0xFF ;
188
189 k = l f s r 2 5 t 0 [ ou t25 [ 0 ] ] ^ l f s r 2 5 t 1 [ ou t25 [ 1 ] ] ^ l f s r 2 5 t 4 [ ou t25 [ 4 ] ] ; / / Use o u t p u t t o g e t s t a r t key o f LFSR25
190 l f s r 2 5 k e y [ 0 ] = ( k > >16)&0xFF ;
191 l f s r 2 5 k e y [ 1 ] = ( k > >8)&0xFF ;
192 l f s r 2 5 k e y [ 2 ] = k&0xFF ;
193 }

9.2 dehash

9.2.1 dehash_main.c
1 /∗∗
2 Program f o r r u n n i n g t h e dehash a t t a c k o n l y .
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3 Finds p o s s i b l e d i s c k e y s from t h e hash .
4
5 Compile command :
6 gcc −Wall −o dehash dehash_main . c dehash . c l f s r . c u t i l . c t a b l e s . c
7 ∗∗ /
8
9

10 # i n c l u d e < s t d i o . h>
11 # i n c l u d e " u t i l . h "
12 # i n c l u d e " dehash . h "
13
14
15 /∗∗
16 The main program . Takes t h e hash ( d i s c key e n c r y p t e d w i t h i t s e l f ) as parame te r .
17 ∗∗ /
18 i n t main ( i n t nArgs , char ∗ppcArgs [ ] ) {
19 c o n s t unsigned i n t MAXKEYS = 1 0 ; / / Maximum number o f d i s c k e y s
20 unsigned char h [ 5 ] ; / / The hash v a l u e
21 unsigned char keys [5∗MAXKEYS] ; / / Ou tpu t d i s c k e y s
22 i n t nKeys ; / / Number o f d i s c k e y s found
23 i n t i ;
24
25 i f ( nArgs != 6 )
26 p r i n t E x i t ( " \ nUsage : dehash xx xx xx xx xx ( hash ) \ n " ) ;
27
28 f o r ( i =0 ; i <5 ; i ++ )
29 h [ i ] = ge tArg ( ppcArgs [ i +1] ) ;
30
31 nKeys = dehash ( h , keys ,MAXKEYS) ; / / Running t h e a t t a c k
32
33 / / P r i n t s t h e o u t p u t
34 p r i n t f ( "%d p o s s i b l e d i s c keys : \ n " , nKeys ) ;
35 f o r ( i =0 ; i <nKeys ; i ++)
36 p r i n t 4 0 b i t s ( " " , keys +5∗ i ) ;
37
38 re turn 0 ;
39 }

9.2.2 dehash.h
1 i n t dehash ( c o n s t unsigned char∗ hash , unsigned char∗ keys , c o n s t i n t maxkeys ) ;

9.2.3 dehash.c
1 /∗∗
2 T h i s f i l e c o n t a i n s t h e a l g o r i t h m f o r t h e d e h a s h i n g a t t a c k .
3 For r u n n i n g t h i s a t t a c k only , s e e dehash_main . c f o r a main ( ) f u n c t i o n
4 ∗∗ /
5
6
7 # i n c l u d e < s t d i o . h>
8 # i n c l u d e < s t d l i b . h>
9 # i n c l u d e < s t r i n g . h>

10 # i n c l u d e < c t y p e . h>
11 # i n c l u d e < s t d i n t . h>
12
13 # i n c l u d e " t a b l e s . h "
14 # i n c l u d e " u t i l . h "
15 # i n c l u d e " l f s r . h "
16
17
18 # d e f i n e LFSR25_TABLE_FILE " l f s r 2 5 t a b l e "
19 # d e f i n e MAXCOLLISIONS 8
20 # d e f i n e K1T( s10 , s21 , i ) ( k 1 t [ ( s10∗256+ s21 ) ∗(MAXCOLLISIONS+1) + i ] )
21 # d e f i n e LFSR25T ( out0 , out1 , ou t4 ) ( l f s r 2 5 t [ ( ( ou t0 ) < <16) | ( ( ou t1 ) <<8) | ( ou t4 ) ] )
22 / / out0 , out1 , ou t4 must be b y t e s ! eg . u n s i g n e d char
23
24
25 void b u i l d r e s t ( ) ;
26 void d e c r y p t H a s h ( unsigned char∗ o u t p u t , c o n s t unsigned char∗ dKey ) ;
27 void b u i l d K 1 t a b l e ( ) ;
28 void b u i l d L F S R 2 5 t a b l e ( ) ;
29 void bui ldLFSR25Tables ( ) ;
30
31
32
33 / / 5 b y t e s t a g e s / k e y s
34 s t a t i c unsigned char hash [ 5 ] ; / / The i n p u t hash
35 s t a t i c unsigned char s t a g e 1 [ 5 ] ; / / The mid d l e s t a g e o f t h e mangl ing c i p h e r
36 s t a t i c unsigned char s t a g e 2 [ 5 ] ; / / The bo t tom s t a g e o f t h e mangl ing c i p h e r
37 s t a t i c unsigned char mKey [ 5 ] ; / / The mangl ing key . Eg . f i n a l o u t p u t s from t h e LFSR ’ s and i n p u t s t o t h e mangl ing

c i p h e r .
38 s t a t i c unsigned char ou t17 [ 5 ] ; / / Ou tpu t b y t e s from LFSR−17
39 s t a t i c unsigned char ou t25 [ 5 ] ; / / Ou tpu t b y t e s from LFSR−25
40
41
42 / / t a b l e s :
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43 s t a t i c unsigned i n t∗ l f s r 2 5 t ; / / Huge t a b l e f o r ou t25 { 0 , 1 , 4 } −−> key25 mapping
44 s t a t i c unsigned char∗ k 1 t ; / / P o s s i b l e ( s t a g e 1 [ 0 ] , s t a g e 2 [ 1 ] ) −−> mKey [ 1 ] mappings
45 / / Smal l t a b l e s f o r ou t25 { 0 , 1 , 4 } −−> key25 mapping
46 s t a t i c unsigned i n t l f s r 2 5 t 0 [ 2 5 6 ] ;
47 s t a t i c unsigned i n t l f s r 2 5 t 1 [ 2 5 6 ] ;
48 s t a t i c unsigned i n t l f s r 2 5 t 4 [ 2 5 6 ] ;
49
50
51
52 / / Ou tpu t b o o k k e e p i n g
53 s t a t i c unsigned char∗ o u t p u t s ;
54 s t a t i c unsigned i n t output_num , o u t p u t _ s i z e ;
55
56
57
58 /∗∗
59 h : P o i n t e r t o i n p u t hash (5 b y t e s )
60 k e y s : P o i n t e r t o o u t p u t d i s c k e y s (5∗maxkeys b y t e s assumed )
61 maxkeys : s e e k e y s .
62 R e t u r n s t h e number o f d i s c k e y s found .
63 ∗∗ /
64 i n t dehash ( c o n s t unsigned char∗ h , unsigned char∗ dKeys , c o n s t i n t maxkeys )
65 {
66 unsigned i n t l f s r 1 7 ; / / LFSR−17 key
67 unsigned i n t s10 ; / / s t a g e 1 [ 0 ]
68 i n t i ;
69
70 / / Copy t h e hash
71 memcpy ( hash , h , 5 ) ;
72
73 / / S e t up o u t p u t e n v i r o n m e n t
74 o u t p u t s = dKeys ;
75 o u t p u t _ s i z e = maxkeys ;
76 output_num = 0 ;
77
78
79 p r i n t 4 0 b i t s ( " Hash : " , hash ) ;
80
81 / / B u i l d i n g t a b l e s
82 b u i l d K 1 t a b l e ( ) ; / / k 1 t
83 bui ldLFSR25Tables ( l f s r 2 5 t 0 , l f s r 2 5 t 1 , l f s r 2 5 t 4 ) ; / / 3 x 256 b y t e t a b l e s
84 / / b u i l d L F S R 2 5 t a b l e ( ) ; / / 64MB t a b l e
85
86 / / I t e r a t i o n t h r o u g h a l l p o s s i b l e LFSR−17 k e y s
87 p r i n t f ( " S e a r c h i n g f o r keys : \ n " ) ;
88 f o r ( l f s r 1 7 =0; l f s r 1 7 <0 x10000 ; l f s r 1 7 ++ ) {
89 / / P r o g r e s s i n d i c a t i o n
90 i f ( ( l f s r 1 7 &0x0FFF ) ==0x0FFF ) {
91 p r i n t f ( " \ r%u%%. " , ( ( l f s r 1 7 +1)∗100) / 0 x10000 ) ;
92 f f l u s h ( s t d o u t ) ;
93 }
94 / / Ge ts t h e o u t p u t b y t e s from LFSR−17 w i t h t h e key
95 l f s r 1 7 _ p r o d u c e 5 b y t e s ( l f s r 1 7 , ou t17 ) ;
96 / / The two f i r s t b y t e s o f t h e demangl ing i s e q u a l t o t h e i n i t i a l key f o r l f s r 1 7 , because t h e t h e p l a i n t e x t and t h e

key i s t h e same .
97 s t a g e 2 [ 0 ] = l f s r 1 7 >> 8 ;
98 s t a g e 2 [ 1 ] = l f s r 1 7 & 0xFF ;
99 / / I t e r a t i o n t h r o u g h a l l p o s s i b l e s t a g e 1 [ 0 ] v a l u e s

100 f o r ( s10 =0; s10 <0x100 ; s10 ++ ) {
101 s t a g e 1 [ 0 ] = s10 ;
102 mKey [ 0 ] = T [ s t a g e 1 [ 0 ] ] ^ s t a g e 2 [ 0 ] ; / / C a l c u l a t e s mKey [ 0 ]
103 s t a g e 1 [ 4 ] = s t a g e 1 [ 0 ] ^ T [ hash [ 0 ] ] ^ mKey [ 0 ] ; / / C a l c u l a t e s s t a g e 1 [ 4 ]
104 mKey [ 4 ] = s t a g e 1 [ 4 ] ^ hash [ 3 ] ^ T [ hash [ 4 ] ] ; / / C a l c u l a t e s mKey [ 4 ]
105
106 / / Number o f p o s s i b l e v a l u e s f o r mKey [ 1 ] , g i v e n s t a g e 1 [ 0 ] and s t a g e 2 [ 1 ]
107 unsigned char nKeys = K1T( s t a g e 1 [ 0 ] , s t a g e 2 [ 1 ] , 0 ) ;
108 / / I t e r a t i o n t h r o u g h a l l t h e p o s s i b l e v a l u e s f o r mKey [ 1 ]
109 f o r ( i =1 ; i <=nKeys ; i ++ ) {
110 mKey [ 1 ] = K1T( s t a g e 1 [ 0 ] , s t a g e 2 [ 1 ] , i ) ; / / Look up t h e n e x t p o s s i b i l i t y f o r mKey [ 1 ]
111 s t a g e 1 [ 1 ] = hash [ 0 ] ^ T [ hash [ 1 ] ] ^ mKey [ 1 ] ; / / C a l c u l a t e s s t a g e 1 [ 1 ]
112
113 / / R e c o n s t r u c t t h e 1 s t , 2nd and 5 t h LFSR25 o u t p u t b y t e from t h e o u t p u t b y t e s o f LFSR−17 and t h e summed o u t p u t

from LFSR−17 and LFSR−25
114 unsigned i n t t e s t ;
115 t e s t = (0 x100+mKey [ 0 ] )−ou t17 [ 0 ] ;
116 ou t25 [ 0 ] = t e s t &0xFF ; / / 8 LSBs
117 i f ( t e s t &0x100 ) t e s t = 0 x100+mKey[1]− ou t17 [ 1 ] ; / / no c a r r y from mKey [ 0 ]
118 e l s e t e s t = 0x100−1+mKey[1]− ou t17 [ 1 ] ; / / c a r r y from mKey [ 0 ]
119 ou t25 [ 1 ] = t e s t &0xFF ; / / 8 LSBs
120
121 / / I t ’ s unknown i f t h e r e was a c a r r y from mKey [ 3 ]
122
123 / / T r i e s ou t25 [ 4 ] w i t h no c a r r y from mKey [ 3 ]
124 ou t25 [ 4 ] = (0 x100+mKey [ 4 ] )−ou t17 [ 4 ] ;
125 b u i l d r e s t ( ) ;
126
127 / / T r i e s ou t25 [ 4 ] w i t h a c a r r y from mKey [ 3 ]
128 ou t25 [ 4 ] = (0 x100−1+mKey [ 4 ] )−ou t17 [ 4 ] ;
129 b u i l d r e s t ( ) ;
130 }
131 }
132 }
133
134 p r i n t f ( " \ n " ) ;
135 f r e e ( k 1 t ) ;
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136
137 re turn output_num ;
138 }
139
140
141
142
143 void b u i l d r e s t ( ) {
144 unsigned i n t key25 ; / / The LFSR−25 key
145 unsigned char o u t p u t [ 5 ] ; / / Ou tpu t from t h e d e c r y p t i o n a l g o r i t h m
146
147 / / C a l c u l a t e s t h e LFSR−25 key from 1 s t , 2nd and 5 t h o u t p u t b y t e from LFSR−25
148 key25 = l f s r 2 5 t 0 [ ou t25 [ 0 ] ] ^ l f s r 2 5 t 1 [ ou t25 [ 1 ] ] ^ l f s r 2 5 t 4 [ ou t25 [ 4 ] ] ; / / 3 x (256 ∗ 4) b y t e t a b l e s
149 / / Looks up LFSR−25 key from 1 s t , 2nd and 5 t h o u t p u t b y t e from LFSR−25 ( our f i r s t i m p l e m e n t a t i o n )
150 / / key25 = LFSR25T ( ou t25 [ 0 ] , ou t25 [ 1 ] , ou t25 [ 4 ] ) ; / / 64MB t a b l e
151
152 / / C o n v e r t s t h e 24 b i t key t o 3 b y t e s
153 s t a g e 2 [ 2 ] = ( key25 > >16)&0xFF ;
154 s t a g e 2 [ 3 ] = ( key25 > >8)&0xFF ;
155 s t a g e 2 [ 4 ] = key25&0xFF ;
156
157 / / C a l c u l a t i n g t h e r e m a i n i n g v a l u e s o f t h e mangl ing c i p h e r
158 s t a g e 1 [ 3 ] = s t a g e 2 [ 4 ] ^ mKey [ 4 ] ^ T [ s t a g e 1 [ 4 ] ] ;
159 mKey [ 3 ] = s t a g e 1 [ 3 ] ^ hash [ 2 ] ^ T [ hash [ 3 ] ] ;
160 s t a g e 1 [ 2 ] = s t a g e 2 [ 3 ] ^ mKey [ 3 ] ^ T [ s t a g e 1 [ 3 ] ] ;
161 mKey [ 2 ] = s t a g e 1 [ 2 ] ^ hash [ 1 ] ^ T [ hash [ 2 ] ] ;
162
163 / / I f s t a g e 2 [ 2 ] i s c o r r e c t a c c o r d i n g t o i t s " g e n e r a t o r s " , s t a g e 2 i s a p o s s i b l e d i s c key
164 i f ( ( s t a g e 1 [ 1 ] ^ T [ s t a g e 1 [ 2 ] ] ^ mKey [ 2 ] ) == s t a g e 2 [ 2 ] ) {
165 / / Running t h e d e c r y p t i o n a l g o r i t h m w i t h s t a g e 2 as t h e d i s c key
166 d e c r y p t H a s h ( o u t p u t , s t a g e 2 ) ;
167 / / I f t h e d e c r y p t e d key e q u a l s s tage2 , t h i s can be a d i s c key
168 i f ( memcmp( o u t p u t , s t a g e 2 , 5 ) ==0 ) {
169 / / p r i n t 4 0 b i t s ( " \ r P o s s i b l e key found : " , s t a g e 2 ) ;
170 i f ( output_num < o u t p u t _ s i z e ) {
171 memcpy ( o u t p u t s +(5∗ output_num ) , s t a g e 2 , 5 ) ;
172 } e l s e {
173 p r i n t f ( " Outpu t s i z e i s t o o s m a l l ! \ n " ) ;
174 }
175 output_num ++;
176 }
177 }
178 }
179
180
181
182
183 /∗∗
184 The mangl ing d e c r y p t i o n a l g o r i t h m . ( A l so u s e s t h e g l o b a l hash as i n p u t )
185 dKey : P o i n t e r t o 40 b i t d i s c key (5 b y t e s )
186 o u t p u t : P o i n t e r t o t h e hash d e c r y p t e d w i t h t h i s key .
187 ∗∗ /
188 void d e c r y p t H a s h ( unsigned char∗ o u t p u t , c o n s t unsigned char∗ dKey ) {
189 unsigned char
190 l f s r 1 7 [ 5 ] , / / Ou tpu t from LFSR−17
191 l f s r 2 5 [ 5 ] , / / Ou tpu t from LFSR−25
192 mKey [ 5 ] , / / Sum o f t h e two above o u t p u t s ( mangl ing key )
193 s1 [ 5 ] / / S t age 1 − mi dd l e mangl ing s t a g e
194 ;
195 unsigned char cc ; / / c a r r y
196 unsigned i n t t e s t ; / / c a r r y t e s t
197 unsigned i n t i ;
198
199
200 / / Get o u t p u t from t h e LFSR ’ s g i v e n t h e d i s c key
201 l f s r 1 7 _ p r o d u c e 5 b y t e s ( ( dKey [0] < <8) | ( dKey [ 1 ] ) , l f s r 1 7 ) ;
202 l f s r 2 5 _ p r o d u c e 5 b y t e s ( ( dKey [2] < <16) | ( dKey [3] < <8) | ( dKey [ 4 ] ) , l f s r 2 5 ) ;
203
204 / / C a l c u l a t e t h e mangl ing key ( sum o f t h e two LFSR o u t p u t s )
205 cc =0;
206 f o r ( i =0 ; i <5 ; i ++) {
207 t e s t = l f s r 1 7 [ i ]+ l f s r 2 5 [ i ]+ cc ;
208 i f ( t e s t &0x100 ) cc =1;
209 e l s e cc =0;
210 mKey[ i ] = t e s t &0xFF ;
211 }
212
213 / / C a l c u l a t e s t h e m idd l e s t a g e s
214 f o r ( i =1 ; i <5 ; i ++)
215 s1 [ i ] = hash [ i−1]^T [ hash [ i ] ] ^ mKey[ i ] ;
216 s1 [ 0 ] = s1 [ 4 ] ^ T [ hash [ 0 ] ] ^ mKey [ 0 ] ;
217
218 / / C a l c u l a t e s t h e bo t tom s t a g e s ( o u t o u t )
219 o u t p u t [ 0 ] = T [ s1 [ 0 ] ] ^ mKey [ 0 ] ;
220 f o r ( i =1 ; i <5 ; i ++)
221 o u t p u t [ i ] = s1 [ i−1]^T [ s1 [ i ] ] ^ mKey[ i ] ;
222 }
223
224
225 /∗∗
226 B u i l d s t h e huge 64MB loo ku p t a b l e ( l f s r 2 5 t )
227 The t a b l e can be seen as a f i x e d 3d w i t h
228 ( ou t25 [ 0 ] , ou t25 [ 1 ] , ou t25 [ 4 ] ) = key25
229 ∗∗ /
230 void b u i l d L F S R 2 5 t a b l e ( ) {
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231 unsigned i n t s i z e ; / / Memory s i z e
232 unsigned i n t key25 ; / / LFSR−25 key
233 unsigned char o u t p u t [ 5 ] ; / / Ou tpu t b y t e s
234 unsigned i n t i , j ;
235 FILE ∗ fp ;
236
237 / / A l l o c a t i o n o f 2^24 t i m e s 32 b i t = 64MB
238 s i z e = 0x10 ∗ 0 x100000 ∗ s i z e o f ( unsigned i n t ) ; / / 0 x1000000 t i m e s 32 b i t
239 p r i n t f ( " A l l o c a t i n g %u b y t e s o f memory : " , s i z e ) ;
240 l f s r 2 5 t = ( unsigned i n t ∗) m a l loc ( s i z e ) ;
241 i f ( l f s r 2 5 t ==NULL)
242 p r i n t E x i t ( " E r r o r . " ) ;
243 p r i n t f ( "OK . \ n " ) ;
244
245 / / T r i e s t o open t a b l e f i l e
246 fp = fopen ( LFSR25_TABLE_FILE , " rb " ) ;
247 i f ( fp ==NULL ) {
248 / / F i l e n o t foound .
249 p r i n t f ( " B u i l d i n g 64MB t a b l e f o r o u t {0 ,1 ,4} −> l f s r 2 5 key : " ) ;
250 f f l u s h ( s t d o u t ) ;
251 memset ( l f s r 2 5 t , 0 , s i z e ) ;
252 key25 =0;
253 / / I t e r a t i o n t h r o u g h (0 x10∗0x100000=0x1000000 =2^24) p o s s i b l e k e y s f o r LFSR−25
254 f o r ( i =0 ; i <0x10 ; i ++) {
255 f o r ( j =0 ; j <0 x100000 ; j ++ , key25 ++) {
256 / / Runs t h e LFSR−25 on t h i s key and g e t t h e 5 o u t p u t b y t e s
257 l f s r 2 5 _ p r o d u c e 5 b y t e s ( key25 , o u t p u t ) ;
258 / / Cr ea t e t h e mapping from 1 s t , 2nd and 5 t h o u t p u t b y t e t o t h e key
259 LFSR25T ( o u t p u t [ 0 ] , o u t p u t [ 1 ] , o u t p u t [ 4 ] ) = key25 ;
260 }
261 p r i n t f ( " . " ) ;
262 f f l u s h ( s t d o u t ) ;
263 }
264 p r i n t f ( " Done . \ n " ) ;
265 p r i n t f ( " W r i t i n g 64MB t a b l e t o d i s c : " ) ;
266 f f l u s h ( s t d o u t ) ;
267 / / W r i t e t o t a b l e f i l e
268 fp = fopen ( LFSR25_TABLE_FILE , "wb" ) ;
269 i f ( fp ==NULL ) {
270 p r i n t f ( " [ [ [ Can ’ t w r i t e t o %s ] ] ] \ n " , LFSR25_TABLE_FILE ) ;
271 } e l s e {
272 f w r i t e ( l f s r 2 5 t , s i z e , 1 , fp ) ;
273 f c l o s e ( fp ) ;
274 p r i n t f ( "OK . \ n " ) ;
275 }
276 }
277 e l s e {
278 / / F i l e found − l o a d i n g i n .
279 p r i n t f ( "LFSR25−t a b l e f i l e found , l o a d i n g : " ) ;
280 f f l u s h ( s t d o u t ) ;
281 f r e a d ( l f s r 2 5 t , s i z e , 1 , fp ) ;
282 f c l o s e ( fp ) ;
283 p r i n t f ( " Done . \ n " ) ;
284 }
285 }
286
287
288
289 /∗∗
290 B u i l d s t h e t a b l e mapping from ( s t a g e 1 [ 0 ] , s t a g e 2 [ 1 ] ) t o p o s s i b l e v a l u e s f o r mKey [ 1 ]
291 The t a b l e can be seen as a f i x e d s i z e 3d t a b l e , w i t h
292 ( s t a g e 1 [ 0 ] , s t a g e 2 [ 1 ] , 0 ) = Number o f p o s s i b l e v a l u e s f o r mKey [ 1 ]
293 ( s t a g e 1 [ 0 ] , s t a g e 2 [ 1 ] , 1 . . . MAXCOLLISIONS ) = Space f o r t h e p o s s i b l e mKey [ 1 ] ’ s
294 eg . o n l y ( s t a g e 1 [ 0 ] , s t a g e 2 [ 1 ] , 0 . . . ( s t a g e 1 [ 0 ] , s t a g e 2 [ 1 ] , 0 ) ) i s used .
295 ∗∗ /
296 void b u i l d K 1 t a b l e ( ) {
297 unsigned i n t s i z e ; / / Memory s i z e
298 unsigned i n t s10 ; / / s t a g e 1 [ 0 ]
299 unsigned i n t s21 ; / / s t a g e 2 [ 1 ]
300 unsigned i n t mKey1 ; / / mKey [ 1 ]
301
302 / / We hope t h a t no more than MAXCOLLISIONS s t a g e 1 [ 0 ] and s t a g e 2 [ 1 ] r e s u l t i n t h e same key
303 / / Look i n paper f o r a r e a s o n a b l e e s t i m a t e .
304 s i z e = 256∗256∗(MAXCOLLISIONS+1) ;
305 p r i n t f ( " A l l o c a t i n g %u b y t e s o f memory : " , s i z e ) ;
306 k 1 t = ( unsigned char∗) ma l loc ( s i z e ) ;
307 i f ( k 1 t ==NULL )
308 p r i n t E x i t ( " E r r o r . " ) ;
309 p r i n t f ( "OK . \ n " ) ;
310
311 / / ( s t a g e 1 [ 0 ] , s t a g e 2 [ 1 ] ) −−> mKey [ 1 ] p o s s i b l e k e y s
312 p r i n t f ( " B u i l d i n g k1−t a b l e : " ) ;
313 memset ( k1t , 0 , s i z e ) ;
314 / / I t e r a t i o n t h r o u g h a l l p o s s i b l e v a l u e s o f mKey [ 1 ]
315 f o r ( mKey1=0; mKey1<0x100 ; mKey1++ ) {
316 / / I t e r a t i o n t h r o u g h a l l p o s s i b l e v a l u e s o f s t a g e 1 [ 0 ]
317 f o r ( s10 =0; s10 <0x100 ; s10 ++ ) {
318 s21 = s10 ^ mKey1 ^ T [ hash [ 0 ] ^ T [ hash [ 1 ] ] ^ mKey1 ] ; / / For each mKey1 and s t a g e 1 [ 0 ] we f i n d s t a g e 2 [ 1 ]
319 i n t nKeys = K1T( s10 , s21 , 0 ) ; / / nKeys i s t h e number o f s t o r e d mKey [ 1 ] ’ s f o r s t a g e 1 [ 0 ] and s t a g e 2 [ 1 ]
320 nKeys ++; / / We have one more key
321 i f ( nKeys > MAXCOLLISIONS) / / T e s t i f we have o v e r r u n
322 p r i n t E x i t ( " Too many c o l l i s i o n s , a b o r t i n g . . . " ) ;
323 K1T( s10 , s21 , 0 ) = nKeys ; / / Update t h e number o f k e y s
324 K1T( s10 , s21 , nKeys ) = mKey1 ; / / Add mKey1 t o t h e l i s t o f k e y s f o r t h e s p e c i f i c s t a g e 1 [ 0 ] and s t a g e 2

[ 1 ]
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325 }
326 }
327 p r i n t f ( " Done . \ n " ) ;
328 }

9.3 fullattack

9.3.1 fullattack.c
1 /∗∗
2 T h i s f i l e c o n t a i n s t h e program t h a t f i n d s a l l t h e p o s s i b l e p l a y e r k e y s on a s i n g l e DVD d i s c ,
3 g i v e n t h e f i r s t ( h i dd en ) s e c t o r o f t h e d i s c as i n p u t . ( From a f i l e )
4
5 Compile command :
6 gcc −o f u l l a t t a c k f u l l a t t a c k . c dehash . c p l a y e r k e y a t t a c k . c l f s r . c t a b l e s . c u t i l . c
7 ∗∗ /
8
9

10 # i n c l u d e < s t d i o . h>
11 # i n c l u d e < s t r i n g . h>
12
13 # i n c l u d e " u t i l . h "
14 # i n c l u d e " p l a y e r k e y a t t a c k . h "
15 # i n c l u d e " dehash . h "
16
17
18 # d e f i n e MAX_DISC_KEYS 10
19 # d e f i n e MAX_PLAYER_KEYS 10
20 # d e f i n e MAX_SET_KEYS 200
21
22 # d e f i n e N( da ta , i n d e x ) ( d a t a +5∗ i n d e x )
23
24
25 s t a t i c unsigned char p l a y e r K e y S e t [5∗MAX_SET_KEYS ] ;
26 s t a t i c unsigned i n t p l a y e r K e y S e t S i z e ;
27
28
29
30 /∗∗
31 Very s low i m p l e m e n t a t i o n o f add ing a e l e m e n t t o a s e t .
32 I t t e s t s t h e new e l e m e n t ( p l a y e r key ) f o r e q u a l i t y w i t h any e x i s t i n g p l a y e r k e y s i n t h e s e t .
33 ∗∗ /
34 void addToSet ( unsigned char∗ e ) {
35 i n t i ;
36 i f ( p l a y e r K e y S e t S i z e >=MAX_SET_KEYS) {
37 p r i n t E x i t ( " Too many keys i n s e t . \ n " ) ;
38 }
39 f o r ( i =0 ; i < p l a y e r K e y S e t S i z e ; i ++) {
40 i f ( memcmp( e ,N( p l a ye rK ey Se t , i ) , 5 ) ==0 )
41 re turn ;
42 }
43 memcpy (N( p l a ye rK ey Se t , p l a y e r K e y S e t S i z e ) , e , 5 ) ;
44 p l a y e r K e y S e t S i z e ++;
45 }
46
47
48
49 /∗∗
50 The main program .
51 Takes a h i dd en s e c t o r f i l e n a m e as parame te r .
52 ∗∗ /
53 i n t main ( i n t argc , char ∗a rgv [ ] ) {
54 FILE ∗ fp ;
55 unsigned char
56 buf [ 2 0 4 8 ] , / / The h id den s e c t o r da ta
57 d i s c K e y s [5∗MAX_DISC_KEYS] , / / Space t o s t o r e d i s c k e y s from t h e dehash a l g o r i t h m
58 p l a y e r K e y s [5∗MAX_PLAYER_KEYS] / / Space t o s t o r e p l a y e r k e y s form t h e p l a y e r k e y a t t a c k a l g o r i t h m
59 ;
60 unsigned i n t
61 nDiscKeys , / / Number o f d i c s k e y s found
62 nPlayerKeys , / / Number o f p l a y e r k e y s found ( f o r one p a i r o f d i s c key and e n c r y p t e d d i s c key )
63 i , j , k
64 ;
65
66 i f ( a r g c ! = 2 )
67 p r i n t E x i t ( " Usage : f u l l a t t a c k s e c t o r f i l e " ) ;
68
69 / / Read 2048 b y t e s from f i l e
70 fp = fopen ( a rgv [ 1 ] , " rb " ) ;
71 i f ( fp ==NULL )
72 p r i n t E x i t ( " Cannot open f i l e . " ) ;
73 f r e a d ( buf , 2 0 4 8 , 1 , fp ) ;
74 f c l o s e ( fp ) ;
75
76 / / Find p o s s i b l e d i s c k e y s from t h e hash l o c a t e d a t t h e b e g i n i n g o f t h e s e c t o r
77 nDiscKeys = dehash ( buf +0 , d i scKeys , MAX_DISC_KEYS) ;
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78 i f ( nDiscKeys >MAX_DISC_KEYS)
79 p r i n t E x i t ( " Too many d i s c keys . \ n " ) ;
80
81 / / I t e r a t i o n t h r o u g h a l l t h e d i s c k e y s
82 f o r ( i =0 ; i <nDiscKeys ; i ++) {
83 p l a y e r K e y S e t S i z e =0;
84 p r i n t 4 0 b i t s ( " T ry i ng p l a y e r keys f o r d i s c key " ,N( d iscKeys , i ) ) ;
85 / / I t e r a t i o n t h r o u g h a l l t h e e n c r y p t e d d i s c k e y s
86 f o r ( j =1 ; j <409; j ++) {
87 / / P r o g r e s s i n d i c a t i o n
88 p r i n t f ( " \ r%03d " , j ) ;
89 f f l u s h ( s t d o u t ) ;
90 / / Run t h e p l a y e r key a t t a c k on t h e e n c r y p t e d d i c s key and t h e d i s c key
91 nP laye rKeys = p l a y e r k e y a t t a c k ( N( buf , j ) , N( d i scKeys , i ) , p l aye rKeys , MAX_PLAYER_KEYS ) ;
92 / / Adds a l l t h e found p l a y e r k e y s t o our s e t
93 f o r ( k =0; k< nP laye rKeys ; k ++)
94 addToSet (N( p laye rKeys , k ) ) ;
95 }
96 / / P r i n t o u t a l l t h e d i s t i n c t p l a y e r k e y s
97 p r i n t 4 0 b i t s ( " \ n P l a y e r keys f o r " ,N( d iscKeys , i ) ) ;
98 f o r ( j =0 ; j < p l a y e r K e y S e t S i z e ; j ++)
99 p r i n t 4 0 b i t s ( " " ,N( p l ay e r Ke yS e t , j ) ) ;

100 p r i n t f ( " ( T o t a l %d ) \ n " , p l a y e r K e y S e t S i z e ) ;
101 }
102
103 re turn 0 ;
104 }

9.4 tables

9.4.1 tables.h

1 # inc lude < s t d i o . h>
2
3 /∗∗
4 S u b s t i t u t i o n t a b l e f o r t h e mange l ing c i p h e r .
5 ∗∗ /
6 s t a t i c c o n s t unsigned char T[256]=
7 {
8 0x33 , 0 x73 , 0 x3b , 0 x26 , 0 x63 , 0 x23 , 0 x6b , 0 x76 , 0 x3e , 0 x7e , 0 x36 , 0 x2b , 0 x6e , 0 x2e , 0 x66 , 0 x7b ,
9 0xd3 , 0 x93 , 0 xdb , 0 x06 , 0 x43 , 0 x03 , 0 x4b , 0 x96 , 0 xde , 0 x9e , 0 xd6 , 0 x0b , 0 x4e , 0 x0e , 0 x46 , 0 x9b ,

10 0x57 , 0 x17 , 0 x5f , 0 x82 , 0 xc7 , 0 x87 , 0 xcf , 0 x12 , 0 x5a , 0 x1a , 0 x52 , 0 x8f , 0 xca , 0 x8a , 0 xc2 , 0 x1f ,
11 0xd9 , 0 x99 , 0 xd1 , 0 x00 , 0 x49 , 0 x09 , 0 x41 , 0 x90 , 0 xd8 , 0 x98 , 0 xd0 , 0 x01 , 0 x48 , 0 x08 , 0 x40 , 0 x91 ,
12 0x3d , 0 x7d , 0 x35 , 0 x24 , 0 x6d , 0 x2d , 0 x65 , 0 x74 , 0 x3c , 0 x7c , 0 x34 , 0 x25 , 0 x6c , 0 x2c , 0 x64 , 0 x75 ,
13 0xdd , 0 x9d , 0 xd5 , 0 x04 , 0 x4d , 0 x0d , 0 x45 , 0 x94 , 0 xdc , 0 x9c , 0 xd4 , 0 x05 , 0 x4c , 0 x0c , 0 x44 , 0 x95 ,
14 0x59 , 0 x19 , 0 x51 , 0 x80 , 0 xc9 , 0 x89 , 0 xc1 , 0 x10 , 0 x58 , 0 x18 , 0 x50 , 0 x81 , 0 xc8 , 0 x88 , 0 xc0 , 0 x11 ,
15 0xd7 , 0 x97 , 0 xdf , 0 x02 , 0 x47 , 0 x07 , 0 x4f , 0 x92 , 0 xda , 0 x9a , 0 xd2 , 0 x0f , 0 x4a , 0 x0a , 0 x42 , 0 x9f ,
16 0x53 , 0 x13 , 0 x5b , 0 x86 , 0 xc3 , 0 x83 , 0 xcb , 0 x16 , 0 x5e , 0 x1e , 0 x56 , 0 x8b , 0 xce , 0 x8e , 0 xc6 , 0 x1b ,
17 0xb3 , 0 xf3 , 0 xbb , 0 xa6 , 0 xe3 , 0 xa3 , 0 xeb , 0 xf6 , 0 xbe , 0 xfe , 0 xb6 , 0 xab , 0 xee , 0 xae , 0 xe6 , 0 xfb ,
18 0x37 , 0 x77 , 0 x3f , 0 x22 , 0 x67 , 0 x27 , 0 x6f , 0 x72 , 0 x3a , 0 x7a , 0 x32 , 0 x2f , 0 x6a , 0 x2a , 0 x62 , 0 x7f ,
19 0xb9 , 0 xf9 , 0 xb1 , 0 xa0 , 0 xe9 , 0 xa9 , 0 xe1 , 0 xf0 , 0 xb8 , 0 xf8 , 0 xb0 , 0 xa1 , 0 xe8 , 0 xa8 , 0 xe0 , 0 xf1 ,
20 0x5d , 0 x1d , 0 x55 , 0 x84 , 0 xcd , 0 x8d , 0 xc5 , 0 x14 , 0 x5c , 0 x1c , 0 x54 , 0 x85 , 0 xcc , 0 x8c , 0 xc4 , 0 x15 ,
21 0xbd , 0 xfd , 0 xb5 , 0 xa4 , 0 xed , 0 xad , 0 xe5 , 0 xf4 , 0 xbc , 0 xfc , 0 xb4 , 0 xa5 , 0 xec , 0 xac , 0 xe4 , 0 xf5 ,
22 0x39 , 0 x79 , 0 x31 , 0 x20 , 0 x69 , 0 x29 , 0 x61 , 0 x70 , 0 x38 , 0 x78 , 0 x30 , 0 x21 , 0 x68 , 0 x28 , 0 x60 , 0 x71 ,
23 0xb7 , 0 xf7 , 0 xbf , 0 xa2 , 0 xe7 , 0 xa7 , 0 xef , 0 xf2 , 0 xba , 0 xfa , 0 xb2 , 0 xaf , 0 xea , 0 xaa , 0 xe2 , 0 x f f
24 } ;
25
26
27 /∗∗
28 Tab le f o r r e v e r s i n g t h e o r d e r o f b i t s i n a b y t e .
29 ∗∗ /
30 s t a t i c c o n s t unsigned char r e v e r s e [256 ]=
31 {
32 0x00 , 0 x80 , 0 x40 , 0 xc0 , 0 x20 , 0 xa0 , 0 x60 , 0 xe0 , 0 x10 , 0 x90 , 0 x50 , 0 xd0 , 0 x30 , 0 xb0 , 0 x70 , 0 xf0 ,
33 0x08 , 0 x88 , 0 x48 , 0 xc8 , 0 x28 , 0 xa8 , 0 x68 , 0 xe8 , 0 x18 , 0 x98 , 0 x58 , 0 xd8 , 0 x38 , 0 xb8 , 0 x78 , 0 xf8 ,
34 0x04 , 0 x84 , 0 x44 , 0 xc4 , 0 x24 , 0 xa4 , 0 x64 , 0 xe4 , 0 x14 , 0 x94 , 0 x54 , 0 xd4 , 0 x34 , 0 xb4 , 0 x74 , 0 xf4 ,
35 0x0c , 0 x8c , 0 x4c , 0 xcc , 0 x2c , 0 xac , 0 x6c , 0 xec , 0 x1c , 0 x9c , 0 x5c , 0 xdc , 0 x3c , 0 xbc , 0 x7c , 0 xfc ,
36 0x02 , 0 x82 , 0 x42 , 0 xc2 , 0 x22 , 0 xa2 , 0 x62 , 0 xe2 , 0 x12 , 0 x92 , 0 x52 , 0 xd2 , 0 x32 , 0 xb2 , 0 x72 , 0 xf2 ,
37 0x0a , 0 x8a , 0 x4a , 0 xca , 0 x2a , 0 xaa , 0 x6a , 0 xea , 0 x1a , 0 x9a , 0 x5a , 0 xda , 0 x3a , 0 xba , 0 x7a , 0 xfa ,
38 0x06 , 0 x86 , 0 x46 , 0 xc6 , 0 x26 , 0 xa6 , 0 x66 , 0 xe6 , 0 x16 , 0 x96 , 0 x56 , 0 xd6 , 0 x36 , 0 xb6 , 0 x76 , 0 xf6 ,
39 0x0e , 0 x8e , 0 x4e , 0 xce , 0 x2e , 0 xae , 0 x6e , 0 xee , 0 x1e , 0 x9e , 0 x5e , 0 xde , 0 x3e , 0 xbe , 0 x7e , 0 xfe ,
40 0x01 , 0 x81 , 0 x41 , 0 xc1 , 0 x21 , 0 xa1 , 0 x61 , 0 xe1 , 0 x11 , 0 x91 , 0 x51 , 0 xd1 , 0 x31 , 0 xb1 , 0 x71 , 0 xf1 ,
41 0x09 , 0 x89 , 0 x49 , 0 xc9 , 0 x29 , 0 xa9 , 0 x69 , 0 xe9 , 0 x19 , 0 x99 , 0 x59 , 0 xd9 , 0 x39 , 0 xb9 , 0 x79 , 0 xf9 ,
42 0x05 , 0 x85 , 0 x45 , 0 xc5 , 0 x25 , 0 xa5 , 0 x65 , 0 xe5 , 0 x15 , 0 x95 , 0 x55 , 0 xd5 , 0 x35 , 0 xb5 , 0 x75 , 0 xf5 ,
43 0x0d , 0 x8d , 0 x4d , 0 xcd , 0 x2d , 0 xad , 0 x6d , 0 xed , 0 x1d , 0 x9d , 0 x5d , 0 xdd , 0 x3d , 0 xbd , 0 x7d , 0 xfd ,
44 0x03 , 0 x83 , 0 x43 , 0 xc3 , 0 x23 , 0 xa3 , 0 x63 , 0 xe3 , 0 x13 , 0 x93 , 0 x53 , 0 xd3 , 0 x33 , 0 xb3 , 0 x73 , 0 xf3 ,
45 0x0b , 0 x8b , 0 x4b , 0 xcb , 0 x2b , 0 xab , 0 x6b , 0 xeb , 0 x1b , 0 x9b , 0 x5b , 0 xdb , 0 x3b , 0 xbb , 0 x7b , 0 xfb ,
46 0x07 , 0 x87 , 0 x47 , 0 xc7 , 0 x27 , 0 xa7 , 0 x67 , 0 xe7 , 0 x17 , 0 x97 , 0 x57 , 0 xd7 , 0 x37 , 0 xb7 , 0 x77 , 0 xf7 ,
47 0 x0f , 0 x8f , 0 x4f , 0 xcf , 0 x2f , 0 xaf , 0 x6f , 0 xef , 0 x1f , 0 x9f , 0 x5f , 0 xdf , 0 x3f , 0 xbf , 0 x7f , 0 x f f
48 } ;
49
50
51 void bui ldLFSR25Tables ( unsigned i n t∗ l f s r 2 5 t 0 , unsigned i n t∗ l f s r 2 5 t 1 , unsigned i n t∗ l f s r 2 5 t 4 ) ;

39



Crypto 2006 December 15, 2006

9.4.2 tables.c

1 # i n c l u d e < s t d i o . h>
2
3
4 /∗∗
5 B u i l d s t h e 3 t a b l e s f o r l o o k i n g up t h e s t a r t s t a t e o f LFSR−25 from t h e 1 s t , 2nd and 5 t h o u t p u t b y t e o f LFSR−25.
6 See t h e r e p o r t f o r f u r t h e r i n f o r m a t i o n .
7 ∗∗ /
8 void bui ldLFSR25Tables ( unsigned i n t∗ l f s r 2 5 t 0 , unsigned i n t∗ l f s r 2 5 t 1 , unsigned i n t∗ l f s r 2 5 t 4 ) {
9 unsigned i n t i , j ;

10 unsigned i n t b [ 2 5 ] ; / / b i t v a l u e on p o s i t i o n i ( p o s i t i o n 1−25)
11
12 / / 1 s t o u t p u t b y t e :
13 f o r ( i = 0 ; i < 256 ; i ++) {
14 f o r ( j =0 ; j <8 ; j ++) {
15 b [ j +1] = ( i >> j ) &1;
16 }
17 l f s r 2 5 t 0 [ i ] = 1 ^ b [ 1 ] ^ b [ 7 ] ;
18 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 7 ] ) << 1 ;
19 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 1 ] ^ b [ 2 ] ^ b [ 3 ] ^ b [ 6 ] ^ b [ 8 ] ) << 2 ;
20 l f s r 2 5 t 0 [ i ] | = ( b [ 1 ] ^ b [ 3 ] ^ b [ 5 ] ^ b [ 7 ] ) << 3 ;
21 l f s r 2 5 t 0 [ i ] | = ( b [ 1 ] ^ b [ 3 ] ^ b [ 4 ] ^ b [ 7 ] ^ b [ 8 ] ) << 4 ;
22 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 1 ] ^ b [ 2 ] ^ b [ 3 ] ^ b [ 6 ] ^ b [ 7 ] ) << 5 ;
23 l f s r 2 5 t 0 [ i ] | = ( b [ 1 ] ^ b [ 3 ] ^ b [ 5 ] ^ b [ 6 ] ) << 6 ;
24 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 1 ] ^ b [ 2 ] ^ b [ 4 ] ^ b [ 5 ] ) << 7 ;
25 l f s r 2 5 t 0 [ i ] | = ( b [ 3 ] ^ b [ 7 ] ^ b [ 8 ] ) << 8 ;
26 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 3 ] ^ b [ 8 ] ) << 9 ;
27 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 1 ] ^ b [ 3 ] ^ b [ 7 ] ^ b [ 8 ] ) << 1 0 ;
28 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 2 ] ^ b [ 8 ] ) << 1 1 ;
29 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 2 ] ^ b [ 3 ] ^ b [ 7 ] ) << 1 2 ;
30 l f s r 2 5 t 0 [ i ] | = ( b [ 2 ] ^ b [ 7 ] ) << 1 3 ;
31 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 1 ] ^ b [ 2 ] ^ b [ 3 ] ^ b [ 7 ] ) << 1 4 ;
32 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 1 ] ^ b [ 2 ] ^ b [ 7 ] ) << 1 5 ;
33 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 1 ] ) << 1 6 ;
34 l f s r 2 5 t 0 [ i ] | = ( b [ 2 ] ^ b [ 3 ] ) << 1 7 ;
35 l f s r 2 5 t 0 [ i ] | = ( b [ 1 ] ^ b [ 2 ] ) << 1 8 ;
36 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 1 ] ^ b [ 2 ] ^ b [ 3 ] ^ b [ 8 ] ) << 1 9 ;
37 l f s r 2 5 t 0 [ i ] | = ( b [ 1 ] ^ b [ 3 ] ^ b [ 7 ] ^ b [ 8 ] ) << 2 0 ;
38 l f s r 2 5 t 0 [ i ] | = ( b [ 1 ] ^ b [ 3 ] ) << 2 1 ;
39 l f s r 2 5 t 0 [ i ] | = (1 ^ b [ 1 ] ^ b [ 2 ] ^ b [ 8 ] ) << 2 2 ;
40 l f s r 2 5 t 0 [ i ] | = ( b [ 1 ] ^ b [ 2 ] ^ b [ 3 ] ^ b [ 7 ] ) << 2 3 ;
41 }
42 / / 2nd o u t p u t b y t e :
43 f o r ( i = 0 ; i < 256 ; i ++) {
44 f o r ( j =0 ; j <8 ; j ++) {
45 b [ j +9] = ( i >> j ) &1;
46 }
47 l f s r 2 5 t 1 [ i ] = b [ 9 ] ^ b [ 1 1 ] ^ b [ 1 2 ] ;
48 l f s r 2 5 t 1 [ i ] | = ( b [ 1 0 ] ^ b [ 1 1 ] ^ b [ 1 2 ] ^ b [ 1 4 ] ) << 1 ;
49 l f s r 2 5 t 1 [ i ] | = ( b [ 9 ] ^ b [ 1 3 ] ^ b [ 1 4 ] ^ b [ 1 5 ] ^ b [ 1 6 ] ) << 2 ;
50 l f s r 2 5 t 1 [ i ] | = ( b [ 9 ] ^ b [ 1 1 ] ^ b [ 1 2 ] ^ b [ 1 4 ] ^ b [ 1 6 ] ) << 3 ;
51 l f s r 2 5 t 1 [ i ] | = ( b [ 1 2 ] ^ b [ 1 3 ] ^ b [ 1 6 ] ) << 4 ;
52 l f s r 2 5 t 1 [ i ] | = ( b [ 9 ] ^ b [ 1 0 ] ^ b [ 1 1 ] ^ b [ 1 2 ] ^ b [ 1 3 ] ^ b [ 1 4 ] ^ b [ 1 5 ] ) << 5 ;
53 l f s r 2 5 t 1 [ i ] | = ( b [ 1 0 ] ^ b [ 1 2 ] ^ b [ 1 4 ] ^ b [ 1 5 ] ^ b [ 1 6 ] ) << 6 ;
54 l f s r 2 5 t 1 [ i ] | = ( b [ 1 0 ] ^ b [ 1 1 ] ^ b [ 1 5 ] ) << 7 ;
55 l f s r 2 5 t 1 [ i ] | = ( b [ 9 ] ^ b [ 1 0 ] ^ b [ 1 2 ] ^ b [ 1 3 ] ^ b [ 1 4 ] ^ b [ 1 6 ] ) << 8 ;
56 l f s r 2 5 t 1 [ i ] | = ( b [ 1 4 ] ^ b [ 1 6 ] ) << 9 ;
57 l f s r 2 5 t 1 [ i ] | = ( b [ 1 0 ] ^ b [ 1 1 ] ^ b [ 1 3 ] ^ b [ 1 4 ] ^ b [ 1 6 ] ) << 1 0 ;
58 l f s r 2 5 t 1 [ i ] | = ( b [ 9 ] ^ b [ 1 0 ] ^ b [ 1 3 ] ^ b [ 1 4 ] ^ b [ 1 5 ] ) << 1 1 ;
59 l f s r 2 5 t 1 [ i ] | = ( b [ 9 ] ^ b [ 1 0 ] ^ b [ 1 1 ] ^ b [ 1 2 ] ^ b [ 1 3 ] ^ b [ 1 5 ] ^ b [ 1 6 ] ) << 1 2 ;
60 l f s r 2 5 t 1 [ i ] | = ( b [ 1 1 ] ^ b [ 1 3 ] ^ b [ 1 4 ] ^ b [ 1 5 ] ) << 1 3 ;
61 l f s r 2 5 t 1 [ i ] | = ( b [ 9 ] ^ b [ 1 0 ] ^ b [ 1 1 ] ^ b [ 1 5 ] ^ b [ 1 6 ] ) << 1 4 ;
62 l f s r 2 5 t 1 [ i ] | = ( b [ 9 ] ^ b [ 1 0 ] ^ b [ 1 2 ] ^ b [ 1 5 ] ) << 1 5 ;
63 l f s r 2 5 t 1 [ i ] | = ( b [ 9 ] ^ b [ 1 0 ] ^ b [ 1 3 ] ^ b [ 1 4 ] ) << 1 6 ;
64 l f s r 2 5 t 1 [ i ] | = ( b [ 1 1 ] ^ b [ 1 2 ] ^ b [ 1 5 ] ^ b [ 1 6 ] ) << 1 7 ;
65 l f s r 2 5 t 1 [ i ] | = ( b [ 1 0 ] ^ b [ 1 1 ] ^ b [ 1 4 ] ^ b [ 1 5 ] ) << 1 8 ;
66 l f s r 2 5 t 1 [ i ] | = ( b [ 1 0 ] ^ b [ 1 1 ] ^ b [ 1 4 ] ^ b [ 1 5 ] ^ b [ 1 6 ] ) << 1 9 ;
67 l f s r 2 5 t 1 [ i ] | = ( b [ 1 0 ] ^ b [ 1 1 ] ^ b [ 1 4 ] ^ b [ 1 6 ] ) << 2 0 ;
68 l f s r 2 5 t 1 [ i ] | = ( b [ 9 ] ^ b [ 1 1 ] ^ b [ 1 2 ] ^ b [ 1 3 ] ^ b [ 1 6 ] ) << 2 1 ;
69 l f s r 2 5 t 1 [ i ] | = ( b [ 9 ] ^ b [ 1 1 ] ^ b [ 1 2 ] ^ b [ 1 3 ] ^ b [ 1 4 ] ^ b [ 1 5 ] ) << 2 2 ;
70 l f s r 2 5 t 1 [ i ] | = ( b [ 9 ] ^ b [ 1 0 ] ^ b [ 1 2 ] ^ b [ 1 4 ] ^ b [ 1 5 ] ^ b [ 1 6 ] ) << 2 3 ;
71 }
72 / / 5 t h o u t p u t b y t e :
73 f o r ( i = 0 ; i < 256 ; i ++) {
74 f o r ( j =0 ; j <8 ; j ++) {
75 b [ j +17] = ( i >> j ) &1;
76 }
77 l f s r 2 5 t 4 [ i ] = b [ 1 7 ] ^ b [ 1 9 ] ^ b [ 2 0 ] ^ b [ 2 2 ] ^ b [ 2 4 ] ;
78 l f s r 2 5 t 4 [ i ] | = ( b [ 2 2 ] ^ b [ 2 4 ] ) << 1 ;
79 l f s r 2 5 t 4 [ i ] | = ( b [ 1 8 ] ^ b [ 1 9 ] ^ b [ 2 3 ] ) << 2 ;
80 l f s r 2 5 t 4 [ i ] | = ( b [ 1 7 ] ^ b [ 2 1 ] ^ b [ 2 2 ] ) << 3 ;
81 l f s r 2 5 t 4 [ i ] | = ( b [ 2 0 ] ^ b [ 2 1 ] ^ b [ 2 2 ] ^ b [ 2 3 ] ^ b [ 2 4 ] ) << 4 ;
82 l f s r 2 5 t 4 [ i ] | = ( b [ 2 0 ] ^ b [ 2 1 ] ^ b [ 2 2 ] ^ b [ 2 3 ] ) << 5 ;
83 l f s r 2 5 t 4 [ i ] | = ( b [ 1 8 ] ^ b [ 1 9 ] ^ b [ 2 0 ] ^ b [ 2 2 ] ) << 6 ;
84 l f s r 2 5 t 4 [ i ] | = ( b [ 1 7 ] ^ b [ 1 8 ] ^ b [ 2 1 ] ) << 7 ;
85 l f s r 2 5 t 4 [ i ] | = ( b [ 1 7 ] ^ b [ 1 9 ] ^ b [ 2 1 ] ^ b [ 2 2 ] ^ b [ 2 3 ] ^ b [ 2 4 ] ) << 8 ;
86 l f s r 2 5 t 4 [ i ] | = ( b [ 1 8 ] ^ b [ 1 9 ] ^ b [ 2 0 ] ^ b [ 2 1 ] ^ b [ 2 4 ] ) << 9 ;
87 l f s r 2 5 t 4 [ i ] | = ( b [ 1 7 ] ^ b [ 2 0 ] ^ b [ 2 1 ] ^ b [ 2 3 ] ) << 1 0 ;
88 l f s r 2 5 t 4 [ i ] | = ( b [ 1 8 ] ^ b [ 2 0 ] ^ b [ 2 1 ] ^ b [ 2 3 ] ^ b [ 2 4 ] ) << 1 1 ;
89 l f s r 2 5 t 4 [ i ] | = ( b [ 1 7 ] ^ b [ 1 8 ] ^ b [ 2 0 ] ^ b [ 2 1 ] ^ b [ 2 2 ] ^ b [ 2 3 ] ) << 1 2 ;
90 l f s r 2 5 t 4 [ i ] | = ( b [ 1 7 ] ^ b [ 1 8 ] ^ b [ 1 9 ] ^ b [ 2 0 ] ^ b [ 2 3 ] ^ b [ 2 4 ] ) << 1 3 ;
91 l f s r 2 5 t 4 [ i ] | = ( b [ 1 7 ] ^ b [ 1 8 ] ^ b [ 2 4 ] ) << 1 4 ;
92 l f s r 2 5 t 4 [ i ] | = ( b [ 1 7 ] ^ b [ 1 8 ] ^ b [ 1 9 ] ^ b [ 2 1 ] ^ b [ 2 2 ] ^ b [ 2 4 ] ) << 1 5 ;
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93 l f s r 2 5 t 4 [ i ] | = ( b [ 1 9 ] ) << 1 6 ;
94 l f s r 2 5 t 4 [ i ] | = ( b [ 2 1 ] ) << 1 7 ;
95 l f s r 2 5 t 4 [ i ] | = ( b [ 2 0 ] ) << 1 8 ;
96 l f s r 2 5 t 4 [ i ] | = ( b [ 1 8 ] ^ b [ 1 9 ] ^ b [ 2 1 ] ) << 1 9 ;
97 l f s r 2 5 t 4 [ i ] | = ( b [ 1 7 ] ^ b [ 2 0 ] ^ b [ 2 1 ] ) << 2 0 ;
98 l f s r 2 5 t 4 [ i ] | = ( b [ 1 9 ] ^ b [ 2 0 ] ^ b [ 2 2 ] ^ b [ 2 3 ] ^ b [ 2 4 ] ) << 2 1 ;
99 l f s r 2 5 t 4 [ i ] | = ( b [ 1 8 ] ^ b [ 2 1 ] ^ b [ 2 2 ] ^ b [ 2 3 ] ) << 2 2 ;

100 l f s r 2 5 t 4 [ i ] | = ( b [ 1 7 ] ^ b [ 1 8 ] ^ b [ 2 0 ] ^ b [ 2 2 ] ) << 2 3 ;
101 }
102
103 }

9.5 lfsr

9.5.1 lfsr.h

1 void l f s r 1 7 _ p r o d u c e 5 b y t e s ( c o n s t i n t key , unsigned char∗ o u t p u t ) ;
2 void l f s r 2 5 _ p r o d u c e 5 b y t e s ( c o n s t i n t key , unsigned char∗ o u t p u t ) ;

9.5.2 lfsr.c

1 # i n c l u d e " t a b l e s . h "
2
3
4 /∗∗
5 key : t h e 16 b i t key
6 o u t p u t : p o i n t e r t o 5 o u t p u t b y t e s
7 ∗∗ /
8 void l f s r 1 7 _ p r o d u c e 5 b y t e s ( c o n s t i n t key , unsigned char ∗o u t p u t ) { / / h t t p : / / www. t i n y t e d . n e t / e d d i e / c s s _ b a s i c . h tm l
9 unsigned i n t l f s r 1 7 ; / / s t a t e

10 unsigned i n t b i t s ; / / temp v a l u e
11 i n t i ;
12
13 / / The i n i t i a l s t a t e ( b i t 9 h igh )
14 l f s r 1 7 = ( r e v e r s e [ ( key > >8)&0xFF ] < <9)
15 | 0 x100
16 | r e v e r s e [ key&0xFF ] ;
17 / / Produce 5 b y t e s
18 f o r ( i =0 ; i <5 ; i ++) {
19 l f s r 1 7 = ( l f s r 1 7 < <9) | ( l f s r 1 7 > >8) ; / / r o t a t e 8 p o s i t i o n s t o t h e r i g h t
20 b i t s = l f s r 1 7 & 0x03FC0 ; / / b i t s t o be xor ’ ed
21 l f s r 1 7 ^= ( b i t s < <3) ^ ( b i t s < <6) ^ ( b i t s < <9) ;
22 l f s r 1 7 &= 0x1FFFF ; / / We o n l y need t h e f i r s t 17 b i t s
23 o u t p u t [ i ] = l f s r 1 7 > >9; / / Ou tpu t b y t e = t h e 8 MSBs i n t h e LFSR
24 }
25 }
26
27
28
29 /∗∗
30 key : t h e 24 b i t key
31 o u t p u t : p o i n t e r t o 5 o u t p u t b y t e s
32 ∗∗ /
33 void l f s r 2 5 _ p r o d u c e 5 b y t e s ( c o n s t i n t key , unsigned char∗ o u t p u t ) {
34 unsigned i n t l f s r 2 5 ; / / s t a t e
35 unsigned i n t h i g h b y t e ; / / The 8 MSBs
36 unsigned i n t i ;
37
38 / / The i n i t i a l s t a t e
39 h i g h b y t e = r e v e r s e [ ( key > >16)&0xFF ] ;
40 l f s r 2 5 = ( ( h i g h b y t e&0xE0 ) < <17) | 0 x200000 | ( ( h i g h b y t e&0x1F ) < <16)
41 | ( r e v e r s e [ ( key > >8)&0xFF ] < <8)
42 | ( r e v e r s e [ ( key )&0xFF ] )
43 ;
44 / / Produce 5 b y t e s
45 f o r ( i =0 ; i <5 ; i ++) {
46 h i g h b y t e = ( l f s r 2 5 ^ ( l f s r 2 5 > >3) ^ ( l f s r 2 5 > >4) ^ ( l f s r 2 5 > >12) ) & 0xFF ; / / The new 8 MSBs
47 l f s r 2 5 = ( h i g h b y t e < <17) | ( l f s r 2 5 > >8) ; / / The new s t a t e ( s h i f t 8 b i t s r i g h t and p u t t i n g i n t h e h igh b y t e
48 o u t p u t [ i ] = h i g h b y t e ; / / Ou tpu t b y t e = t h e 8 MSBs i n t h e LFSR
49 }
50 }
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9.6 util

9.6.1 util.h
1 i n t ge tArg ( char∗ a r g ) ;
2 i n t h e x d i g i t T o I n t ( unsigned char d ) ;
3 void p r i n t 4 0 b i t s ( c o n s t char∗ t e x t , c o n s t unsigned char∗ b y t e s ) ;
4 void p r i n t E x i t ( c o n s t char∗ msg ) ;

9.6.2 util.c
1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < c t y p e . h>
3 # i n c l u d e < s t r i n g . h>
4 # i n c l u d e < s t d l i b . h>
5 # i n c l u d e " u t i l . h "
6
7
8 /∗∗
9 C o n v e r t s one h e x d i g i t t o an i n t e g e r (0−15) .

10 ∗∗ /
11 i n t h e x d i g i t T o I n t ( unsigned char d ) {
12 i f ( d>= ’ 0 ’ && d<= ’ 9 ’ )
13 re turn d−’ 0 ’ ;
14 i f ( d>= ’A’ && d<= ’F ’ )
15 re turn d−’A’ +10;
16 p r i n t E x i t ( " Wrong h e x d i g i t . " ) ;
17 re turn −1; / / Dead code , b u t p l e a s e s t h e c o m p i l e r
18 }
19
20
21 /∗∗
22 C o n v e r t s a s t r i n g o f one or two h e x d i g i t s t o an i n t e g e r (0−255) .
23 ∗∗ /
24 i n t ge tArg ( char∗ a r g ) {
25 unsigned char high , low ;
26 unsigned i n t l e n = s t r l e n ( a r g ) ;
27
28 i f ( l e n !=1 && l e n !=2 )
29 p r i n t E x i t ( " Use one or two d i g i t s p e r a rgument . " ) ;
30 i f ( a r g [ 1 ] = = 0 ) {
31 h igh = ’ 0 ’ ;
32 low= t o u p p e r ( a r g [ 0 ] ) ;
33 } e l s e {
34 h igh = t o u p p e r ( a r g [ 0 ] ) ;
35 low= t o u p p e r ( a r g [ 1 ] ) ;
36 }
37 re turn 0x10∗h e x d i g i t T o I n t ( h igh ) + h e x d i g i t T o I n t ( low ) ;
38 }
39
40
41 /∗∗
42 P r i n t s 40 b i t s (5 b y t e s ) i n two−d i g i t s−per−b y t e h e x a d e c i m a l f o r m a t f o l l o w e d by a l i n e s h i f t .
43 t e x t : P r e c e d i n g t e x t .
44 b y t e s : P o i n t e r t o t o 5 b y t e s .
45 ∗∗ /
46 void p r i n t 4 0 b i t s ( c o n s t char∗ t e x t , c o n s t unsigned char∗ b y t e s ) {
47 i n t i ;
48 p r i n t f ( t e x t ) ;
49 f o r ( i =0 ; i <5 ; i ++)
50 p r i n t f ( " %02X" , b y t e s [ i ] ) ;
51 p r i n t f ( " \ n " ) ;
52 }
53
54
55
56 /∗∗
57 P r i n t s o u t a mess ing and e x i t t h e program .
58 ∗∗ /
59 void p r i n t E x i t ( c o n s t char∗ msg ) {
60 p r i n t f ( msg ) ;
61 p r i n t f ( " \ n " ) ;
62 e x i t (−1) ;
63 }
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